1
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Emmerich K, Walker SL, Wang G, White DT, Ceisel A, Wang F, Teng Y, Chunawala Z, Graziano G, Nimmagadda S, Saxena MT, Qian J, Mumm JS. Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genet 2023; 19:e1010905. [PMID: 37819938 PMCID: PMC10593236 DOI: 10.1371/journal.pgen.1010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/23/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.
Collapse
Affiliation(s)
- Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Steven L. Walker
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David T. White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anneliese Ceisel
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fang Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gianna Graziano
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Meera T. Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
4
|
Campbell LJ, Hobgood JS, Jia M, Boyd P, Hipp RI, Hyde DR. Notch3 and DeltaB maintain Müller glia quiescence and act as negative regulators of regeneration in the light-damaged zebrafish retina. Glia 2020; 69:546-566. [PMID: 32965734 DOI: 10.1002/glia.23912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Damage to the zebrafish retina stimulates resident Müller glia to reprogram, reenter the cell cycle, divide asymmetrically, and produce neuronal progenitor cells that amplify and differentiate into the lost neurons. The transition from quiescent to proliferative Müller glia involves both positive and negative regulators. We previously demonstrated that the Notch signaling pathway represses retinal regeneration by maintaining Müller glia quiescence in zebrafish. Here we examine which Notch receptor is necessary to maintain quiescence. Quantitative RT-PCR and RNA-Seq analyses reveal that notch3 is expressed in the undamaged retina and is downregulated in response to light damage. Additionally, Notch3 protein is expressed in quiescent Müller glia of the undamaged retina, is downregulated as Müller glia proliferate, and is reestablished in the Müller glia. Knockdown of Notch3 is sufficient to induce Müller glia proliferation in undamaged retinas and enhances proliferation during light damage. Alternatively, knockdown of Notch1a, Notch1b, or Notch2 decreases the number of proliferating cells during light damage, suggesting that Notch signaling is also required for proliferation during retinal regeneration. We also knockdown the zebrafish Delta and Delta-like proteins, ligands for the Notch receptors, and find that the deltaB morphant possesses an increased number of proliferating cells in the light-damaged retina. As with Notch3, knockdown of DeltaB is sufficient to induce Müller glia proliferation in the absence of light damage. Taken together, the negative regulation of Müller glia proliferation in zebrafish retinal regeneration is mediated by Notch3 and DeltaB.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua S Hobgood
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meng Jia
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patrick Boyd
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca I Hipp
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Abstract
In humans, various genetic defects or age-related diseases, such as diabetic retinopathies, glaucoma, and macular degeneration, cause the death of retinal neurons and profound vision loss. One approach to treating these diseases is to utilize stem and progenitor cells to replace neurons in situ, with the expectation that new neurons will create new synaptic circuits or integrate into existing ones. Reprogramming non-neuronal cells in vivo into stem or progenitor cells is one strategy for replacing lost neurons. Zebrafish have become a valuable model for investigating cellular reprogramming and retinal regeneration. This review summarizes our current knowledge regarding spontaneous reprogramming of Müller glia in zebrafish and compares this knowledge to research efforts directed toward reprogramming Müller glia in mammals. Intensive research using these animal models has revealed shared molecular mechanisms that make Müller glia attractive targets for cellular reprogramming and highlighted the potential for curing degenerative retinal diseases from intrinsic cellular sources.
Collapse
Affiliation(s)
- Manuela Lahne
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; ,
| | - David R Hyde
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; , .,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
6
|
Abstract
Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.
