1
|
Ankri L, Riccitelli S, Rivlin-Etzion M. A new role for excitation in the retinal direction-selective circuit. J Physiol 2024; 602:6301-6328. [PMID: 39462912 DOI: 10.1113/jp286581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
A key feature of the receptive field of neurons in the visual system is their centre-surround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring On-Off direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects. We reveal that light adaptation leads to surround expansion in pDSGCs. The pDSGCs maintain their original directional tuning in the centre receptive field, but present the oppositely tuned response in their surround. Notably, although inhibition is the main substrate for retinal direction selectivity, we found that following light adaptation, both the centre- and surround-mediated responses originate from directionally tuned excitatory inputs. Multi-electrode array recordings show similar oppositely tuned responses in other DSGC subtypes. Together, these data attribute a new role for excitation in the direction-selective circuit. This excitation carries an antagonistic centre-surround property, possibly designed to sharpen the detection of motion direction in the retina. KEY POINTS: Receptive fields of direction-selective retinal ganglion cells expand asymmetrically following light adaptation. The increase in the surround receptive field generates a delayed spiking phase that is tuned to the null direction and is mediated by excitation. Following light adaptation, excitation rules the computation in the centre receptive field and is tuned to the preferred direction. GABAergic and glycinergic inputs modulate the null-tuned delayed response differentially. Null-tuned delayed spiking phases can be detected in all types of direction-selective retinal ganglion cells. Light adaptation exposes a hidden directional excitation in the circuit, which is tuned to opposite directions in the centre and surround receptive fields.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
2
|
Chotard V, Trapani F, Glaziou G, Sermet BS, Yger P, Marre O, Rebsam A. Altered Functional Responses of the Retina in B6 Albino Tyrc/c Mice. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39189994 PMCID: PMC11361382 DOI: 10.1167/iovs.65.10.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Mammals with albinism present low visual discrimination ability and different proportions of certain retinal cell subtypes. As the spatial resolution of the retina depends on the visual field sampling by retinal ganglion cells (RGCs) based on the convergence of upstream cell inputs, it could be affected in albinism and thus modify the RGC function. Methods We used the Tyrc/c line, a mouse model of oculocutaneous albinism type 1 (OCA1), carrying a tyrosinase mutation, and previously characterized by a total absence of pigment and severe visual deficits. To assess their retinal function, we recorded the light responses of hundreds of RGCs ex vivo using multi-electrode array (MEA). We estimated the receptive field (RF)-center diameter of Tyr+/c and Tyrc/c RGCs using a checkerboard stimulation before simultaneously stimulating the center and surround of RGC RFs with full-field flashes. Results Following checkerboard stimulation, the RF-center diameters of RGCs were indistinguishable between Tyrc/c and Tyr+/c retinas. Nevertheless, RGCs from Tyrc/c retinas presented more OFF responses to full-field flashes than RGCs from Tyr+/c retinas. Unlike Tyr+/c retinas, very few OFF-center RGCs switched polarity to ON or ON-OFF responses after full-field flashes in Tyrc/c retinas, suggesting a different surround suppression in these retinas. Conclusions The retinal output signal is affected in Tyrc/c retinas, despite intact RF-center diameters of their RGCs. Adaptive mechanisms during development are probably responsible for this change in RGC responses, related to the absence of ocular pigments.
Collapse
Affiliation(s)
- Virginie Chotard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Guilhem Glaziou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alexandra Rebsam
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Boissonnet T, Tripodi M, Asari H. Awake responses suggest inefficient dense coding in the mouse retina. eLife 2023; 12:e78005. [PMID: 37922200 PMCID: PMC10624425 DOI: 10.7554/elife.78005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/28/2023] [Indexed: 11/05/2023] Open
Abstract
The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies.
Collapse
Affiliation(s)
- Tom Boissonnet
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- Collaboration for joint PhD degree between EMBL and Université Grenoble Alpes, Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Matteo Tripodi
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| |
Collapse
|
4
|
Abstract
Visual information processing in the retina requires the rhythmic expression of clock genes. The intrinsic retinal circadian clock is independent of the master clock located in the hypothalamic suprachiasmatic nucleus and emerges from retinal cells, including glia. Less clear is how glial oscillators influence the daily regulation of visual information processing in the mouse retina. Here, we demonstrate that the adult conditional deletion of the gene Bmal1 in GLAST-positive glial cells alters retinal physiology. Specifically, such deletion was sufficient to lower the amplitude of the electroretinogram b-wave recorded under light-adapted conditions. Furthermore, recordings from > 20,000 retinal ganglion cells (RGCs), the retina output, showed a non-uniform effect on RGCs activity in response to light across different cell types and over a 24-h period. Overall, our results suggest a new role of a glial circadian gene in adjusting mammalian retinal output throughout the night-day cycle.
Collapse
|
5
|
Cha S, Ahn J, Jeong Y, Lee YH, Kim HK, Lee D, Yoo Y, Goo YS. Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model. Front Cell Neurosci 2022; 16:926096. [PMID: 35936494 PMCID: PMC9345760 DOI: 10.3389/fncel.2022.926096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yong Hee Lee
- Department of Biochemistry, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Microbiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- *Correspondence: Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
6
|
Yu Z, Turner MH, Baudin J, Rieke F. Adaptation in cone photoreceptors contributes to an unexpected insensitivity of primate On parasol retinal ganglion cells to spatial structure in natural images. eLife 2022; 11:e70611. [PMID: 35285798 PMCID: PMC8956286 DOI: 10.7554/elife.70611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Neural circuits are constructed from nonlinear building blocks, and not surprisingly overall circuit behavior is often strongly nonlinear. But neural circuits can also behave near linearly, and some circuits shift from linear to nonlinear behavior depending on stimulus conditions. Such control of nonlinear circuit behavior is fundamental to neural computation. Here, we study a surprising stimulus dependence of the responses of macaque On (but not Off) parasol retinal ganglion cells: these cells respond nonlinearly to spatial structure in some stimuli but near linearly to spatial structure in others, including natural inputs. We show that these differences in the linearity of the integration of spatial inputs can be explained by a shift in the balance of excitatory and inhibitory synaptic inputs that originates at least partially from adaptation in the cone photoreceptors. More generally, this highlights how subtle asymmetries in signaling - here in the cone signals - can qualitatively alter circuit computation.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Maxwell H Turner
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
von Engelhardt J. Role of AMPA receptor desensitization in short term depression - lessons from retinogeniculate synapses. J Physiol 2021; 600:201-215. [PMID: 34197645 DOI: 10.1113/jp280878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Repetitive synapse activity induces various forms of short-term plasticity. The role of presynaptic mechanisms such as residual Ca2+ and vesicle depletion in short-term facilitation and short-term depression is well established. On the other hand, the contribution of postsynaptic mechanisms such as receptor desensitization and saturation to short-term plasticity is less well known and often ignored. In this review, I will describe short-term plasticity in retinogeniculate synapses of relay neurons of the dorsal lateral geniculate nucleus (dLGN) to exemplify the synaptic properties that facilitate the contribution of AMPA receptor desensitization to short-term plasticity. These include high vesicle release probability, glutamate spillover and, importantly, slow recovery from desensitization of AMPA receptors. The latter is strongly regulated by the interaction of AMPA receptors with auxiliary proteins such as CKAMP44. Finally, I discuss the relevance of short-term plasticity in retinogeniculate synapses for the processing of visual information by LGN relay neurons.
