1
|
Burstein Z, Reid DD, Thomas PJ, Cowan JD. Pattern forming mechanisms of color vision. Netw Neurosci 2023; 7:679-711. [PMID: 37397891 PMCID: PMC10312260 DOI: 10.1162/netn_a_00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 09/22/2024] Open
Abstract
While our understanding of the way single neurons process chromatic stimuli in the early visual pathway has advanced significantly in recent years, we do not yet know how these cells interact to form stable representations of hue. Drawing on physiological studies, we offer a dynamical model of how the primary visual cortex tunes for color, hinged on intracortical interactions and emergent network effects. After detailing the evolution of network activity through analytical and numerical approaches, we discuss the effects of the model's cortical parameters on the selectivity of the tuning curves. In particular, we explore the role of the model's thresholding nonlinearity in enhancing hue selectivity by expanding the region of stability, allowing for the precise encoding of chromatic stimuli in early vision. Finally, in the absence of a stimulus, the model is capable of explaining hallucinatory color perception via a Turing-like mechanism of biological pattern formation.
Collapse
Affiliation(s)
- Zily Burstein
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - David D. Reid
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics; Department of Biology; Department of Cognitive Science, Case Western Reserve University, Cleveland, OH, USA
| | - Jack D. Cowan
- Department of Mathematics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Stauch BJ, Peter A, Ehrlich I, Nolte Z, Fries P. Human visual gamma for color stimuli. eLife 2022; 11:e75897. [PMID: 35532123 PMCID: PMC9122493 DOI: 10.7554/elife.75897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Strong gamma-band oscillations in primate early visual cortex can be induced by homogeneous color surfaces (Peter et al., 2019; Shirhatti and Ray, 2018). Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 have often not been fully controlled for. Therefore, stronger responses to red might be due to differences in V1 input strength. We presented stimuli that had equal luminance and cone contrast levels in a color coordinate system based on responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human participants. We found gamma oscillations in early visual cortex which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S-cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change-detection performance. The strength of human color gamma responses for stimuli on the L-M axis could be well explained by L-M cone contrast and did not show a clear red bias when L-M cone contrast was properly equalized.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
| | - Isabelle Ehrlich
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Zora Nolte
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
3
|
De A, Horwitz GD. Coding of chromatic spatial contrast by macaque V1 neurons. eLife 2022; 11:68133. [PMID: 35147497 PMCID: PMC8920507 DOI: 10.7554/elife.68133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Color perception relies on comparisons between adjacent lights, but how the brain performs these comparisons is poorly understood. To elucidate the underlying neural mechanisms, we recorded spiking responses of individual V1 neurons in macaque monkeys to pairs of stimuli within the classical receptive field (RF). We estimated the spatial-chromatic RF of each neuron and then presented customized colored edges using a novel closed-loop technique. We found that many double-opponent (DO) cells, which have spatially and chromatically opponent RFs, responded to chromatic contrast as a weighted sum, akin to how other V1 cells responded to luminance contrast. Yet other neurons integrated chromatic signals non-linearly, confirming that linear signal integration is not an obligate property of V1 neurons. The functional similarity of cone-opponent DO cells and cone non-opponent simple cells suggests that these two groups may share a common underlying neural circuitry, promotes the construction of image-computable models for full-color image representation, and sheds new light on V1 complex cells.
Collapse
Affiliation(s)
- Abhishek De
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
4
|
Abstract
Visual images can be described in terms of the illuminants and objects that are causal to the light reaching the eye, the retinal image, its neural representation, or how the image is perceived. Respecting the differences among these distinct levels of description can be challenging but is crucial for a clear understanding of color vision. This article approaches color by reviewing what is known about its neural representation in the early visual cortex, with a brief description of signals in the eye and the thalamus for context. The review focuses on the properties of single neurons and advances the general theme that experimental approaches based on knowledge of feedforward signals have promoted greater understanding of the neural code for color than approaches based on correlating single-unit responses with color perception. New data from area V1 illustrate the strength of the feedforward approach. Future directions for progress in color neurophysiology are discussed: techniques for improved single-neuron characterization, for investigations of neural populations and small circuits, and for the analysis of natural image statistics.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; .,Washington National Primate Research Center, University of Washington, Seattle, Washington 98121, USA
| |
Collapse
|
5
|
When figure-ground segregation fails: Exploring antagonistic interactions in figure-ground perception. Atten Percept Psychophys 2020; 82:3618-3635. [PMID: 32686064 DOI: 10.3758/s13414-020-02097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perceptual fading of an artificial scotoma can be viewed as a failure of figure-ground segregation, providing a useful tool for investigating possible mechanisms and processes involved in figure-ground perception. Weisstein's antagonistic magnocellular/parvocellular stream figure-ground model proposes P stream activity encodes figure, and M stream activity encodes background. Where a boundary separates two regions, the region that is perceived as figure or ground is determined by the outcome of antagonism between M and P activity within each region and across the boundary between them. The region with the relatively stronger P "figure signal" is perceived as figure, and the region with the relatively stronger M "ground signal" is perceived as ground. From this perspective, fading occurs when the figure signal is overwhelmed by the ground signal. Strengthening the figure signal or weakening the ground signal should make the figure more resistant to fading. Based on research showing that red light suppresses M activity and short wavelength sensitive S-cones provide minimal input to M cells, we used red and blue light to reduce M activity in both figure and ground. The time to fade from stimulus onset until the figure completely disappeared was measured. Every combination of gray, green, red, and blue as figure and/or ground was tested. Compared with gray and green light, fade times were greatest when red or blue light either strengthened the figure signal by reducing M activity in the figure, or weakened the ground signal by reducing M activity in ground. The results support a dynamic antagonistic relationship between M and P activity contributing to figure-ground perception as envisioned in Weisstein's model.