Collapse
Affiliation(s)
- Rahul Langhe
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
7
|
Wan J, Goldman D. Opposing Actions of Fgf8a on Notch Signaling Distinguish Two Muller Glial Cell Populations that Contribute to Retina Growth and Regeneration. Cell Rep 2018; 19:849-862. [PMID: 28445734 DOI: 10.1016/j.celrep.2017.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The teleost retina grows throughout life and exhibits a robust regenerative response following injury. Critical to both these events are Muller glia (or, Muller glial cells; MGs), which produce progenitors for retinal growth and repair. We report that Fgf8a may be an MG niche factor that acts through Notch signaling to regulate spontaneous and injury-dependent MG proliferation. Remarkably, forced Fgf8a expression inhibits Notch signaling and stimulates MG proliferation in young tissue but increases Notch signaling and suppresses MG proliferation in older tissue. Furthermore, cessation of Fgf8a signaling enhances MG proliferation in both young and old retinal tissue. Our study suggests that multiple MG populations contribute to retinal growth and regeneration, and it reveals a previously unappreciated role for Fgf8a and Notch signaling in regulating MG quiescence, activation, and proliferation.
Collapse
Affiliation(s)
- Jin Wan
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res 2017; 161:174-192. [PMID: 28577895 DOI: 10.1016/j.exer.2017.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
Sox2 is a well-established neuronal stem cell-associated transcription factor that regulates neural development and adult neurogenesis in vertebrates, and is one of the critical genes used to reprogram differentiated cells into induced pluripotent stem cells. We examined if Sox2 was involved in the early reprogramming-like events that Müller glia undergo as they upregulate many pluripotency- and neural stem cell-associated genes required for proliferation in light-damaged adult zebrafish retinas. In the undamaged adult zebrafish retina, Sox2 is expressed in Müller glia and a subset of amacrine cells, similar to other vertebrates. Following 31 h of light damage, Sox2 expression significantly increased in proliferating Müller glia. Morpholino-mediated knockdown of Sox2 expression resulted in decreased numbers of proliferating Müller glia, while induced overexpression of Sox2 stimulated Müller glia proliferation in the absence of retinal damage. Thus, Sox2 is necessary and sufficient for Müller glia proliferation. We investigated the role of Wnt/β-catenin signaling, which is a known regulator of sox2 expression during vertebrate retinal development. While β-catenin 2, but not β-catenin 1, was necessary for Müller glia proliferation, neither β-catenin paralog was required for sox2 expression following retinal damage. Sox2 expression was also necessary for ascl1a (neurogenic) and lin28a (reprogramming) expression, but not stat3 expression following retinal damage. Furthermore, Sox2 was required for Müller glial-derived neuronal progenitor cell amplification and expression of the pro-neural marker Tg(atoh7:EGFP). Finally, loss of Sox2 expression prevented complete regeneration of cone photoreceptors. This study is the first to identify a functional role for Sox2 during Müller glial-based regeneration of the vertebrate retina.
Collapse
Affiliation(s)
- Ryne A Gorsuch
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Manuela Lahne
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Clare E Yarka
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael E Petravick
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jingling Li
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Wan J, Goldman D. Retina regeneration in zebrafish. Curr Opin Genet Dev 2016; 40:41-47. [PMID: 27281280 DOI: 10.1016/j.gde.2016.05.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023]
Abstract
Unlike mammals, zebrafish are able to regenerate a damaged retina. Key to this regenerative response are Müller glia that respond to retinal injury by undergoing a reprogramming event that allows them to divide and generate a retinal progenitor that is multipotent and responsible for regenerating all major retinal neuron types. The fish and mammalian retina are composed of similar cell types with conserved function. Because of this it is anticipated that studies of retina regeneration in fish may suggest strategies for stimulating Müller glia reprogramming and retina regeneration in mammals. In this review we describe recent advances and future directions in retina regeneration research using zebrafish as a model system.