Collapse
Affiliation(s)
- Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Antagonistic Center-Surround Mechanisms for Direction Selectivity in the Retina. Cell Rep 2021; 31:107608. [PMID: 32375036 PMCID: PMC7221349 DOI: 10.1016/j.celrep.2020.107608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022] Open
Abstract
An antagonistic center-surround receptive field is a key feature in sensory processing, but how it contributes to specific computations such as direction selectivity is often unknown. Retinal On-starburst amacrine cells (SACs), which mediate direction selectivity in direction-selective ganglion cells (DSGCs), exhibit antagonistic receptive field organization: depolarizing to light increments and decrements in their center and surround, respectively. We find that a repetitive stimulation exhausts SAC center and enhances its surround and use it to study how center-surround responses contribute to direction selectivity. Center, but not surround, activation induces direction-selective responses in SACs. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and modeling data suggest that the opposing direction selectivity can result from inverted temporal balance between excitation and inhibition in DSGCs, implying that SAC's response timing dictates direction selectivity. Our findings reveal antagonistic center-surround mechanisms for direction selectivity and demonstrate how context-dependent receptive field reorganization enables flexible computations.
Collapse
|
10
|
Chen H, Xu HP, Wang P, Tian N. Visual Deprivation Retards the Maturation of Dendritic Fields and Receptive Fields of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2021; 15:640421. [PMID: 33986645 PMCID: PMC8111083 DOI: 10.3389/fncel.2021.640421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
It was well documented that both the size of the dendritic field and receptive field of retinal ganglion cells (RGCs) are developmentally regulated in the mammalian retina, and visual stimulation is required for the maturation of the dendritic and receptive fields of mouse RGCs. However, it is not clear whether the developmental changes of the RGC receptive field correlate with the dendritic field and whether visual stimulation regulates the maturation of the dendritic field and receptive field of RGCs in a correlated manner. The present work demonstrated that both the dendritic and receptive fields of RGCs continuously develop after eye opening. However, the correlation between the developmental changes in the receptive field size and the dendritic field varies among different RGC types. These results suggest a continuous change of synaptic converging of RGC synaptic inputs in an RGC type-dependent manner. Besides, light deprivation impairs both the development of dendritic and receptive fields.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Hong-Ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT, United States.,VA Salt Lake City Health Care System, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Retinal ganglion cell dysfunction in mice following acute intraocular pressure is exacerbated by P2X7 receptor knockout. Sci Rep 2021; 11:4184. [PMID: 33603067 PMCID: PMC7893065 DOI: 10.1038/s41598-021-83669-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence for the vulnerability of specific retinal ganglion cell (RGC) types in those with glaucoma and in animal models. In addition, the P2X7-receptor (P2X7-R) has been suggested to contribute to RGC death following stimulation and elevated IOP, though its role in RGC dysfunction prior to death has not been examined. Therefore, we examined the effect of an acute, non-ischemic intraocular pressure (IOP) insult (50 mmHg for 30 min) on RGC function in wildtype mice and P2X7-R knockout (P2X7-KO) mice. We examined retinal function using electroretinogram recordings and individual RGC responses using multielectrode arrays, 3 days following acute IOP elevation. Immunohistochemistry was used to examine RGC cell death and P2X7-R expression in several RGC types. Acute intraocular pressure elevation produced pronounced dysfunction in RGCs; whilst other retinal neuronal responses showed lesser changes. Dysfunction at 3 days post-injury was not associated with RGC loss or changes in receptive field size. However, in wildtype animals, OFF-RGCs showed reduced spontaneous and light-elicited activity. In the P2X7-KO, both ON- and OFF-RGC light-elicited responses were reduced. Expression of P2X7-R in wildtype ON-RGC dendrites was higher than in other RGC types. In conclusion, OFF-RGCs were vulnerable to acute IOP elevation and their dysfunction was not rescued by genetic ablation of P2X7-R. Indeed, knockout of P2X7-R also caused ON-RGC dysfunction. These findings aid our understanding of how pressure affects RGC function and suggest treatments targeting the P2X7-R need to be carefully considered.
Collapse
|
12
|
Lee MJ, Zeck G. Electrical Imaging of Light-Induced Signals Across and Within Retinal Layers. Front Neurosci 2020; 14:563964. [PMID: 33328846 PMCID: PMC7717958 DOI: 10.3389/fnins.2020.563964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
The mammalian retina processes sensory signals through two major pathways: a vertical excitatory pathway, which involves photoreceptors, bipolar cells, and ganglion cells, and a horizontal inhibitory pathway, which involves horizontal cells, and amacrine cells. This concept explains the generation of an excitatory center—inhibitory surround sensory receptive fields—but fails to explain the modulation of the retinal output by stimuli outside the receptive field. Electrical imaging of light-induced signal propagation at high spatial and temporal resolution across and within different retinal layers might reveal mechanisms and circuits involved in the remote modulation of the retinal output. Here we took advantage of a high-density complementary metal oxide semiconductor-based microelectrode array and investigated the light-induced propagation of local field potentials (LFPs) in vertical mouse retina slices. Surprisingly, the LFP propagation within the different retinal layers depends on stimulus duration and stimulus background. Application of the same spatially restricted light stimuli to flat-mounted retina induced ganglion cell activity at remote distances from the stimulus center. This effect disappeared if a global background was provided or if gap junctions were blocked. We hereby present a neurotechnological approach and demonstrated its application, in which electrical imaging evaluates stimulus-dependent signal processing across different neural layers.
Collapse
Affiliation(s)
- Meng-Jung Lee
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing, International Max Planck Research School, Tübingen, Germany
| | - Günther Zeck
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| |
Collapse
|
13
|
Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6:39. [PMID: 32566247 PMCID: PMC7296038 DOI: 10.1038/s41421-020-0180-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.
Collapse
Affiliation(s)
- Tamas Kovacs-Oller
- Burke Neurological Institute, White Plains, NY 10605 USA
- Szentagothai Research Centre, University of Pécs, Pécs, H-7624 Hungary
| | - Elena Ivanova
- Burke Neurological Institute, White Plains, NY 10605 USA
| | | | - Botir T. Sagdullaev
- Burke Neurological Institute, White Plains, NY 10605 USA
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
14
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Chen J, Mandel HB, Fitzgerald JE, Clark DA. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019; 8:e47579. [PMID: 31613221 PMCID: PMC6884396 DOI: 10.7554/elife.47579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | - Holly B Mandel
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - James E Fitzgerald
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
16
|
Winkelman BHJ, Howlett MHC, Hölzel MB, Joling C, Fransen KH, Pangeni G, Kamermans S, Sakuta H, Noda M, Simonsz HJ, McCall MA, De Zeeuw CI, Kamermans M. Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells. PLoS Biol 2019; 17:e3000174. [PMID: 31513577 PMCID: PMC6741852 DOI: 10.1371/journal.pbio.3000174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.
