1
|
Du Y, Hu M, Xia Y, Jin K. Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39469952 DOI: 10.1002/ps.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The Lim-domain binding protein PtaB, a homolog of Mfg1, governs conidiation and biofilm formation in several fungi. PtaB includes a conserved Lim-binding domain and two predicted nuclear localization sequences at its C terminus, and is co-regulated with the transcription factor Som1 downstream of the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway. However, the function of PtaB in entomopathogenic fungi remain poorly understood. RESULTS Inactivation of PtaB in Metarhizium acridum resulted in delayed conidial germination, reduced conidial yield and increased sensitivities to cell wall disruptors, ultraviolet B irradiation and heat shock. In addition, the fungal virulence was significantly decreased after deletion of MaPtaB because of impairments in appressorium formation, cuticle penetration and evasion of insect immune responses in M. acridum. The MaPtaB-deletion and MaSom1-deletion strains showed similar phenotypes supporting that MaSom1/MaPtaB complex controls M. acridum normal conidiation and pathogenic progress. Upon loss of MaPtaB or MaSom1, the fungal sporulation mode in M. acridium shifted from microcycle conidiation to normal conidiation on SYA, a microcycle conidiation medium. Transcriptional analysis showed that more differentially expression genes were identified in MaSom1 RNA sequencing, and MaSom1 and MaPtaB may regulate the expression of genes for conidiation, nutrient metabolism and the cell cycle to control conidiation pattern shift. CONCLUSION These data corroborate a complex control function for MaPtaB as an important central factor interacting with MaSom1 in the cAMP/PKA pathway, which links stress tolerance, conidiation and virulence in the entomopathogenic fungus M. acridum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Liu Z, Zhu Z, Huang Y, Nong S, Jiang M, Yi S, Xie D, Hu H. Identification of gene modules and hub genes associated with Colletotrichum siamense infection in mango using weighted gene co-expression network analysis. BMC Genomics 2023; 24:710. [PMID: 37996781 PMCID: PMC10668491 DOI: 10.1186/s12864-023-09811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Colletotrichum siamense is a hemibiotrophic ascomycetous fungus responsible for mango anthracnose. The key genes involved in C. siamense infection remained largely unknown. In this study, we conducted weighted gene co-expression network analysis (WGCNA) of RNA-seq data to mine key genes involved in Colletotrichum siamense-mango interactions. Gene modules of Turquoise and Salmon, containing 1039 and 139 respectively, were associated with C. siamense infection, which were conducted for further analysis. GO enrichment analysis revealed that protein synthesis, organonitrogen compound biosynthetic and metabolic process, and endoplasmic reticulum-related genes were associated with C. siamense infection. A total of 568 proteins had homologs in the PHI database, 370 of which were related to virulence. The hub genes in each module were identified, which were annotated as O-methyltransferase (Salmon) and Clock-controlled protein 6 (Turquoise). A total of 24 proteins exhibited characteristics of SCRPs. By using transient expression in Nicotiana benthamiana, the SCRPs of XM_036637681.1 could inhibit programmed cell death (PCD) that induced by BAX (BCL-2-associated X protein), suggesting that it may play important roles in C. siamense infection. A mango-C. siamense co-expression network was constructed, and the mango gene of XM_044632979.1 (auxin-induced protein 15A-like) was positively associated with 5 SCRPs. These findings help to deepen the current understanding of necrotrophic stage in C. siamense infection.
Collapse
Affiliation(s)
- Zongling Liu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China.
- Guangxi Key Laboratory of Biology for Mango, Baise, 533000, China.
| | - Zhengjie Zhu
- Guangxi Key Laboratory of Biology for Mango, Baise, 533000, China
| | - Yuanhe Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Song Nong
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Minli Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Sangui Yi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Delong Xie
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Hongliu Hu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
3
|
Duan L, Wang L, Chen W, He Z, Zhou E, Zhu Y. Deficiency of ChPks and ChThr1 Inhibited DHN-Melanin Biosynthesis, Disrupted Cell Wall Integrity and Attenuated Pathogenicity in Colletotrichum higginsianum. Int J Mol Sci 2023; 24:15890. [PMID: 37958874 PMCID: PMC10650501 DOI: 10.3390/ijms242115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Colletotrichum higginsianum is a major pathogen causing anthracnose in Chinese flowering cabbage (Brassica parachinensis), posing a significant threat to the Chinese flowering cabbage industry. The conidia of C. higginsianum germinate and form melanized infection structures called appressoria, which enable penetration of the host plant's epidermal cells. However, the molecular mechanism underlying melanin biosynthesis in C. higginsianum remains poorly understood. In this study, we identified two enzymes related to DHN-melanin biosynthesis in C. higginsianum: ChPks and ChThr1. Our results demonstrate that the expression levels of genes ChPKS and ChTHR1 were significantly up-regulated during hyphal and appressorial melanization processes. Furthermore, knockout of the gene ChPKS resulted in a blocked DHN-melanin biosynthetic pathway in hyphae and appressoria, leading to increased sensitivity of the ChpksΔ mutant to cell-wall-interfering agents as well as decreased turgor pressure and pathogenicity. It should be noted that although the Chthr1Δ mutant still exhibited melanin accumulation in colonies and appressoria, its sensitivity to cell-wall-interfering agents and turgor pressure decreased compared to wild-type strains; however, complete loss of pathogenicity was not observed. In conclusion, our results indicate that DHN-melanin plays an essential role in both pathogenicity and cell wall integrity in C. higginsianum. Specifically, ChPks is crucial for DHN-melanin biosynthesis while deficiency of ChThr1 does not completely blocked melanin production.