Collapse
Affiliation(s)
- Jin Wan
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
10
|
|
11
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
12
|
Repressing notch signaling and expressing TNFα are sufficient to mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. J Neurosci 2015; 34:14403-19. [PMID: 25339752 DOI: 10.1523/jneurosci.0498-14.2014] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in teleosts, unlike mammals, induces robust Müller glia-mediated regeneration of lost neurons. We examined whether Notch signaling regulates Müller glia proliferation in the adult zebrafish retina and demonstrated that Notch signaling maintains Müller glia in a quiescent state in the undamaged retina. Repressing Notch signaling, through injection of the γ-secretase inhibitor RO4929097, stimulates a subset of Müller glia to reenter the cell cycle without retinal damage. This RO4929097-induced Müller glia proliferation is mediated by repressing Notch signaling because inducible expression of the Notch Intracellular Domain (NICD) can reverse the effect. This RO4929097-induced proliferation requires Ascl1a expression and Jak1-mediated Stat3 phosphorylation/activation, analogous to the light-damaged retina. Moreover, coinjecting RO4929097 and TNFα, a previously identified damage signal, induced the majority of Müller glia to reenter the cell cycle and produced proliferating neuronal progenitor cells that committed to a neuronal lineage in the undamaged retina. This demonstrates that repressing Notch signaling and activating TNFα signaling are sufficient to induce Müller glia proliferation that generates neuronal progenitor cells that differentiate into retinal neurons, mimicking the responses observed in the regenerating retina.
Collapse
|
13
|
Gorsuch RA, Hyde DR. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina. Exp Eye Res 2013; 123:131-40. [PMID: 23880528 DOI: 10.1016/j.exer.2013.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/02/2013] [Accepted: 07/11/2013] [Indexed: 01/02/2023]
Abstract
This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration.
Collapse
Affiliation(s)
- Ryne A Gorsuch
- Department of Biological Sciences, The Center for Zebrafish Research, 027 Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David R Hyde
- Department of Biological Sciences, The Center for Zebrafish Research, 027 Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
14
|
Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev Cell 2012; 22:334-47. [PMID: 22340497 DOI: 10.1016/j.devcel.2011.11.020] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/24/2011] [Accepted: 11/16/2011] [Indexed: 12/15/2022]
Abstract
Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that pro-HB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6(b). We also uncover an HB-EGF/Ascl1a/Notch/hb-egf(a)-signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin-signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals.
Collapse
Affiliation(s)
- Jin Wan
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
15
|
The rod photoreceptor lineage of teleost fish. Prog Retin Eye Res 2011; 30:395-404. [PMID: 21742053 DOI: 10.1016/j.preteyeres.2011.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
The retinas of postembryonic teleost fish continue to grow for the lifetime of the fish. New retinal cells are added continuously at the retinal margin, by stem cells residing at the circumferential germinal zone. Some of these retinal cells differentiate as Müller glia with cell bodies that reside within the inner nuclear layer. These glia retain some stem cell properties in that they carry out asymmetric cell divisions and continuously generate a population of transit-amplifying cells--the rod photoreceptor lineage--that are committed to rod photoreceptor neurogenesis. These rod progenitors progress through a stereotyped sequence of changes in gene expression as they continue to divide and migrate to the outer nuclear layer. Now referred to as rod precursors, they undergo terminal mitoses and then differentiate as rods, which are inserted into the existing array of rod and cone photoreceptors. The rod lineage displays developmental plasticity, as rod precursors can respond to the loss of rods through increased proliferation, resulting in rod replacement. The stem cells of the rod lineage, Müller glia, respond to acute damage of other retinal cell types by increasing their rate of proliferation. In addition, the Müller glia in an acutely damaged retina dedifferentiate and become multipotent, generating new, functional neurons. This review focuses on the cells of the rod lineage and includes discussions of experiments over the last 30 years that led to their identification and characterization, and the discovery of the stem cells residing at the apex of the lineage. The plasticity of cells of the rod lineage, their relationships to cone progenitors, and the applications of this information for developing future treatments for human retinal disorders will also be discussed.