Collapse
Affiliation(s)
- Beerend H. J. Winkelman
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Maj-Britt Hölzel
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Coen Joling
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Kathryn H. Fransen
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | | | - Hiraki Sakuta
- National Institute for Basic Biology, Okazaki, Japan
| | - Masaharu Noda
- National Institute for Basic Biology, Okazaki, Japan
| | - Huibert J. Simonsz
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands
| | - Maureen A. McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Biomedical Physics, Academic Medical Center, University of Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
17
|
Middleton TP, Huang JY, Protti DA. Cannabinoids Modulate Light Signaling in ON-Sustained Retinal Ganglion Cells of the Mouse. Front Neural Circuits 2019; 13:37. [PMID: 31164809 PMCID: PMC6536650 DOI: 10.3389/fncir.2019.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
The sole output of the retina to the brain is a signal that results from the integration of excitatory and inhibitory synaptic inputs at the level of retinal ganglion cells (RGCs). Endogenous cannabinoids (eCBs) are found throughout the central nervous system where they modulate synaptic excitability. Cannabinoid receptors and their ligands have been localized to most retinal neurons in mammals, yet their impact on retinal processing is not well known. Here, we set out to investigate the role of the cannabinoid system in retinal signaling using electrophysiological recordings from ON-sustained (ON-S) RGCs that displayed morphological and physiological signatures of ON alpha RGCs in dark adapted mouse retina. We studied the effect of the cannabinoid agonist WIN55212-2 and the inverse agonist AM251 on the spatial tuning of ON-S RGCs. WIN55212-2 significantly reduced their spontaneous spiking activity and responses to optimal spot size as well as altered their spatial tuning by reducing light driven excitatory and inhibitory inputs to RGCs. AM251 produced the opposite effect, increasing spontaneous spiking activity and peak response as well as increasing inhibitory and excitatory inputs. In addition, AM251 sharpened the spatial tuning of ON-S RGCs by increasing the inhibitory effect of the surround. These results demonstrate the presence of a functional cannabinergic system in the retina as well as sensitivity of ON-RGCs to cannabinoids. These results reveal a neuromodulatory system that can regulate the sensitivity and excitability of retinal synapses in a dynamic, activity dependent manner and that endocannabinoids may play a significant role in retinal processing.
Collapse
Affiliation(s)
- Terence Peter Middleton
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jin Yu Huang
- Bosch Institute, The University of Sydney, Sydney, NSW, Australia.,Discipline of Biomedical Science, The University of Sydney, Sydney, NSW, Australia
| | - Dario Alejandro Protti
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling. J Neurosci 2018; 38:4531-4542. [PMID: 29661964 DOI: 10.1523/jneurosci.2857-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Receptive field properties of individual visual neurons are dictated by the precise patterns of synaptic connections they receive, including the arrangement of inputs in visual space and features such as polarity (On vs Off). The inputs from the retina to the lateral geniculate nucleus (LGN) in the mouse undergo significant refinement during development. However, it is unknown how this refinement corresponds to the establishment of functional visual response properties. Here we conducted in vivo and in vitro recordings in the mouse LGN, beginning just after natural eye opening, to determine how receptive fields develop as excitatory and feedforward inhibitory retinal afferents refine. Experiments used both male and female subjects. For in vivo assessment of receptive fields, we performed multisite extracellular recordings in awake mice. Spatial receptive fields at eye-opening were >2 times larger than in adulthood, and decreased in size over the subsequent week. This topographic refinement was accompanied by other spatial changes, such as a decrease in spot size preference and an increase in surround suppression. Notably, the degree of specificity in terms of On/Off and sustained/transient responses appeared to be established already at eye opening and did not change. We performed in vitro recordings of the synaptic responses evoked by optic tract stimulation across the same time period. These recordings revealed a pairing of decreased excitatory and increased feedforward inhibitory convergence, providing a potential mechanism to explain the spatial receptive field refinement.SIGNIFICANCE STATEMENT The development of precise patterns of retinogeniculate connectivity has been a powerful model system for understanding the mechanisms underlying the activity-dependent refinement of sensory systems. Here we link the maturation of spatial receptive field properties in the lateral geniculate nucleus (LGN) to the remodeling of retinal and inhibitory feedforward convergence onto LGN neurons. These findings should thus provide a starting point for testing the cell type-specific plasticity mechanisms that lead to refinement of different excitatory and inhibitory inputs, and for determining the effect of these mechanisms on the establishment of mature receptive fields in the LGN.
Collapse
|
19
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|
20
|
CKAMP44 modulates integration of visual inputs in the lateral geniculate nucleus. Nat Commun 2018; 9:261. [PMID: 29343769 PMCID: PMC5772470 DOI: 10.1038/s41467-017-02415-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/25/2017] [Indexed: 11/08/2022] Open
Abstract
Relay neurons in the dorsal lateral geniculate nucleus (dLGN) receive excitatory inputs from retinal ganglion cells (RGCs). Retinogeniculate synapses are characterized by a prominent short-term depression of AMPA receptor (AMPAR)-mediated currents, but the underlying mechanisms and its function for visual integration are not known. Here we identify CKAMP44 as a crucial auxiliary subunit of AMPARs in dLGN relay neurons, where it increases AMPAR-mediated current amplitudes and modulates gating of AMPARs. Importantly, CKAMP44 is responsible for the distinctive short-term depression in retinogeniculate synapses by reducing the rate of recovery from desensitization of AMPARs. Genetic deletion of CKAMP44 strongly reduces synaptic short-term depression, which leads to increased spike probability of relay neurons when activated with high-frequency inputs from retinogeniculate synapses. Finally, in vivo recordings reveal augmented ON- and OFF-responses of dLGN neurons in CKAMP44 knockout (CKAMP44−/−) mice, demonstrating the importance of CKAMP44 for modulating synaptic short-term depression and visual input integration. The function of receptor desensitization in vivo is not well understood. Here, the authors show that deletion of CKAMP44, an AMPAR auxiliary protein that modulates desensitization of AMPAR currents, affects synaptic facilitation at retinogeniculate synapses and visually-evoked firing in awake mice.
Collapse
|
21
|
High glucose levels impact visual response properties of retinal ganglion cells in C57 mice-An in vitro physiological study. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1428-1435. [PMID: 29288426 DOI: 10.1007/s11427-017-9106-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/24/2017] [Indexed: 02/08/2023]
Abstract
This study investigated visual response properties of retinal ganglion cells (RGCs) under high glucose levels. Extracellular single-unit responses of RGCs from mouse retinas were recorded. And the eyecup was prepared as a flat mount in a recording chamber and superfused with Ames medium. The averaged RF size of the ON RGCs (34.1±2.9, n=14) was significantly smaller than the OFF RGCs under the HG (49.3±0.3, n=12) (P<0.0001) conditions. The same reduction pattern was also observed in the osmotic control group (HM) between ON and OFF RGCs (P<0.0001). The averaged luminance threshold (LT) of ON RGCs increased significantly under HG or HM (HG: P<0.0001; HM: P<0.0002). OFF RGCs exhibited a similar response pattern under the same conditions (HG: P<0.01; HM: P<0.0002). The averaged contrast gain of ON cells was significantly lower than that of OFF cells with the HM treatment (P<0.015, unpaired Student's t test). The averaged contrast gain of ON cells was significantly higher than OFF cells with the HG treatment (P<0.0001). The present results suggest that HG reduced receptive field center size, suppressed luminance threshold, and attenuated contrast gain of RGCs. The impact of HG on ON and OFF RGCs may be mediated via different mechanisms.