Collapse
Affiliation(s)
| | | | | | | | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (L.D.); (L.W.); (W.C.); (Z.H.)
| | - Yiming Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (L.D.); (L.W.); (W.C.); (Z.H.)
| |
Collapse
|
4
|
Guo J, Zhou X, Xie F, Cao J, Liu S, Zhong J, Zhu H. Hypovirulence caused by mycovirus in Colletotrichum fructicola. FRONTIERS IN PLANT SCIENCE 2022; 13:1038781. [PMID: 36275531 PMCID: PMC9585321 DOI: 10.3389/fpls.2022.1038781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Colletotrichum fructicola is a pathogenic fungus causing leaf black spot and fruit rot disease in a wide variety of crops. Some mycoviruses that cause detrimental effects on fungal hosts could be useful in studying the pathogenesis of fungal hosts. In this study, we reported two mycoviruses, Colletotrichum fructicola ourmia-like virus 1- Colletotrichum gloeosporioides ourmia-like virus 1 (CfOLV1-CgOLV1) and Colletotrichum fructicola ourmia-like virus 2 (CfOLV2), from a C. fructicola fungus. The complete genome sequences of CfOLV1-CgOLV1 and CfOLV2 contain 2,516 bp and 2,048 bp, respectively. Both of these viruses contain only one open reading frame (ORF), which encodes an RNA-dependent RNA polymerase (RdRp). CfOLV1-CgOLV1 was identical as the previously reported virus CgOLV1. Phylogenetic analysis showed that CfOLV2 is closely related to Scleroulivirus and Magoulivirus in the family Botourmiaviridae. Virus elimination and horizontal transmission experiments proved that the associated mycoviruses could reduce the pathogenicity of the host C. fructicola. In addition, we found that the virus-containing strains showed a much higher percentage of appressorium formation and more melanin production compared to isogenic virus-free strain, and the presence of the virus is detrimental to the growth of host fungi and regulates the integrity of the cell wall. Transcriptomic analysis showed that mycovirus infection caused various abnormal genes expression in C. fructicola. To the best of our knowledge, this is the first report of a hypovirulence-associated ourmia-like mycovirus in C. fructicola.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhong
- *Correspondence: Hongjian Zhu, ;Jie Zhong,
| | | |
Collapse
|
5
|
Liu W, Han L, Chen J, Liang X, Wang B, Gleason ML, Zhang R, Sun G. The CfMcm1 Regulates Pathogenicity, Conidium Germination, and Sexual Development in Colletotrichum fructicola. PHYTOPATHOLOGY 2022; 112:2159-2173. [PMID: 35502927 DOI: 10.1094/phyto-03-22-0090-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a severe disease worldwide on apple, causing defoliation, leaf and fruit spot, and substantial yield loss. However, little is known about its molecular mechanisms of pathogenesis. Previous transcriptome analysis revealed that a transcription factor, CfMcm1, was induced during leaf infection. In the present work, expression pattern analysis verified that the CfMcm1 gene was strongly expressed in conidia and early infection. Phenotypic analysis revealed that the gene deletion mutant ΔCfMcm1 lost pathogenicity to apple leaves by inhibiting conidial germination and appressorium formation. In addition to appressorium-mediated pathogenicity, ΔCfMcm1 colonization and hyphal extension in wounded apple fruit was also reduced, and conidial germination mode and conidial color were altered. ΔCfMcm1 displayed impairment of cell wall integrity and response to stress caused by oxidation, osmosis, and an acid environment. Furthermore, the deletion mutant produced fewer and smaller perithecia and no ascospores. In contrast, melanin deposition in mycelia of ΔCfMcm1 was strengthened. Further comparative transcriptome and quantitative PCR analysis revealed that CfMcm1 modulated expression of genes related to conidial development (CfERG5A, CfERG5B, CfHik5, and CfAbaA), appressorium formation (CfCBP1 and CfCHS7), pectin degradation (CfPelA and CfPelB), sexual development (CfMYB, CfFork, CfHMG, and CfMAT1-2-1), and melanin biosynthesis (CfCmr1, CfPKS1, CfT4HR1, CfTHR1, and CfSCD1). Our results demonstrated that CfMcm1 is a pivotal regulator possessing multiple functions in pathogenicity, asexual and sexual reproduction, and melanin biosynthesis.
