1
|
Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M. Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze. Sci Rep 2021; 11:1255. [PMID: 33441984 PMCID: PMC7806734 DOI: 10.1038/s41598-021-80988-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
We introduce a novel visual-stimuli four-arm maze (ViS4M) equipped with spectrally- and intensity-controlled LED emitters and dynamic grayscale objects that relies on innate exploratory behavior to assess color and contrast vision in mice. Its application to detect visual impairments during normal aging and over the course of Alzheimer’s disease (AD) is evaluated in wild-type (WT) and transgenic APPSWE/PS1∆E9 murine models of AD (AD+) across an array of irradiance, chromaticity, and contrast conditions. Substantial color and contrast-mode alternation deficits appear in AD+ mice at an age when hippocampal-based memory and learning is still intact. Profiling of timespan, entries and transition patterns between the different arms uncovers variable AD-associated impairments in contrast sensitivity and color discrimination, reminiscent of tritanomalous defects documented in AD patients. Transition deficits are found in aged WT mice in the absence of alternation decline. Overall, ViS4M is a versatile, controlled device to measure color and contrast-related vision in aged and diseased mice.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.,Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ariel Angel
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | - Aharon Levy
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | | | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke K. Neural circuits in the mouse retina support color vision in the upper visual field. Nat Commun 2020; 11:3481. [PMID: 32661226 PMCID: PMC7359335 DOI: 10.1038/s41467-020-17113-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Color vision is essential for an animal’s survival. It starts in the retina, where signals from different photoreceptor types are locally compared by neural circuits. Mice, like most mammals, are dichromatic with two cone types. They can discriminate colors only in their upper visual field. In the corresponding ventral retina, however, most cones display the same spectral preference, thereby presumably impairing spectral comparisons. In this study, we systematically investigated the retinal circuits underlying mouse color vision by recording light responses from cones, bipolar and ganglion cells. Surprisingly, most color-opponent cells are located in the ventral retina, with rod photoreceptors likely being involved. Here, the complexity of chromatic processing increases from cones towards the retinal output, where non-linear center-surround interactions create specific color-opponent output channels to the brain. This suggests that neural circuits in the mouse retina are tuned to extract color from the upper visual field, aiding robust detection of predators and ensuring the animal’s survival. Mice are able to discriminate colors, at least in the upper visual field. Here, the authors provide a comprehensive characterization of retinal circuits underlying this behavior.
Collapse
Affiliation(s)
- Klaudia P Szatko
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Nadal-Nicolás FM, Kunze VP, Ball JM, Peng BT, Krishnan A, Zhou G, Dong L, Li W. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 2020; 9:e56840. [PMID: 32463363 PMCID: PMC7308094 DOI: 10.7554/elife.56840] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaptation to enhance color coding for the upper visual field suitable for mice's habitat and behavior.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Brian T Peng
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Akshay Krishnan
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Gaohui Zhou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
4
|
Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr Biol 2020; 30:1269-1274.e2. [PMID: 32084404 PMCID: PMC7141953 DOI: 10.1016/j.cub.2020.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
Collapse
Affiliation(s)
- Sara S Patterson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | | | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA.
| |
Collapse
|
5
|
Kirkels LAMH, Zhang W, Duijnhouwer J, van Wezel RJA. Opto-locomotor reflexes of mice to reverse-phi stimuli. J Vis 2020; 20:7. [PMID: 32097483 PMCID: PMC7343431 DOI: 10.1167/jov.20.2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a reverse-phi stimulus, the contrast luminance of moving dots is reversed each displacement step. Under those conditions, the direction of the moving dots is perceived in the direction opposite of the displacement direction of the dots. In this study, we investigate if mice respond oppositely to phi and reverse-phi stimuli. Mice ran head-fixed on a Styrofoam ball floating on pressurized air at the center of a large dome. We projected random dot patterns that were displaced rightward or leftward, using either a phi or a reverse-phi stimulus. For phi stimuli, changes in direction caused the mice to reflexively compensate and adjust their running direction in the direction of the displaced pattern. We show that for reverse-phi stimuli mice compensate in the direction opposite to the displacement direction of the dots, in accordance with the perceived direction of displacement in humans for reverse-phi stimuli.