Collapse
|
22
|
Yu WQ, Grzywacz NM, Lee EJ, Field GD. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. J Neurophysiol 2017; 118:434-454. [PMID: 28424296 PMCID: PMC5506261 DOI: 10.1152/jn.00826.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
We have determined the impact of rod death and cone reorganization on the spatiotemporal receptive fields (RFs) and spontaneous activity of distinct retinal ganglion cell (RGC) types. We compared RGC function between healthy and retinitis pigmentosa (RP) model rats (S334ter-3) at a time when nearly all rods were lost but cones remained. This allowed us to determine the impact of rod death on cone-mediated visual signaling, a relevant time point because the diagnosis of RP frequently occurs when patients are nightblind but daytime vision persists. Following rod death, functionally distinct RGC types persisted; this indicates that parallel processing of visual input remained largely intact. However, some properties of cone-mediated responses were altered ubiquitously across RGC types, such as prolonged temporal integration and reduced spatial RF area. Other properties changed in a cell type-specific manner, such as temporal RF shape (dynamics), spontaneous activity, and direction selectivity. These observations identify the extent of functional remodeling in the retina following rod death but before cone loss. They also indicate new potential challenges to restoring normal vision by replacing lost rod photoreceptors.NEW & NOTEWORTHY This study provides novel and therapeutically relevant insights to retinal function following rod death but before cone death. To determine changes in retinal output, we used a large-scale multielectrode array to simultaneously record from hundreds of retinal ganglion cells (RGCs). These recordings of large-scale neural activity revealed that following the death of all rods, functionally distinct RGCs remain. However, the receptive field properties and spontaneous activity of these RGCs are altered in a cell type-specific manner.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Department of Electrical Engineering, University of Southern California, Los Angeles, California.,Department of Neuroscience, Department of Physics, and Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia
| | - Eun-Jin Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
23
|
Zhao X, Reifler AN, Schroeder MM, Jaeckel ER, Chervenak AP, Wong KY. Mechanisms creating transient and sustained photoresponses in mammalian retinal ganglion cells. J Gen Physiol 2017; 149:335-353. [PMID: 28153865 PMCID: PMC5339512 DOI: 10.1085/jgp.201611720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022] Open
Abstract
Visual stimuli of different frequencies are encoded in the retina using transient and sustained responses. Zhao et al. describe the different strategies that are used by four types of retinal ganglion cells to shape photoresponse kinetics. Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs’ rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells’ responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light.
Collapse
Affiliation(s)
- Xiwu Zhao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Aaron N Reifler
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Melanie M Schroeder
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Elizabeth R Jaeckel
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Andrew P Chervenak
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
24
|
Abstract
Receptive fields (RFs) of most retinal ganglion cells (RGCs) consist of an excitatory center and suppressive surround. The RF center arises from the summation of excitatory bipolar cell glutamatergic inputs, whereas the surround arises from lateral inhibitory inputs. In the retina, both gamma amino butyric acid (GABA) and glycine are inhibitory neurotransmitters. A clear role for GABAergic inhibition modulating the RGC RF surround has been demonstrated across species. Glycinergic inhibition is more commonly associated with RF center modulation, although there is some evidence that it may contribute to the RF surround. The synaptic glycinergic chloride channels are formed by three homomeric β and two homomeric α subunits that can be glycine receptor (GlyR) α1, α2, α3, or α4. GlyRα composition is responsible for currents with distinct decay kinetics. Their expression within the inner plexiform laminae and neuronal subtypes also differ. We studied the role of GlyR subunit selective modulation of RGC RF surrounds, using mice lacking GlyRα2 (Glra2 -/-), GlyRα3 (Glra3 -/-), or both (Glra2/3 -/-). We chose this molecular genetic approach instead of pharmacological manipulation because there are no subunit selective antagonists and strychnine blocks all GlyRs. Comparisons of annulus-evoked responses among wild type (WT) and GlyRα knockouts (Glra2 -/-, Glra3 -/- and Glra2/3 -/-) show that GlyRα2 inhibition enhances RF surround suppression and post-stimulus excitation in only WT OFF RGCs. Similarities in the responses in Glra2 -/- and Glra2/3 -/- RGCs verify these conclusions. Based on previous and current data, we propose that GlyRα2-mediated input uses a crossover inhibitory circuit. Further, we suggest that GlyRα2 modulates the OFF RGC RF center and surround independently. In summary, our results define a selective GlyR subunit-specific control of RF surround suppression in OFF RGCs.
Collapse
|
25
|
Chen T, Tao Y, Yan W, Yang G, Chen X, Cao R, Zhang L, Xue J, Zhang Z. Protective effects of hydrogen-rich saline against N-methyl-N-nitrosourea-induced photoreceptor degeneration. Exp Eye Res 2016; 148:65-73. [PMID: 27215478 DOI: 10.1016/j.exer.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
The N-methyl-N-nitrosourea (MNU)-treated rat is typically used as an animal model of chemically-induced retinitis pigmentosa (RP). Reactive oxygen species (ROS) have been recognized as the crucial contributor to the retinal photoreceptor apoptosis seen in MNU-treated rats. In the present study, we explored the therapeutic effects of hydrogen-rich saline (HRS), a selective ROS scavenger, on MNU-induced photoreceptor degeneration. Intraperitoneal (IP) administration of HRS ameliorated MNU-induced photoreceptor degeneration in terms of morphology and function: Sharply decreased thickness of the retinal outer nuclear layer (ONL) and flattened photopic and scotopic electroretinogram (ERG) waveforms, typically seen in response to MNU treatment, were substantially rescued in rats cotreated with MNU and HRS (MNU + HRS). Moreover, the terminal deoxyuridine triphosphate nick-end labeling (TUNEL) assay revealed a smaller number of apoptotic photoreceptors in the MNU + HRS group compared that in the MNU group. Compared to MNU-treated rats, retinal malondialdehyde (MDA) content in MNU + HRS rats significantly decreased while superoxide dismutase (SOD) activity significantly increased. Morphological and multi-electrode array (MEA) analyses revealed more efficient preservation of the architecture and field potential waveforms in particularly the peripheral regions of the retinas within the MNU + HRS group, compared to that in the MNU group. However, this enhanced protection of structure and function in the peripheral retina is unlikely the result of site-dependent variation in the efficacy of HRS; rather, it is most likely due to reduced susceptibility of peripheral photoreceptors to MNU-induced degeneration. Inner retinal neuron function in the MNU + HRS rats was better preserved, with fewer apoptotic photoreceptors in the ONL. Collectively, these results support the rationale for future clinical evaluation of HRS as a therapeutic agent for human RP.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology & Visual Science Key Lab of PLA, Beijing, 100853, PR China
| | - Weiming Yan
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Guoqing Yang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xuemin Chen
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ruidan Cao
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Lei Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Junhui Xue
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Zuoming Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
26
|
Faits MC, Zhang C, Soto F, Kerschensteiner D. Dendritic mitochondria reach stable positions during circuit development. eLife 2016; 5:e11583. [PMID: 26742087 PMCID: PMC4749546 DOI: 10.7554/elife.11583] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/30/2015] [Indexed: 01/07/2023] Open
Abstract
Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.