Collapse
Affiliation(s)
- Wenkui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Lu Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jinzhu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
6
|
Liang X, Li B, Zhao X, Yao L, Kong Y, Liu W, Zhang R, Sun G. 1,8-Dihydroxynaphthalene Melanin Biosynthesis in Colletotrichum fructicola Is Developmentally Regulated and Requires the Cooperative Function of Two Putative Zinc Finger Transcription Factors. PHYTOPATHOLOGY 2022; 112:2174-2186. [PMID: 36154270 DOI: 10.1094/phyto-01-22-0037-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In ascomycetes, 1,8-dihydroxynaphthalene (DHN) melanin plays important protective functions and its production is usually coupled with development and environmental stress responses. The regulation of melanin biosynthesis, however, remains obscure. Colletotrichum fructicola is a phytopathogen with a broad host range that produces melanized appressoria and perithecia. In this study, we annotated melanin genes in a high-quality C. fructicola genome and characterized two zinc finger transcription factors (TFs) (cmr1 and cmr2) that form a loosely organized gene cluster with several melanin biosynthesis genes. Deleting either TF abolished melanization in both mycelia and perithecia but did not affect appressoria. The deletion mutants also showed perithecial development defects. Overexpressing cmr1 in Δcmr2 strongly activated the expression of melanin biosynthesis genes including pks1, scd1, t4hr1, and thr1 and caused hyper-accumulation of charcoal to black pigment(s). On the other hand, overexpressing cmr2 in Δcmr1 activated pks1, t4hr1, and thr1, but not scd1. We conclude that proper DHN melanin accumulation in C. fructicola requires the cooperative function of two in-cluster TFs that also regulate perithecial development. The study clarifies DHN melanin regulations in C. fructicola and expands the function of melanin in-cluster TFs to sex regulation.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Bingxuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xuemei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Wenkui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Guo C, Yang X, Shi H, Chen C, Hu Z, Zheng X, Yang X, Xie C. Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol 2022; 15:2040-2054. [PMID: 35478269 PMCID: PMC9249328 DOI: 10.1111/1751-7915.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species. The melanized microsclerotia enable V. dahliae to survive for years in soil and are crucial for its disease cycle. In a previous study, we characterized the secretory protein VdASP F2 from V. dahliae and found that VdASP F2 deletion significantly affected the formation of microsclerotia under adverse environmental conditions. In this study, we clarified that VdASP F2 is localized to the cell wall. However, the underlying mechanism of VdASP F2 in microsclerotial formation remains unclear. Transmembrane ion channel protein VdTRP was identified as a candidate protein that interacts with VdASP F2 using pull‐down assays followed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) analysis, and interaction of VdASP F2 and VdTRP was confirmed by bimolecular fluorescence complementary and coimmunoprecipitation assays. The deletion mutant was analysed to reveal that VdTRP is required for microsclerotial production, but it is not essential for stress resistance, carbon utilization and pathogenicity of V. dahliae. RNA‐seq revealed some differentially expressed genes related to melanin synthesis and microsclerotial formation were significantly downregulated in the VdTRP deletion mutants. Taken together, these results indicate that VdASP F2 regulates the formation of melanized microsclerotia by interacting with VdTRP.
