1
|
Li JY, Glickfeld LL. Input-specific synaptic depression shapes temporal integration in mouse visual cortex. Neuron 2023; 111:3255-3269.e6. [PMID: 37543037 PMCID: PMC10592405 DOI: 10.1016/j.neuron.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Efficient sensory processing requires the nervous system to adjust to ongoing features of the environment. In primary visual cortex (V1), neuronal activity strongly depends on recent stimulus history. Existing models can explain effects of prolonged stimulus presentation but remain insufficient for explaining effects observed after shorter durations commonly encountered under natural conditions. We investigated the mechanisms driving adaptation in response to brief (100 ms) stimuli in L2/3 V1 neurons by performing in vivo whole-cell recordings to measure membrane potential and synaptic inputs. We find that rapid adaptation is generated by stimulus-specific suppression of excitatory and inhibitory synaptic inputs. Targeted optogenetic experiments reveal that these synaptic effects are due to input-specific short-term depression of transmission between layers 4 and 2/3. Thus, brief stimulus presentation engages a distinct adaptation mechanism from that previously reported in response to prolonged stimuli, enabling flexible control of sensory encoding across a wide range of timescales.
Collapse
Affiliation(s)
- Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
2
|
Serotonin has an eye for detail. Neuron 2023; 111:599-601. [PMID: 36863317 DOI: 10.1016/j.neuron.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In this issue of Neuron, Reggiani et al.1 show that serotonin and arousal suppress retinal inputs to the thalamus with opposing feature sensitivity, providing an elegant means for neuromodulation to selectively filter early visual processing.
Collapse
|
3
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Li JY, Glickfeld LL. Input-specific synaptic depression shapes temporal integration in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526211. [PMID: 36778279 PMCID: PMC9915496 DOI: 10.1101/2023.01.30.526211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficient sensory processing requires the nervous system to adjust to ongoing features of the environment. In primary visual cortex (V1), neuronal activity strongly depends on recent stimulus history. Existing models can explain effects of prolonged stimulus presentation, but remain insufficient for explaining effects observed after shorter durations commonly encountered under natural conditions. We investigated the mechanisms driving adaptation in response to brief (100 ms) stimuli in L2/3 V1 neurons by performing in vivo whole-cell recordings to measure membrane potential and synaptic inputs. We find that rapid adaptation is generated by stimulus-specific suppression of excitatory and inhibitory synaptic inputs. Targeted optogenetic experiments reveal that these synaptic effects are due to input-specific short-term depression of transmission between layers 4 and 2/3. Thus, distinct mechanisms are engaged following brief and prolonged stimulus presentation and together enable flexible control of sensory encoding across a wide range of time scales.
Collapse
Affiliation(s)
- Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA
| |
Collapse
|
5
|
Loss of Retinogeniculate Synaptic Function in the DBA/2J Mouse Model of Glaucoma. eNeuro 2022; 9:ENEURO.0421-22.2022. [PMID: 36526366 PMCID: PMC9794376 DOI: 10.1523/eneuro.0421-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Retinal ganglion cell (RGC) axons comprise the optic nerve and carry information to the dorsolateral geniculate nucleus (dLGN), which is then relayed to the cortex for conscious vision. Glaucoma is a blinding neurodegenerative disease that commonly results from intraocular pressure (IOP)-associated injury leading to RGC axonal pathology, disruption of RGC outputs to the brain, and eventual apoptotic loss of RGC somata. The consequences of elevated IOP and glaucomatous pathology on RGC signaling to the dLGN are largely unknown yet are likely to contribute to vision loss. Here, we used anatomic and physiological approaches to study the structure and function of retinogeniculate (RG) synapses in male and female DBA/2J (D2) mice with inherited glaucoma before and after IOP elevation. D2 mice showed progressive loss of anterograde optic tract transport to the dLGN and vGlut2 labeling of RGC axon terminals while patch-clamp measurements of RG synaptic function showed that synaptic transmission was reduced in 9-month and 12-month D2 mice because of the loss of individual RGC axon inputs. TC neuron dendrites had reduced Sholl complexity at 12 months, suggestive of delayed reorganization following reduced synaptic input. There was no detectable change in RGC density in 11- to 12-month D2 retinas, quantified as the number of ganglion cell layer-residing somata immuno-positive for NeuN and immuno-negative for the amacrine marker choline acetyltransferase (ChAT). Thus, observed synaptic defects appear to precede RGC somatic loss. These findings identify glaucoma-associated and IOP-associated deficits in an important subcortical RGC projection target, shedding light on processes linking IOP to vision loss.