Collapse
Affiliation(s)
- Michelle C Faits
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Graduate Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, United States
| | - Chunmeng Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
27
|
Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci U S A 2015; 112:E5734-43. [PMID: 26438865 DOI: 10.1073/pnas.1505274112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.
Collapse
|
28
|
Pearson JT, Kerschensteiner D. Ambient illumination switches contrast preference of specific retinal processing streams. J Neurophysiol 2015; 114:540-50. [PMID: 25995351 DOI: 10.1152/jn.00360.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼ 20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ON(pref)) or negative (OFF(pref)) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ON(pref) to OFF(pref) and Sw3-RGCs from OFF(pref) to ON(pref). In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels.
Collapse
Affiliation(s)
- James T Pearson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
29
|
Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 2015; 38:221-46. [PMID: 25897874 DOI: 10.1146/annurev-neuro-071714-034120] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the retina, photoreceptors pass visual information to interneurons, which process it and pass it to retinal ganglion cells (RGCs). Axons of RGCs then travel through the optic nerve, telling the rest of the brain all it will ever know about the visual world. Research over the past several decades has made clear that most RGCs are not merely light detectors, but rather feature detectors, which send a diverse set of parallel, highly processed images of the world on to higher centers. Here, we review progress in classification of RGCs by physiological, morphological, and molecular criteria, making a particular effort to distinguish those cell types that are definitive from those for which information is partial. We focus on the mouse, in which molecular and genetic methods are most advanced. We argue that there are around 30 RGC types and that we can now account for well over half of all RGCs. We also use RGCs to examine the general problem of neuronal classification, arguing that insights and methods from the retina can guide the classification enterprise in other brain regions.
Collapse
Affiliation(s)
- Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
30
|
Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J Neurosci 2015; 34:13458-71. [PMID: 25274823 DOI: 10.1523/jneurosci.2768-14.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.
Collapse
|
31
|
Kamermans M. Change the neural code, change the message. Nat Neurosci 2014; 18:4-6. [PMID: 25547473 DOI: 10.1038/nn.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maarten Kamermans
- Retinal Signal Processing Laboratory, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Retinal output changes qualitatively with every change in ambient illuminance. Nat Neurosci 2014; 18:66-74. [PMID: 25485757 PMCID: PMC4338531 DOI: 10.1038/nn.3891] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
The collective activity pattern of retinal ganglion cells, the retinal code, underlies higher visual processing. How does the ambient illuminance of the visual scene influence this retinal output? We recorded from isolated mouse and pig retina and from mouse dLGN in-vivo at up to seven ambient light levels covering the scotopic to photopic regimes. Across each luminance transition, the majority of ganglion cells exhibited qualitative response changes, while maintaining stable responses within each luminance. Strikingly, we commonly observed the appearance and disappearance of ON responses in OFF cells and vice versa. Such qualitative response changes occurred for a variety of stimuli, including full-field and localized contrast steps, and naturalistic movies. Our results suggest that the retinal code is not fixed but varies with every change of ambient luminance. This finding raises new questions about signal processing within the retina and has intriguing implications for visual processing in higher brain areas.
Collapse
|
33
|
Allen AE, Storchi R, Martial FP, Petersen RS, Montemurro MA, Brown TM, Lucas RJ. Melanopsin-driven light adaptation in mouse vision. Curr Biol 2014; 24:2481-90. [PMID: 25308073 PMCID: PMC4228053 DOI: 10.1016/j.cub.2014.09.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/06/2014] [Accepted: 09/03/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND In bright light, mammals use a distinct photopigment (melanopsin) to measure irradiance for centrally mediated responses such as circadian entrainment. We aimed to determine whether the information generated by melanopsin is also used by the visual system as a signal for light adaptation. To this end, we compared retinal and thalamic responses to a range of artificial and natural visual stimuli presented using spectral compositions that either approximate the mouse's experience of natural daylight ("daylight") or are selectively depleted of wavelengths to which melanopsin is most sensitive ("mel-low"). RESULTS We found reproducible and reversible changes in the flash electroretinogram between daylight and mel-low. Simultaneous recording in the dorsal lateral geniculate nucleus (dLGN) revealed that these reflect changes in feature selectivity of visual circuits in both temporal and spatial dimensions. A substantial fraction of units preferred finer spatial patterns in the daylight condition, while the population of direction-sensitive units became tuned to faster motion. The dLGN contained a richer, more reliable encoding of natural scenes in the daylight condition. These effects were absent in mice lacking melanopsin. CONCLUSIONS The feature selectivity of many neurons in the mouse dLGN is adjusted according to a melanopsin-dependent measure of environmental brightness. These changes originate, at least in part, within the retina. Melanopsin performs a role analogous to a photographer's light meter, providing an independent measure of irradiance that determines optimal setting for visual circuits.
Collapse
Affiliation(s)
- Annette E Allen
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK.
| | - Riccardo Storchi
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Franck P Martial
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Rasmus S Petersen
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Marcelo A Montemurro
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Timothy M Brown
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Lucas
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
34
|
Interacting linear and nonlinear characteristics produce population coding asymmetries between ON and OFF cells in the retina. J Neurosci 2013; 33:14958-73. [PMID: 24027295 DOI: 10.1523/jneurosci.1004-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The early visual system is a model for understanding the roles of cell populations in parallel processing. Cells in this system can be classified according to their responsiveness to different stimuli; a prominent example is the division between cells that respond to stimuli of opposite contrasts (ON vs OFF cells). These two cell classes display many asymmetries in their physiological characteristics (including temporal characteristics, spatial characteristics, and nonlinear characteristics) that, individually, are known to have important roles in population coding. Here we describe a novel distinction between the information that ON and OFF ganglion cell populations carry in mouse--that OFF cells are able to signal motion information about both light and dark objects, while ON cells have a selective deficit at signaling the motion of dark objects. We found that none of the previously reported asymmetries in physiological characteristics could account for this distinction. We therefore analyzed its basis via a recently developed linear-nonlinear-Poisson model that faithfully captures input/output relationships for a broad range of stimuli (Bomash et al., 2013). While the coding differences between ON and OFF cell populations could not be ascribed to the linear or nonlinear components of the model individually, they had a simple explanation in the way that these components interact. Sensory transformations in other systems can likewise be described by these models, and thus our findings suggest that similar interactions between component properties may help account for the roles of cell classes in population coding more generally.