Collapse
|
16
|
Morris AC, Forbes-Osborne MA, Pillai LS, Fadool JM. Microarray analysis of XOPS-mCFP zebrafish retina identifies genes associated with rod photoreceptor degeneration and regeneration. Invest Ophthalmol Vis Sci 2011; 52:2255-66. [PMID: 21217106 DOI: 10.1167/iovs.10-6022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE XOPS-mCFP transgenic zebrafish experience a continual cycle of rod photoreceptor development and degeneration throughout life, making them a useful model for investigating the molecular determinants of rod photoreceptor regeneration. The purpose of this study was to compare the gene expression profiles of wild-type and XOPS-mCFP retinas and identify genes that may contribute to the regeneration of the rods. METHODS Adult wild-type and XOPS-mCFP retinal mRNA was subjected to microarray analysis. Pathway analysis was used to identify biologically relevant processes that were significantly represented in the dataset. Expression changes were verified by RT-PCR. Selected genes were further examined during retinal development and in adult retinas by in situ hybridization and immunohistochemistry and in a transgenic fluorescent reporter line. RESULTS More than 600 genes displayed significant expression changes in XOPS-mCFP retinas compared with expression in wild-type controls. Many of the downregulated genes were associated with phototransduction, whereas upregulated genes were associated with several biological functions, including cell cycle, DNA replication and repair, and cell development and death. RT-PCR analysis of a subset of these genes confirmed the microarray RESULTS Three transcription factors (sox11b, insm1a, and c-myb), displaying increased expression in XOPS-mCFP retinas, were also expressed throughout retinal development and in the persistently neurogenic ciliary marginal zone. CONCLUSIONS This study identified numerous gene expression changes in response to rod degeneration in zebrafish and further suggests a role for the transcriptional regulators sox11b, insm1a, and c-myb in both retinal development and rod photoreceptor regeneration.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
17
|
Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta Mol Basis Dis 2010; 1812:364-80. [PMID: 21044883 DOI: 10.1016/j.bbadis.2010.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Valerie C Fleisch
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
18
|
Notch signaling influences neuroprotective and proliferative properties of mature Müller glia. J Neurosci 2010; 30:3101-12. [PMID: 20181607 DOI: 10.1523/jneurosci.4919-09.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Notch signaling is known to play important roles during retinal development. Recently, Notch signaling has been shown to be active in proliferating Müller glia in acutely damaged chick retina (Hayes et al., 2007). However, the roles of Notch in mature, undamaged retina remain unknown. Thus, the purpose of this study was to determine the role of the Notch-signaling pathway in the postnatal retina. Here we show that components of the Notch-signaling pathway are expressed in most Müller glia at low levels in undamaged retina. The expression of Notch-related genes varies during early postnatal development and across regions, with higher expression in peripheral versus central retina. Blockade of Notch activity with a small molecule inhibitor before damage was protective to retinal interneurons (amacrine and bipolar cells) and projection neurons (ganglion cells). In the absence of damage, Notch is upregulated in retinas treated with insulin and FGF2; the combination of these factors is known to stimulate the proliferation and dedifferentiation of Müller glia (Fischer et al., 2002b). Inhibition of Notch signaling during FGF2 treatment reduces levels of the downstream effectors of the MAPK-signaling pathway-p38 MAPK and pCREB in Müller glia. Further, inhibition of Notch activity potently inhibits FGF2-induced proliferation of Müller glia. Together, our data indicate that Notch signaling is downstream of, and is required for, FGF2/MAPK signaling to drive the proliferation of Müller glia. In addition, our data suggest that low levels of Notch signaling in Müller glia diminish the neuroprotective activities of these glial cells.
Collapse
|
19
|
Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 2010; 16:193-202. [PMID: 20303826 DOI: 10.1016/j.molmed.2010.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
The retina is subject to degenerative diseases that often lead to significant visual impairment. Non-mammalian vertebrates have the remarkable ability to replace neurons lost through damage. Fish, and to a limited extent birds, replace lost neurons by the dedifferentiation of Müller glia to a progenitor state followed by the replication of these neuronal progenitor cells. Over the past five years, studies have investigated whether regeneration can be stimulated in the mouse and rat retina. Several groups have reported that at least some types of neurons can be regenerated in the mammalian retina in vivo or in vitro, and that the regeneration of neurons can be stimulated using growth factors, transcription factors or subtoxic levels of excitatory amino acids. These recent results suggest that some part of the regenerative program that occurs in non-mammalian vertebrates remains in the mammalian retina, and could provide a basis to develop new strategies for retinal repair in patients with retinal degenerations.