Collapse
|
6
|
Hetsch F, Wang D, Chen X, Zhang J, Aslam M, Kegel M, Tonner H, Grus F, von Engelhardt J. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dLGN. J Physiol 2022; 600:3549-3565. [PMID: 35770953 DOI: 10.1113/jp283172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Expression of CKAMP44 starts early during development of the dLGN and remains stable in relay neurons and interneurons. Genetic deletion of CKAMP44 decreases synaptic strength and increases silent synapse number in dLGN relay neurons. Genetic deletion of CKAMP44 increases the rate of recovery from desensitisation of AMPA receptors in dLGN relay neurons. Genetic deletion of CKAMP44 reduces synaptic short-term depression in retinogeniculate synapses. The probability to induce plateau potentials is elevated in relay neurons of CKAMP44-/- mice. Eye-specific input segregation is unaffected in the dLGN of CKAMP44-/- mice. Deletion of CKAMP44 mildly affects dendritic arborisation of relay neurons in the dLGN. ABSTRACT Relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive inputs from retinal ganglion cells via retinogeniculate synapses. These connections undergo pruning in the first two weeks after eye opening. The remaining connections are strengthened several-fold by the insertion of AMPA receptors (AMPARs) into weak or silent synapses. In this study, we found that the AMPAR auxiliary subunit CKAMP44 is required for receptor insertion and function of retinogeniculate synapses during development. Genetic deletion of CKAMP44 resulted in decreased synaptic strength and a higher number of silent synapses in young (P9-11) mice. Recovery from desensitisation of AMPA receptors was faster in CKAMP44 knockout (CKAMP44-/- ) than in wildtype mice. Moreover, loss of CKAMP44 increased the probability to induce plateau potentials, which are known to be important for eye-specific input segregation and retinogeniculate synapse maturation. The anatomy of relay neurons in the dLGN was changed in young CKAMP44-/- mice showing a transient increase in dendritic branching that normalised during later development (P26-33). Interestingly, input segregation in young CKAMP44-/- mice was not affected when compared to wildtype mice. These results demonstrate that CKAMP44 promotes maturation and modulates function of retinogeniculate synapses during early development of the visual system without affecting input segregation. Abstract figure legend AMPA receptor auxiliary subunit CKAMP44 influences synaptic function in retinogeniculate synapses of young mice. CKAMP44 unsilences synapses by recruiting AMPA receptors to the synapse. Furthermore, genetic deletion of CKAMP44 reduces short-term depression and increases the probability to elicit L-type Ca2+ channel-mediated plateau potentials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Hetsch
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Danni Wang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xufeng Chen
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jiong Zhang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Muhammad Aslam
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Henrik Tonner
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
7
|
Bhandari A, Ward TW, Smith J, Van Hook MJ. Structural and functional plasticity in the dorsolateral geniculate nucleus of mice following bilateral enucleation. Neuroscience 2022; 488:44-59. [PMID: 35131394 PMCID: PMC8960354 DOI: 10.1016/j.neuroscience.2022.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.
Collapse
|
8
|
Miao Y, Chen X, You F, Jia M, Li T, Tang P, Shi R, Hu S, Zhang L, Chen JF, Gao Y. Adenosine A 2A receptor modulates microglia-mediated synaptic pruning of the retinogeniculate pathway during postnatal development. Neuropharmacology 2021; 200:108806. [PMID: 34562441 DOI: 10.1016/j.neuropharm.2021.108806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Synapse pruning is essential not only for the developmental establishment of synaptic connections in the brain but also for the pathogenesis of neurodevelopmental and neurodegenerative disorders. However, there are no effective pharmacological means to regulate synaptic pruning during early development. Using the eye-specific segregation of the dorsal lateral geniculate nucleus (dLGN) as a model of synaptic pruning coupled with adenosine A2A receptor (A2AR) antagonism and knockout, we demonstrated while genetic deletion of the A2AR throughout the development attenuated eye-specific segregation with the attenuated microglial phagocytosis at postnatal day 5 (P5), selective treatment with the A2AR antagonist KW6002 at P2-P4 facilitated synaptic pruning of visual pathway with microglial activation, increased lysosomal activity in microglia and increased microglial engulfment of retinal ganglion cell (RGC) inputs in the dLGN at P5 (but not P10). Furthermore, KW6002-mediated facilitation of synaptic pruning was activity-dependent since tetrodotoxin (TTX) treatment abolished the KW6002 facilitation. Moreover, the A2AR antagonist also modulated postsynaptic proteins and synaptic density at early postnatal stages as revealed by the reduced immunoreactivity of postsynaptic proteins (Homer1 and metabotropic glutamate receptor 5) and colocalization of presynaptic VGlut2 and postsynaptic Homer1 puncta in the dLGN. These findings suggest that A2AR can control pruning by multiple actions involving the retinal wave, microglia engulfment, and postsynaptic stability. Thus, A2AR antagonists may represent a novel pharmacological strategy to modulate microglia-mediated synaptic pruning and treatment of neurodevelopmental disorders associated with dysfunctional pruning.