Collapse
|
35
|
Yu J, Wang L, Weng SJ, Yang XL, Zhang DQ, Zhong YM. Hyperactivity of ON-type retinal ganglion cells in streptozotocin-induced diabetic mice. PLoS One 2013; 8:e76049. [PMID: 24069457 PMCID: PMC3777880 DOI: 10.1371/journal.pone.0076049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
Impairment of visual function has been detected in the early stage of diabetes but the underlying neural mechanisms involved are largely unknown. Morphological and functional alterations of retinal ganglion cells, the final output neurons of the vertebrate retina, are thought to be the major cause of visual defects in diabetes but direct evidence to support this notion is limited. In this study we investigated functional changes of retinal ganglion cells in a type 1-like diabetic mouse model. Our results demonstrated that the spontaneous spiking activity of ON-type retinal ganglion cells was increased in streptozotocin-diabetic mice after 3 to 4 months of diabetes. At this stage of diabetes, no apoptotic signals or cell loss were detected in the ganglion cell layer of the retina, suggesting that the functional alterations in ganglion cells occur prior to massive ganglion cell apoptosis. Furthermore, we found that the increased activity of ON-type ganglion cells was mainly a result of reduced inhibitory signaling to the cells in diabetes. This novel mechanism provides insight into how visual function is impaired in diabetic retinopathy.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lu Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan, United States of America
| | - Yong-Mei Zhong
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Protti DA, Di Marco S, Huang JY, Vonhoff CR, Nguyen V, Solomon SG. Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate. J Physiol 2013; 592:49-65. [PMID: 24042496 PMCID: PMC3903351 DOI: 10.1113/jphysiol.2013.257352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The centre–surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial organisation of excitatory and inhibitory synaptic inputs onto ON and OFF ganglion cells in the primate retina. All RGCs showed an increase in excitation in response to stimulus of preferred polarity. Inhibition onto RGCs comprised two types of responses to preferred polarity: some RGCs showed an increase in inhibition whilst others showed removal of tonic inhibition. Excitatory inputs were strongly spatially tuned but inhibitory inputs showed more variable organisation: in some neurons they were as strongly tuned as excitation, and in others inhibitory inputs showed no spatial tuning. We targeted one source of inner retinal inhibition by functionally ablating spiking amacrine cells with bath application of tetrodotoxin (TTX). TTX significantly reduced the spatial tuning of excitatory inputs. In addition, TTX reduced inhibition onto those RGCs where a stimulus of preferred polarity increased inhibition. Reconstruction of the spatial tuning properties by somatic injection of excitatory and inhibitory synaptic conductances verified that TTX-mediated inhibition onto bipolar cells increases the strength of the surround in RGC spiking output. These results indicate that in the primate retina inhibitory mechanisms in the inner plexiform layer sharpen the spatial tuning of ganglion cells.
Collapse
Affiliation(s)
- D A Protti
- D. A. Protti: Anderson Stuart Bldg (F13), The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Yin L, Geng Y, Osakada F, Sharma R, Cetin AH, Callaway EM, Williams DR, Merigan WH. Imaging light responses of retinal ganglion cells in the living mouse eye. J Neurophysiol 2013; 109:2415-21. [PMID: 23407356 DOI: 10.1152/jn.01043.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study reports development of a novel method for high-resolution in vivo imaging of the function of individual mouse retinal ganglion cells (RGCs) that overcomes many limitations of available methods for recording RGC physiology. The technique combines insertion of a genetically encoded calcium indicator into RGCs with imaging of calcium responses over many days with FACILE (functional adaptive optics cellular imaging in the living eye). FACILE extends the most common method for RGC physiology, in vitro physiology, by allowing repeated imaging of the function of each cell over many sessions and by avoiding damage to the retina during removal from the eye. This makes it possible to track changes in the response of individual cells during morphological development or degeneration. FACILE also overcomes limitations of existing in vivo imaging methods, providing fine spatial and temporal detail, structure-function comparison, and simultaneous analysis of multiple cells.
Collapse
Affiliation(s)
- Lu Yin
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bomash I, Roudi Y, Nirenberg S. A virtual retina for studying population coding. PLoS One 2013; 8:e53363. [PMID: 23341940 PMCID: PMC3544815 DOI: 10.1371/journal.pone.0053363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022] Open
Abstract
At every level of the visual system – from retina to cortex – information is encoded in the activity of large populations of cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation. Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically, at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad range of stimuli – essentially, a virtual retina. The results show that it is highly reliable: (1) the model cells carry the same amount of information as their real cell counterparts, (2) the quality of the information is the same – that is, the posterior stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3) the model cells are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using Bayesian decoding (electrophysiology) and optomotor performance (behavior). In sum, we present a new tool for studying population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and develop testable predictions. The overall aim is to build constrained theories about population coding and keep the number of experiments and animals to a minimum.
Collapse
Affiliation(s)
- Illya Bomash
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yasser Roudi
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hilgen G, Huebner AK, Tanimoto N, Sothilingam V, Seide C, Garrido MG, Schmidt KF, Seeliger MW, Löwel S, Weiler R, Hübner CA, Dedek K. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina. PLoS One 2012; 7:e46155. [PMID: 23056253 PMCID: PMC3467262 DOI: 10.1371/journal.pone.0046155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 11/22/2022] Open
Abstract
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pH(i)) and chloride concentration ([Cl(-)](i)) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABA(A) receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pH(i) regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| | - Antje K. Huebner
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Christina Seide
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Karl-Friedrich Schmidt
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Siegrid Löwel
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Reto Weiler
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| | | | - Karin Dedek
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Selective glycine receptor α2 subunit control of crossover inhibition between the on and off retinal pathways. J Neurosci 2012; 32:3321-32. [PMID: 22399754 DOI: 10.1523/jneurosci.5341-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the retina, the receptive fields (RFs) of almost all ganglion cells (GCs) are comprised of an excitatory center and a suppressive surround. The RF center arises from local excitatory bipolar cell (BC) inputs and the surround from lateral inhibitory inputs. Selective antagonists have been used to define the roles of GABA(A) and GABA(C) receptor-mediated input in RF organization. In contrast, the role of glycine receptor (GlyR) subunit-specific inhibition is less clear because the only antagonist, strychnine, blocks all GlyR subunit combinations. We used mice lacking the GlyRα2 (Glra2(-/-)) and GlyRα3 (Glra3(-/-)) subunits, or both (Glra2/3(-/-)), to explore their roles in GC RF organization. By comparing spontaneous and visually evoked responses of WT with Glra2(-/-), Glra3(-/-) and Glra2/3(-/-) ON- and OFF-center GCs, we found that both GlyRα2 and GlyRα3 modulate local RF interactions. In the On pathway, both receptors enhance the excitatory center response; however, the underlying inhibitory mechanisms differ. GlyRα2 participates in crossover inhibition, whereas GlyRα3 mediates serial inhibition. In the Off pathway, GlyRα2 plays a similar role, again using crossover inhibition and enhancing excitatory responses within the RF center. Comparisons of single and double KOs indicate that GlyRα2 and GlyRα3 inhibition are independent and additive, consistent with the finding that they use different inhibitory circuitry. These findings are the first to define GlyR subunit-specific control of visual function and GlyRα2 subunit-specific control of crossover inhibition in the retina.