Collapse
Affiliation(s)
- M O Karl
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, USA
| | | |
Collapse
|
20
|
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28:423-51. [PMID: 19660572 DOI: 10.1016/j.preteyeres.2009.07.001] [Citation(s) in RCA: 537] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2009; 2:538-49. [PMID: 18522847 DOI: 10.1016/j.stem.2008.05.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuronal degenerations in the retina are leading causes of blindness. Like most other areas of the CNS, the neurons of the mammalian retina are not replaced following degeneration. However, in nonmammalian vertebrates, endogenous repair processes restore neurons very efficiently, even after complete loss of the retina. We describe the phenomenon of retinal regeneration in nonmammalian vertebrates and attempts made in recent years to stimulate similar regenerative processes in the mammalian retina. In addition, we review the various strategies employed to replace lost neurons in the retina and the recent use of stem cell technologies to address problems of retinal repair.
Collapse
Affiliation(s)
- Deepak Lamba
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
22
|
Nelson SM, Frey RA, Wardwell SL, Stenkamp DL. The developmental sequence of gene expression within the rod photoreceptor lineage in embryonic zebrafish. Dev Dyn 2008; 237:2903-17. [PMID: 18816851 DOI: 10.1002/dvdy.21721] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In postembryonic zebrafish, rod photoreceptors are continuously generated from progenitors in the inner nuclear layer, which are derived from radial Müller glia that express the transcription factor pax6. We used BrdU incorporation, in combination with in situ hybridization for cell-specific transcription factors, to establish the patterns of gene expression during rod lineage maturation in the embryonic zebrafish. Downregulation of pax6 expression was accompanied by sporadic upregulation of expression of the transcription factors NeuroD/nrd, rx1, crx, and Nr2e3/pnr. As cells of the rod lineage entered the outer nuclear layer, they became homogeneous, coordinately expressing NeuroD, rx1, crx, and Nr2e3. Postmitotic, maturing rods also expressed nrl, rod opsin, and rod transducin/gnat1. The presence of rx1 within the rod lineage and in maturing rods indicates that rx1 is not cone-specific, as previously reported, and suggests a high degree of molecular similarity between rod and cone progenitor populations in the zebrafish.
Collapse
Affiliation(s)
- Steve M Nelson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Müller glia can serve as a source of new neurons after retinal damage in both fish and birds. Investigations of regeneration in the mammalian retina in vitro have provided some evidence that Müller glia can proliferate after retinal damage and generate new rods; however, the evidence that this occurs in vivo is not conclusive. We have investigated whether Müller glia have the potential to generate neurons in the mouse retina in vivo by eliminating ganglion and amacrine cells with intraocular NMDA injections and stimulating Müller glial to re-enter the mitotic cycle by treatment with specific growth factors. The proliferating Müller glia dedifferentiate and a subset of these cells differentiated into amacrine cells, as defined by the expression of amacrine cell-specific markers Calretinin, NeuN, Prox1, and GAD67-GFP. These results show for the first time that the mammalian retina has the potential to regenerate inner retinal neurons in vivo.
Collapse
|
24
|
Abstract
Unlike mammals, teleost fish can regenerate an injured retina, restoring lost visual function. Little is known of the molecular events that underlie retina regeneration. We previously found that in zebrafish, retinal injury stimulates Müller glia to generate multipotent alpha1-tubulin (alpha1T) and pax6-expressing progenitors for retinal repair. Here, we report the identification of a critical E-box in the alpha1T promoter that mediates transactivation by achaete-scute complex-like 1a (ascl1a) during retina regeneration. More importantly, we show that ascl1a is essential for retina regeneration. Within 4 h after retinal injury, ascl1a is induced in Müller glia. Knockdown of ascl1a blocks the induction of alpha1T and pax6 as well as Müller glial proliferation, consequently preventing the generation of retinal progenitors and their differentiated progeny. These data suggest ascl1a is required to convert quiescent Müller glia into actively dividing retinal progenitors, and that ascl1a is a key regulator in initiating retina regeneration.
Collapse
|