Collapse
|
6
|
Ao M, Li X, Qiu W, Hou Z, Su J, Wang W. The impact of age-related cataracts on colour perception, postoperative recovery and related spectra derived from test of hue perception. BMC Ophthalmol 2019; 19:56. [PMID: 30786855 PMCID: PMC6383292 DOI: 10.1186/s12886-019-1057-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cataract patients were always excluded from studies on ageing of colour vision; thus, effect of age-related cataracts on deterioration of colour perception has not been analysed. In present study, impacts of age-related cataracts on colour discrimination, postoperative recovery and related spectra were investigated. Methods In this cohort study, thirty age-related cataract patients scheduled for binocular surgery and 30 elderly volunteers were enrolled. Colour discrimination under photopic (1000 lx) and mesopic (40 lx) conditions was evaluated with Farnsworth-Munsell 100-hue test. The total error score (TES) and partial error score (PES) were calculated. Results Preoperatively, the TES in the patient group was 129.7 ± 59.5 at 1000 lx and 194.6 ± 74.5 at 40 lx, exhibiting worse discrimination than the volunteer group (TES1000lux = 71.5 ± 37.5 and TES40lux = 113.1 ± 38.8, p ≤ 0.001). Inferior perception were detected in the yellow to green-yellow (Y-GY), green-yellow to green (GY-G), green to blue-green (G-BG) and blue-green to blue (BG-B) colour bands (p ≤ 0.003), corresponding to the 470 nm–580 nm range of the visible light spectrum. Under mesopic conditions, the impact expanded to all colour bands except for yellow-red to yellow (YR-Y). Postoperatively, the TES in the patient group were 80.4 ± 62.4 at 1000 lx and 112.0 ± 85.2 at 40 lx, which were lower than those of the preoperative phase (p ≤ 0.001) but similar to those of the volunteer group (p ≥ 0.505). Postoperative improvement occurred in the Y-GY, GY-G and G-BG colour bands (490 nm to 580 nm) at 1000 lx (p ≤ 0.001) and shifted to the Y-GY, GY-G, G-BG and BG-B colour bands (470 nm to 580 nm) at 40 lx (p ≤ 0.001). Deterioration of hue perception for decrement of illumination was detected in the red to yellow-red (R-YR), Y-GY, G-BG, BG-B, blue to purple-blue (B-PB) and red-purple to red (RP-R) colour bands (450 nm to 500 nm) in the volunteer group (p ≤ 0.002) and the R-YR, G-BG, BG-B, B-PB, PB-P and red-purple to red (RP-R) colour bands (from the short-wavelength end to 500 nm) in the patient group preoperatively (p ≤ 0.001). Conclusions Phacoemulsification could effectively rebuild colour perception in patients with age-related cataract. The postoperative benefits were most significant in colour bands corresponding with spectrum from 470 nm to 580 nm. Electronic supplementary material The online version of this article (10.1186/s12886-019-1057-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingxin Ao
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China
| | - Weiqiang Qiu
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China
| | - Zhiqiang Hou
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China
| | - Jie Su
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China. .,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Number Forty-Nine North Garden Road Haidian District, Beijing, 86100191, China.