Collapse
|
41
|
Abstract
The rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON-OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.
Collapse
|
42
|
Xiao C, He M, Nan Y, Zhang D, Chen B, Guan Y, Pu M. Physiological effects of superoxide dismutase on altered visual function of retinal ganglion cells in db/db mice. PLoS One 2012; 7:e30343. [PMID: 22272340 PMCID: PMC3260298 DOI: 10.1371/journal.pone.0030343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/14/2011] [Indexed: 01/04/2023] Open
Abstract
Background The C57BLKS/J db/db (db/db) mouse is a widely used type 2 diabetic animal model, and this model develops early inner retinal neuronal dysfunction beginning at 24 weeks. The neural mechanisms that mediate early stage retinal dysfunction in this model are unknown. We evaluated visual response properties of retinal ganglion cells (RGCs) during the early stage of diabetic insult (8, 12, and 20 wk) in db/db mice and determined if increased oxidative stress plays a role in impaired visual functions of RGCs in 20 wk old db/db mice. Methodology/Principal Findings In vitro extracellular single-unit recordings from RGCs in wholemount retinas were performed. The receptive field size, luminance threshold, and contrast gain of the RGCs were investigated. Although ON- and OFF-RGCs showed a different time course of RF size reduction, by 20 wk, the RF of ON- and OFF-RGCs were similarly affected. The LT of ON-RGCs was significantly elevated in 12 and 20 wk db/db mice compared to the LT of OFF-RGCs. The diabetic injury also affected contrast gains of ON- and OFF-RGCs differently. The generation of reactive oxidative species (ROS) in fresh retina was estimated by dihydroethidium. Superoxide dismutase (SOD) (300 unit/ml) was applied in Ames medium to the retina, and visual responses of RGCs were recorded for five hours. ROS generation in the retinas of db/db mice increased at 8wk and continued to progress at 20 wk of ages. In vitro application of SOD improved visual functions in 20 wk db/db mice but the SOD treatment affected ON- and OFF-RGCs differently in db/m retina. Conclusions/Significance The altered visual functions of RGCs were characterized by the reduced RF center size, elevated LT, and attenuated contrast gain in 12 and 20 wk db/db mice, respectively. These altered visual functions could, at least partly, be due to oxidative stress since in vitro application of SOD effectively improves visual functions.
Collapse
Affiliation(s)
- Chunxia Xiao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception, Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restore, Peking University, Beijing, China
| | - Meihua He
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception, Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restore, Peking University, Beijing, China
| | - Yan Nan
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception, Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restore, Peking University, Beijing, China
| | - Dongjuan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baiyu Chen
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception, Peking University, Beijing, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- * E-mail: (MP); (YG)
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception, Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restore, Peking University, Beijing, China
- * E-mail: (MP); (YG)
| |
Collapse
|
43
|
Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J Neurosci 2011; 31:7670-81. [PMID: 21613480 DOI: 10.1523/jneurosci.0629-11.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The retina uses two photoreceptor types to encode the wide range of light intensities in the natural environment. Rods mediate vision in dim light, whereas cones mediate vision in bright light. Mouse photoreceptors include only 3% cones, and the majority of these coexpress two opsins (short- and middle-wavelength sensitive, S and M), with peak sensitivity to either ultraviolet (360 nm) or green light (508 nm). The M/S-opsin ratio varies across the retina but has not been characterized functionally, preventing quantitative study of cone-mediated vision. Furthermore, physiological and behavioral measurements suggested that mouse retina supports relatively slow temporal processing (peak sensitivity, ∼ 2-5 Hz) compared to primates; however, past studies used visible wavelengths that are inefficient at stimulating mouse S-opsin. Here, we measured the M/S-opsin expression ratio across the mouse retina, as reflected by ganglion cell responses in vitro, and probed cone-mediated ganglion cell temporal properties using ultraviolet light stimulation and linear systems analysis. From recordings in mice lacking rod function (Gnat1(-/-), Rho(-/-)), we estimate ∼ 70% M-opsin expression in far dorsal retina, dropping to <5% M-opsin expression throughout ventral retina. In mice lacking cone function (Gnat2(cpfl3)), light-adapted rod-mediated responses peaked at ∼ 5-7 Hz. In wild-type mice, cone-mediated responses peaked at ∼ 10 Hz, with substantial responsiveness up to ∼ 30 Hz. Therefore, despite the small percentage of cones, cone-mediated responses in mouse ganglion cells are fast and robust, similar to those in primates. These measurements enable quantitative analysis of cone-mediated responses at all levels of the visual system.
Collapse
|
44
|
Farajian R, Pan F, Akopian A, Völgyi B, Bloomfield SA. Masked excitatory crosstalk between the ON and OFF visual pathways in the mammalian retina. J Physiol 2011; 589:4473-89. [PMID: 21768265 DOI: 10.1113/jphysiol.2011.213371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A fundamental organizing feature of the visual system is the segregation of ON and OFF responses into parallel streams to signal light increment and decrement. However, we found that blockade of GABAergic inhibition unmasks robust ON responses in OFF α-ganglion cells (α-GCs). These ON responses had the same centre-mediated structure as the classic OFF responses of OFF α-GCs, but were abolished following disruption of the ON pathway with L-AP4. Experiments showed that both GABA(A) and GABA(C) receptors are involved in the masking inhibition of this ON response, located at presynaptic inhibitory synapses on bipolar cell axon terminals and possibly amacrine cell dendrites. Since the dendrites of OFF α-GCs are not positioned to receive excitatory inputs from ON bipolar cell axon terminals in sublamina-b of the inner plexiform layer (IPL), we investigated the possibility that gap junction-mediated electrical synapses made with neighbouring amacrine cells form the avenue for reception of ON signals. We found that the application of gap junction blockers eliminated the unmasked ON responses in OFF α-GCs, while the classic OFF responses remained. Furthermore, we found that amacrine cells coupled to OFF α-GCs display processes in both sublaminae of the IPL, thus forming a plausible substrate for the reception and delivery of ON signals to OFF α-GCs. Finally, using a multielectrode array, we found that masked ON and OFF signals are displayed by over one-third of ganglion cells in the rabbit and mouse retinas, suggesting that masked crossover excitation is a widespread phenomenon in the inner mammalian retina.