Collapse
Affiliation(s)
- Yaxin Miao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Feng You
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Manli Jia
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liping Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
9
|
von Engelhardt J. Role of AMPA receptor desensitization in short term depression - lessons from retinogeniculate synapses. J Physiol 2021; 600:201-215. [PMID: 34197645 DOI: 10.1113/jp280878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Repetitive synapse activity induces various forms of short-term plasticity. The role of presynaptic mechanisms such as residual Ca2+ and vesicle depletion in short-term facilitation and short-term depression is well established. On the other hand, the contribution of postsynaptic mechanisms such as receptor desensitization and saturation to short-term plasticity is less well known and often ignored. In this review, I will describe short-term plasticity in retinogeniculate synapses of relay neurons of the dorsal lateral geniculate nucleus (dLGN) to exemplify the synaptic properties that facilitate the contribution of AMPA receptor desensitization to short-term plasticity. These include high vesicle release probability, glutamate spillover and, importantly, slow recovery from desensitization of AMPA receptors. The latter is strongly regulated by the interaction of AMPA receptors with auxiliary proteins such as CKAMP44. Finally, I discuss the relevance of short-term plasticity in retinogeniculate synapses for the processing of visual information by LGN relay neurons.
Collapse
Affiliation(s)
- Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Differential Distribution of Ca 2+ Channel Subtypes at Retinofugal Synapses. eNeuro 2020; 7:ENEURO.0293-20.2020. [PMID: 33097488 PMCID: PMC7768275 DOI: 10.1523/eneuro.0293-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Retinofugal synapses serve as models for understanding how sensory signals from the periphery are relayed to the brain. Past studies have focused primarily on understanding the postsynaptic glutamatergic receptor subtypes involved in signal transmission, but the mechanisms underlying glutamate release at presynaptic retinal terminals remains largely unknown. Here we explored how different calcium (Ca2+) channel subtypes regulate glutamatergic excitatory synaptic transmission in two principal retinorecipient targets, the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) of the mouse. We used an in vitro slice preparation to record the synaptic responses of dLGN and SC neurons evoked by the electrical stimulation of optic tract (OT) fibers before and during the application of selective Ca2+ channel blockers. We found that synaptic responses to paired or repetitive OT stimulation were highly sensitive to extracellular levels of Ca2+ and to selective antagonists of voltage gated Ca2+ channels, indicating that these channels regulate the presynaptic release of glutamate at retinal synapses in both dLGN and SC. Bath application of selective Ca2+ channel blockers revealed that P/Q-type Ca2+ channels primarily operate to regulate glutamate release at retinal synapses in dLGN, while N-type Ca2+ channels dominate release in the SC.
Collapse
|
11
|
Mikhalkin A, Nikitina N, Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:1430-1441. [DOI: 10.1002/cne.25028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandr Mikhalkin
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Nina Nikitina
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Natalia Merkulyeva
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| |
Collapse
|
12
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
14
|
Rose T, Bonhoeffer T. Experience-dependent plasticity in the lateral geniculate nucleus. Curr Opin Neurobiol 2018; 53:22-28. [DOI: 10.1016/j.conb.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
15
|
Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU, Morgan JL, Chen C, Andermann ML. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 2018; 173:1343-1355.e24. [PMID: 29856953 DOI: 10.1016/j.cell.2018.04.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
Abstract
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.
Collapse
Affiliation(s)
- Liang Liang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Fratzl
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Glenn Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Litvina EY, Chen C. Functional Convergence at the Retinogeniculate Synapse. Neuron 2017; 96:330-338.e5. [PMID: 29024658 DOI: 10.1016/j.neuron.2017.09.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
Precise connectivity between retinal ganglion cells (RGCs) and thalamocortical (TC) relay neurons is thought to be essential for the transmission of visual information. Consistent with this view, electrophysiological measurements have previously estimated that 1-3 RGCs converge onto a mouse geniculate TC neuron. Recent advances in connectomics and rabies tracing have yielded much higher estimates of retinogeniculate convergence, although not all identified contacts may be functional. Here we use optogenetics and a computational simulation to determine the number of functionally relevant retinogeniculate inputs onto TC neurons in mice. We find an average of ten RGCs converging onto a mature TC neuron, in contrast to >30 inputs before developmental refinement. However, only 30% of retinogeniculate inputs exceed the threshold for dominating postsynaptic activity. These results signify a greater role for the thalamus in visual processing and provide a functional perspective of anatomical connectivity data.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|