| |
Collapse
|
7
|
Milleret C, Bui Quoc E. Beyond Rehabilitation of Acuity, Ocular Alignment, and Binocularity in Infantile Strabismus. Front Syst Neurosci 2018; 12:29. [PMID: 30072876 PMCID: PMC6058758 DOI: 10.3389/fnsys.2018.00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Infantile strabismus impairs the perception of all attributes of the visual scene. High spatial frequency components are no longer visible, leading to amblyopia. Binocularity is altered, leading to the loss of stereopsis. Spatial perception is impaired as well as detection of vertical orientation, the fastest movements, directions of movement, the highest contrasts and colors. Infantile strabismus also affects other vision-dependent processes such as control of postural stability. But presently, rehabilitative therapies for infantile strabismus by ophthalmologists, orthoptists and optometrists are restricted to preventing or curing amblyopia of the deviated eye, aligning the eyes and, whenever possible, preserving or restoring binocular vision during the critical period of development, i.e., before ~10 years of age. All the other impairments are thus ignored; whether they may recover after strabismus treatment even remains unknown. We argue here that medical and paramedical professionals may extend their present treatments of the perceptual losses associated with infantile strabismus. This hypothesis is based on findings from fundamental research on visual system organization of higher mammals in particular at the cortical level. In strabismic subjects (as in normal-seeing ones), information about all of the visual attributes converge, interact and are thus inter-dependent at multiple levels of encoding ranging from the single neuron to neuronal assemblies in visual cortex. Thus if the perception of one attribute is restored this may help to rehabilitate the perception of other attributes. Concomitantly, vision-dependent processes may also improve. This could occur spontaneously, but still should be assessed and validated. If not, medical and paramedical staff, in collaboration with neuroscientists, will have to break new ground in the field of therapies to help reorganize brain circuitry and promote more comprehensive functional recovery. Findings from fundamental research studies in both young and adult patients already support our hypothesis and are reviewed here. For example, presenting different contrasts to each eye of a strabismic patient during training sessions facilitates recovery of acuity in the amblyopic eye as well as of 3D perception. Recent data also demonstrate that visual recoveries in strabismic subjects improve postural stability. These findings form the basis for a roadmap for future research and clinical development to extend presently applied rehabilitative therapies for infantile strabismus.
Collapse
Affiliation(s)
- Chantal Milleret
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, College de France, INSERM, PSL Research University, Paris, France
| | - Emmanuel Bui Quoc
- Department of Ophthalmology, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris Paris, France
| |
Collapse
|
8
|
Martinovic J, Andersen SK. Cortical summation and attentional modulation of combined chromatic and luminance signals. Neuroimage 2018; 176:390-403. [PMID: 29730493 DOI: 10.1016/j.neuroimage.2018.04.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 11/26/2022] Open
Abstract
Cortical networks that process colour and luminance signals are often studied separately, although colour appearance depends on both colour and luminance. In fact, objects in everyday life are very rarely defined by only colour or only luminance, necessitating an investigation into combined processing of these signals. We used steady-state visual evoked potentials (SSVEPs) to investigate (1) cortical summation of luminance and chromatic contrast and (2) attentional modulation of neural activity driven by competing stimuli that differ in chromoluminant content. Our stimuli combined fixed amounts of chromatic contrast from either of the two cone-opponent mechanisms (bluish and yellowish; reddish and greenish) with two different levels of positive luminance contrast. Our experiments found evidence of non-linear processing of combined colour and luminance signals, which most likely originates in V1-V3 neurons tuned to both colour and luminance. Differences between luminance contrast of stimuli were found to be a key determinant for the size of feature-based voluntary attentional effects in SSVEPs, with colours of lower contrast than the colour they were presented with receiving the highest level of attentional modulation. Our results indicate that colour and luminance contrast are processed interdependently, both in terms of perception and in terms of attentional selection, with a potential candidate mediating their link being stimulus appearance, which depends on both chromaticity and luminance.
Collapse
|
9
|
Abstract
We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, "lesions," and to assess behavior in the absence of specific neural subsystems.
Collapse
|
10
|
Kimura E, Kuroki M. Contribution of a luminance-dependent S-cone mechanism to non-assimilative color spreading in the watercolor configuration. Front Hum Neurosci 2014; 8:980. [PMID: 25538602 PMCID: PMC4260510 DOI: 10.3389/fnhum.2014.00980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/16/2014] [Indexed: 11/26/2022] Open
Abstract
In the watercolor configuration composed of wavy double contours, both assimilative and non-assimilative color spreading have been demonstrated depending on the luminance conditions of the inner and outer contours (IC and OC, respectively). This study investigated how the induced color in the watercolor configuration was modulated by combinations of the IC and the OC color, particularly addressing non-assimilative color spreading. In two experiments, the IC color was fixed to a certain color and combined with various colors selected from a hue circle centered at the background white color. Color spreading was quantified with a chromatic cancelation technique. Results showed that both the magnitude and the apparent hue of the color spreading were largely changed with the luminance condition. When the IC contrast (Weber contrast of the IC to the background luminance) was smaller in size than the OC contrast (higher IC luminance condition), the color spreading was assimilative. When the luminance condition was reversed and the IC contrast was greater than the OC contrast (lower IC luminance condition), the color spreading was non-assimilative and yellowish. When the color spreading was analyzed in terms of cone-opponent excitations, the results were consistent with the interpretation that the color spreading is explainable by a combination of chromatic diffusion from the IC and chromatically opponent induction from the OC. The color spreading in the higher IC luminance condition mainly reflected the chromatic diffusion by both (L–M) and S cone-opponent mechanisms. The non-assimilative color spreading in the lower IC luminance condition mostly reflected S-cone mediated opponent induction and the contribution of −S inducing mechanisms was differentially large. These findings provided several constraints on possible visual mechanisms underlying the watercolor effect.
Collapse
Affiliation(s)
- Eiji Kimura
- Department of Psychology, Faculty of Letters, Chiba University Chiba-shi, Japan
| | - Mikako Kuroki
- Graduate School of Humanities and Social Sciences, Chiba University Chiba-shi, Japan
| |
Collapse
|