Collapse
|
6
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
7
|
Abstract
The mouse retina has a layered structure that is composed of five classes of neurons supported by Müller glial and pigment epithelial cells. Recent studies have made progress in the classification of bipolar and ganglion cells, and also in the wiring of rod-driven signaling, color coding, and directional selectivity. Molecular biological techniques, such as genetic manipulation, transcriptomics, and fluorescence imaging, have contributed a lot to these advancements. The mouse retina has consistently been an important experimental system for both basic and clinical neurosciences.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
8
|
Agurto A, Vielma AH, Cadiz B, Couve E, Schmachtenberg O. NO signaling in retinal bipolar cells. Exp Eye Res 2017; 161:30-35. [PMID: 28579034 DOI: 10.1016/j.exer.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/28/2017] [Accepted: 05/30/2017] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a neuromodulator involved in physiological and pathological processes in the retina. In the inner retina, a subgroup of amacrine cells have been shown to synthesize NO, but bipolar cells remain controversial as NO sources. This study correlates NO synthesis in dark-adapted retinas, through labeling with the NO marker DAF-FM, with neuronal nitric oxide synthase (nNOS) and inducible NOS expression, and presence of the NO receptor soluble guanylate cyclase in bipolar cells. NO containing bipolar cells were morphologically identified by dialysis of DAF fluorescent cells with intracellular dyes, or by DAF labeling followed by immunohistochemistry for nNOS and other cellular markers. DAF fluorescence was observed in all types of bipolar cells that could be identified, but the most intense DAF fluorescence was observed in bipolar cells with severed processes, supporting pathological NO signaling. Among nNOS expressing bipolar cells, type 9 was confirmed unequivocally, while types 2, 3a, 3b, 4, 5, 7, 8 and the rod bipolar cell were devoid of this enzyme. These results establish specific bipolar cell types as NO sources in the inner retina, and support the involvement of NO signaling in physiological and pathological processes in the inner retina.
Collapse
Affiliation(s)
- A Agurto
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - A H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - B Cadiz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - E Couve
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - O Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
9
|
Ca 2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci 2017; 37:6162-6175. [PMID: 28539424 DOI: 10.1523/jneurosci.3644-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
We report functional and structural evidence for GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss.SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca2+-permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca2+ accumulation in the terminal may protect against hearing loss.
Collapse
|
10
|
Kóbor P, Petykó Z, Telkes I, Martin PR, Buzás P. Temporal properties of colour opponent receptive fields in the cat lateral geniculate nucleus. Eur J Neurosci 2017; 45:1368-1378. [PMID: 28391639 DOI: 10.1111/ejn.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.