Collapse
Affiliation(s)
- Reza Farajian
- Department of Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
45
|
Stasheff SF, Shankar M, Andrews MP. Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. J Neurophysiol 2011; 105:3002-9. [PMID: 21389300 DOI: 10.1152/jn.00704.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a subset of hereditary retinal diseases, early photoreceptor degeneration causes rapidly progressive blindness in children. To better understand how retinal development may interact with degenerative processes, we compared spontaneous and light-evoked activity among retinal ganglion cells in rd1 and rd10 mice, strains with closely related retinal disease. In each, a mutation in the Pde6b gene causes photoreceptor dysfunction and death, but in rd10 mice degeneration starts after a peak in developmental plasticity of retinal circuitry and thereafter progresses more slowly. In vitro multielectrode action potential recordings revealed that spontaneous waves of correlated ganglion cell activity comparable to those in wild-type mice were present in rd1 and rd10 retinas before eye opening [postnatal day (P) 7 to P8]. In both strains, spontaneous firing rates increased by P14-P15 and were many times higher by 4-6 wk of age. Among rd1 ganglion cells, all responses to light had disappeared by ~P28, yet in rd10 retinas vigorous ON and OFF responses were maintained well beyond this age and were not completely lost until after P60. This difference in developmental time course separates mechanisms underlying the hyperactivity from those that alter light-driven responses in rd10 retinas. Moreover, several broad physiological groups of cells remained identifiable according to response polarity and time course as late as P60. This raises hope that visual function might be preserved or restored despite ganglion cell hyperactivity seen in inherited retinal degenerations, particularly if treatment or manipulation of early developmental plasticity were to be timed appropriately.
Collapse
Affiliation(s)
- Steven F Stasheff
- Department of Pediatrics (Neurology), The University of Iowa and The Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
46
|
Symmetry breakdown in the ON and OFF pathways of the retina at night: functional implications. J Neurosci 2010; 30:10006-14. [PMID: 20668185 DOI: 10.1523/jneurosci.5616-09.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several recent studies have shown that the ON and OFF channels of the visual system are not simple mirror images of each other, that their response characteristics are asymmetric (Chichilnisky and Kalmar, 2002; Sagdullaev and McCall, 2005). How the asymmetries bear on visual processing is not well understood. Here, we show that ON and OFF ganglion cells show a strong asymmetry in their temporal adaptation to photopic (day) and scotopic (night) conditions and that the asymmetry confers a functional advantage. Under photopic conditions, the ON and OFF ganglion cells show similar temporal characteristics. Under scotopic conditions, the two cell classes diverge-ON cells shift their tuning to low temporal frequencies, whereas OFF cells continue to respond to high. This difference in processing corresponds to an asymmetry in the natural world, one produced by the Poisson nature of photon capture and persists over a broad range of light levels. This work characterizes a previously unknown divergence in the ON and OFF pathways and its utility to visual processing. Furthermore, the results have implications for downstream circuitry and thus offer new constraints for models of downstream processing, since ganglion cells serve as building blocks for circuits in higher brain areas. For example, if simple cells in visual cortex rely on complementary interactions between the two pathways, such as push-pull interactions (Alonso et al., 2001; Hirsch, 2003), their receptive fields may be radically different under scotopic conditions, when the ON and OFF pathways are out of sync.
Collapse
|
47
|
van Kleef JP, Stange G, Ibbotson MR. Applicability of White-Noise Techniques to Analyzing Motion Responses. J Neurophysiol 2010; 103:2642-51. [DOI: 10.1152/jn.00591.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motion processing in visual neurons is often understood in terms of how they integrate light stimuli in space and time. These integrative properties, known as the spatiotemporal receptive fields (STRFs), are sometimes obtained using white-noise techniques where a continuous random contrast sequence is delivered to each spatial location within the cell's field of view. In contrast, motion stimuli such as moving bars are usually presented intermittently. Here we compare the STRF prediction of a neuron's response to a moving bar with the measured response in second-order interneurons (L-neurons) of dragonfly ocelli (simple eyes). These low-latency neurons transmit sudden changes in intensity and motion information to mediate flight and gaze stabilization reflexes. A white-noise analysis is made of the responses of L-neurons to random bar stimuli delivered either every frame (densely) or intermittently (sparsely) with a temporal sequence matched to the bar motion stimulus. Linear STRFs estimated using the sparse stimulus were significantly better at predicting the responses to moving bars than the STRFs estimated using a traditional dense white-noise stimulus, even when second-order nonlinear terms were added. Our results strongly suggest that visual adaptation significantly modifies the linear STRF properties of L-neurons in dragonfly ocelli during dense white-noise stimulation. We discuss the ability to predict the responses of visual neurons to arbitrary stimuli based on white-noise analysis. We also discuss the likely functional advantages that adaptive receptive field structures provide for stabilizing attitude during hover and forward flight in dragonflies.
Collapse
Affiliation(s)
- Joshua P. van Kleef
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gert Stange
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael R. Ibbotson
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
48
|
Eggers ED, Lukasiewicz PD. Interneuron circuits tune inhibition in retinal bipolar cells. J Neurophysiol 2009; 103:25-37. [PMID: 19906884 DOI: 10.1152/jn.00458.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
49
|
Abstract
Thirty years ago virtually everything known about primate color vision derived from psychophysical studies of normal and color-defective humans and from physiological investigations of the visual system of the macaque monkey, the most popular of human surrogates for this purpose. The years since have witnessed much progress toward the goal of understanding this remarkable feature of primate vision. Among many advances, investigations focused on naturally occurring variations in color vision in a wide range of nonhuman primate species have proven to be particularly valuable. Results from such studies have been central to our expanding understanding of the interrelationships between opsin genes, cone photopigments, neural organization, and color vision. This work is also yielding valuable insights into the evolution of color vision.
Collapse
|
50
|
Ekesten B, Gouras P. Cone inputs to murine striate cortex. BMC Neurosci 2008; 9:113. [PMID: 19014590 PMCID: PMC2615778 DOI: 10.1186/1471-2202-9-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 11/14/2008] [Indexed: 11/30/2022] Open
Abstract
Background We have recorded responses from single neurons in murine visual cortex to determine the effectiveness of the input from the two murine cone photoreceptor mechanisms and whether there is any unique selectivity for cone inputs at this higher region of the visual system that would support the possibility of colour vision in mice. Each eye was stimulated by diffuse light, either 370 (strong stimulus for the ultra-violet (UV) cone opsin) or 505 nm (exclusively stimulating the middle wavelength sensitive (M) cone opsin), obtained from light emitting diodes (LEDs) in the presence of a strong adapting light that suppressed the responses of rods. Results Single cells responded to these diffuse stimuli in all areas of striate cortex. Two types of responsive cells were encountered. One type (135/323 – 42%) had little to no spontaneous activity and responded at either the on and/or the off phase of the light stimulus with a few impulses often of relatively large amplitude. A second type (166/323 – 51%) had spontaneous activity and responded tonically to light stimuli with impulses often of small amplitude. Most of the cells responded similarly to both spectral stimuli. A few (18/323 – 6%) responded strongly or exclusively to one or the other spectral stimulus and rarely in a spectrally opponent manner. Conclusion Most cells in murine striate cortex receive excitatory inputs from both UV- and M-cones. A small fraction shows either strong selectivity for one or the other cone mechanism and occasionally cone opponent responses. Cells that could underlie chromatic contrast detection are present but extremely rare in murine striate cortex.
Collapse
Affiliation(s)
- Björn Ekesten
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|