Collapse
Affiliation(s)
- Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Paul R Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J Comp Neurol 2017; 527:13-37. [DOI: 10.1002/cne.24167] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Leo Peichl
- Max Planck Institute for Brain Research; Max-von-Laue-Straße 4, 60438 Frankfurt am Main Germany
- Ernst Strüngmann Institute for Neuroscience; Deutschordenstraße 46, 60528 Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany
| | - Alexander Kaiser
- Department Biology II; Ludwig-Maximilians University Munich; Großhaderner Straße 2-4, 82152 Martinsried-Planegg Germany
- Institute of Zoology; University of Veterinary Medicine Hannover; Bünteweg 17, 30559 Hannover Germany
| | - Felix Rakotondraparany
- Département de Zoologie et Biodiversité Animale; Université d’Antananarivo; BP 906, Antananarivo 101 Madagascar
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin; 2015 Linden Drive Madison Wisconsin 53706
| | - Steven M. Goodman
- The Field Museum of Natural History; 1400 South Lake Shore Drive, Chicago Illinois 60605
- Association Vahatra; BP 3972, Antananarivo 101 Madagascar
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center; Kellnerweg 4, 37077 Göttingen Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; University Göttingen; Kellnerweg 6, 37077 Göttingen Germany
| |
Collapse
|
12
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
13
|
Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, Bechtold DA, Webb AR, Lucas RJ, Brown TM. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol 2015; 13:e1002127. [PMID: 25884537 PMCID: PMC4401556 DOI: 10.1371/journal.pbio.1002127] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. Environmental measurements and physiological recordings reveal that mice not only use changes in the intensity of sunlight to entrain their circadian clock, but also employ blue–yellow color discrimination to detect spectral changes associated with dawn and dusk. Animals use an internal brain clock to keep track of time and adjust their behaviour in anticipation of the coming day or night. To be useful, however, this clock must be synchronised to external time. Assessing external time is typically thought to rely on measuring large changes in ambient light intensity that occur over dawn/dusk. The colour of light also changes over these twilight transitions, but it is currently unknown whether such changes in colour are important for synchronising biological clocks to the solar cycle. Here we show that the mammalian blue–yellow colour discrimination axis provides a more reliable indication of twilight progression than a system solely measuring changes in light intensity. We go on to use electrical recordings from the brain clock to reveal the presence of many neurons that can track changes in blue–yellow colour occurring during natural twilight. Finally, using mice housed under lighting regimes with simulated dawn/dusk transitions, we show that changes in colour are required for appropriate biological timing with respect to the solar cycle. In sum, our data reveal a new sensory mechanism for estimating time of day that should be available to all mammals capable of chromatic vision, including humans.
Collapse
Affiliation(s)
- Lauren Walmsley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lydia Hanna
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Josh Mouland
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander West
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R. Smedley
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - David A. Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann R. Webb
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| | - Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| |
Collapse
|
14
|
Abstract
In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.
Collapse
|
15
|
|
16
|
Puller C, Haverkamp S, Neitz M, Neitz J. Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. PLoS One 2014; 9:e88963. [PMID: 24586460 PMCID: PMC3930591 DOI: 10.1371/journal.pone.0088963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/16/2014] [Indexed: 01/19/2023] Open
Abstract
The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S) cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells.
Collapse
Affiliation(s)
- Christian Puller
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| | - Silke Haverkamp
- Neuroanatomy, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Nivison-Smith L, Sun D, Fletcher EL, Marc RE, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol 2014; 521:2416-38. [PMID: 23348566 DOI: 10.1002/cne.23305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022]
Abstract
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|
18
|
Abstract
AbstractS cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Collapse
|
19
|
|
20
|
Puller C, Ivanova E, Euler T, Haverkamp S, Schubert T. OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina. Neuroscience 2013; 243:136-48. [PMID: 23567811 DOI: 10.1016/j.neuroscience.2013.03.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/22/2022]
Abstract
Parallel representations of the visual world are already established at the very first synapse of the visual system. Cone photoreceptors, which hyperpolarize in response to light, forward the visual signal onto distinct types of ON and OFF cone bipolar cells (BCs). In the case of OFF BCs, the glutamatergic cone input is integrated by ionotropic glutamate receptors, giving rise to a sign-preserving mode of synaptic transmission. The combination of glutamate receptor (GluR) subunits, i.e. AMPA or kainate subunits, importantly contributes to shaping the OFF bipolar cells' distinct response properties. The mouse is one of the few mammals in which the (most likely) complete set of (five) retinal OFF BC types is identified. However, it is not clear which GluR subtypes are expressed by the different mouse OFF BC types. We addressed this question by combining immunolabeling, electrical whole-cell recordings and pharmacology, and present evidence that the different types of OFF BCs express distinct types of glutamate receptors: Type 1 BCs exclusively expressed AMPA receptors, whereas type 2 and type 3a BCs expressed kainate receptors of different subunit compositions. Additionally, we found that two OFF BC types (3b and 4) very likely express both AMPA and kainate receptors but, interestingly, the two receptor subunits were not co-localized at the same dendritic site. The complex, BC type-specific expression pattern of GluRs we describe here supports their essential role in establishing parallel pathways at the first synapse of the mouse visual system.
Collapse
Affiliation(s)
- C Puller
- Department of Neuroanatomy, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
21
|
Chang L, Breuninger T, Euler T. Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina. Neuron 2013; 77:559-71. [DOI: 10.1016/j.neuron.2012.12.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
|
22
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
23
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
24
|
A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 2012; 31:16833-43. [PMID: 22090509 DOI: 10.1523/jneurosci.2505-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) combine inputs from outer-retinal rod/cone photoreceptors with their intrinsic phototransduction machinery to drive a wide range of so-called non-image-forming (NIF) responses to light. Defining the contribution of each photoreceptor class to evoked responses is vital for determining the degree to which our sensory capabilities depend on melanopsin and for optimizing NIF responses to benefit human health. We addressed this problem by recording electrophysiological responses in the mouse pretectal olivary nucleus (PON) (a target of ipRGCs and origin of the pupil light reflex) to a range of gradual and abrupt changes in light intensity. Dim stimuli drove minimal changes in PON activity, suggesting that rods contribute little under these conditions. To separate cone from melanopsin influences, we compared responses to short (460 nm) and longer (600/655 nm) wavelengths in mice carrying a red shifted cone population (Opn1mw®) or lacking melanopsin (Opn4⁻/⁻). Our data reveal a surprising difference in the quality of information available from medium- and short-wavelength-sensitive cones. The majority cone population (responsive to 600/655 nm) supported only transient changes in firing and responses to relatively sudden changes in light intensity. In contrast, cones uniquely sensitive to the shorter wavelength (S-cones) were better able to drive responses to gradual changes in illuminance, contributed a distinct off inhibition, and at least partially recapitulated the ability of melanopsin to sustain responses under continuous illumination. These data reveal a new role for S-cones unrelated to color vision and suggest renewed consideration of cone contributions to NIF vision at shorter wavelengths.
Collapse
|
25
|
Abstract
Like most mammals, mice feature dichromatic color vision based on short (S) and middle (M) wavelength-sensitive cone types. It is thought that mammals share a retinal circuit that in dichromats compares S- and M-cone output to generate blue/green opponent signals, with bipolar cells (BCs) providing separate chromatic channels. Although S-cone-selective ON-BCs (type 9 in mouse) have been anatomically identified, little is known about their counterparts, the M-cone-selective OFF-BCs. Here, we characterized cone connectivity and light responses of selected mouse BC types using immunohistochemistry and electrophysiology. Our anatomical data indicate that four (types 2, 3a/b, and 4) of the five mouse OFF-BCs indiscriminately contact both cone types, whereas type 1 BCs avoid S-cones. Light responses showed that the chromatic tuning of the BCs strongly depended on their position along the dorsoventral axis because of the coexpression gradient of M- and S-opsin found in mice. In dorsal retina, where coexpression is low, most type 2 cells were green biased, with a fraction of cells (≈ 14%) displaying strongly blue-biased responses, likely reflecting S-cone input. Type 1 cells were also green biased but did not comprise blue-biased "outliers," consistent with type 1 BCs avoiding S-cones. We therefore suggest that type 1 represents the green OFF pathway in mouse. In addition, we confirmed that type 9 BCs display blue-ON responses. In ventral retina, all BC types studied here displayed similar blue-biased responses, suggesting that color vision is hampered in ventral retina. In conclusion, our data support an antagonistically organized blue/green circuit as the common basis for mammalian dichromatic color vision.
Collapse
|