Collapse
Affiliation(s)
- Cuimei Guo
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Hongli Shi
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chi Chen
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xinyao Zheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
8
|
Two Novel Dimorphism-Related Virulence Factors of Zymoseptoria tritici Identified Using Agrobacterium-Mediated Insertional Mutagenesis. Int J Mol Sci 2021; 23:ijms23010400. [PMID: 35008825 PMCID: PMC8745584 DOI: 10.3390/ijms23010400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Diseases caused by dimorphic phytopathogenic and systemic dimorphic fungi have markedly increased in prevalence in the last decades, and understanding the morphogenic transition to the virulent state might yield novel means of controlling dimorphic fungi. The dimorphic fungus Z. tritici causes significant economic impact on wheat production, and yet the regulation of the dimorphic switch, a key first step in successful plant colonization, is still largely unexplored in this fungus. The fungus is amenable to suppression by fungicides at this switch point, and the identification of the factors controlling the dimorphic switch provides a potential source of novel targets to control Septoria tritici blotch (STB). Inhibition of the dimorphic switch can potentially prevent penetration and avoid any damage to the host plant. The aim of the current work was to unveil genetic determinants of the dimorphic transition in Z. tritici by using a forward genetics strategy. Using this approach, we unveiled two novel factors involved in the switch to the pathogenic state and used reverse genetics and complementation to confirm the role of the novel virulence factors and further gained insight into the role of these genes, using transcriptome analysis via RNA-Seq. The transcriptomes generated potentially contain key determinants of the dimorphic transition.
Collapse
|
9
|
Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis. Appl Environ Microbiol 2020; 87:AEM.02212-20. [PMID: 33067192 DOI: 10.1128/aem.02212-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (ΔCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by ΔCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
Collapse
|
10
|
Targeted Disruption of Scytalone Dehydratase Gene Using Agrobacterium tumefaciens-Mediated Transformation Leads to Altered Melanin Production in Ascochyta lentis. J Fungi (Basel) 2020; 6:jof6040314. [PMID: 33255939 PMCID: PMC7712762 DOI: 10.3390/jof6040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Sustainable crop production is constantly challenged by the rapid evolution of fungal pathogens equipped with an array of host infection strategies and survival mechanisms. One of the devastating fungal pathogens that infect lentil is the ascomycete Ascochyta lentis which causes black spot or ascochyta blight (AB) on all above ground parts of the plant. In order to explore the mechanisms involved in the pathogenicity of A. lentis, we developed a targeted gene replacement method using Agrobacterium tumefaciens mediated transformation (ATMT) to study and characterize gene function. In this study, we investigated the role of scytalone dehydratase (SCD) in the synthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in AlKewell. Two SCD genes have been identified in AlKewell, AlSCD1 and AlSCD2. Phylogenetic analysis revealed that AlSCD1 clustered with the previously characterized fungal SCDs; thus, AlSCD1 was disrupted using the targeted gene replacement vector, pTAR-hyg-SCD1. The vector was constructed in a single step process using Gibson Assembly, which facilitated an easy and seamless assembly of multiple inserts. The resulting AlKewell scd1::hyg transformants appeared light brown/brownish-pink in contrast to the dark brown pycnidia of the WT strain and ectopic transformant, indicating an altered DHN-melanin production. Disruption of AlSCD1 gene did not result in a change in the virulence profile of AlKewell towards susceptible and resistant lentil varieties. This is the first report of a targeted gene manipulation in A. lentis which serves as a foundation for the functional gene characterization to provide a better understanding of molecular mechanisms involved in pathogen diversity and host specificity.
Collapse
|
11
|
Wang T, Ren D, Guo H, Chen X, Zhu P, Nie H, Xu L. CgSCD1 Is Essential for Melanin Biosynthesis and Pathogenicity of Colletotrichum gloeosporioides. Pathogens 2020; 9:pathogens9020141. [PMID: 32093195 PMCID: PMC7169410 DOI: 10.3390/pathogens9020141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023] Open
Abstract
Colletotrichum gloeosporioides, an important phytopathogenic fungus, mainly infects tropical fruits and results in serious anthracnose. Previous studies have shown that melanin biosynthesis inhibitor can inhibit the melanization of the appressoria of Magnaporthe grisea and Colletotrichumorbiculare, resulting in limited infection of the hosts. In this study, we identified and characterized a scytalone dehydratase gene (CgSCD1) from C. gloeosporioides which is involved in melanin synthesis. The CgSCD1 gene deletion mutant ΔCgscd1 was obtained using homologous recombination. The ΔCgscd1 mutant showed no melanin accumulation on appressoria formation and vegetative hyphae. Furthermore, the virulence of ΔCgscd1 was significantly reduced in comparison with the wild-type (WT) strain. Further investigations showed that the growth rate as well as germination and appressorium formation of ΔCgscd1 displayed no difference compared to the wild-type and complemented transformant Cgscd1com strains. Furthermore, we found that the appressorial turgor pressure in the ΔCgscd1 mutant showed no difference compared to that in the WT and Cgscd1com strains in the incipient cytorrhysis experiment. However, fewer infectious hyphae of ΔCgscd1 were observed in the penetration experiments, suggesting that the penetration ability of nonpigmented appressoria was partially impaired. In conclusion, we identified the CgSCD1 gene, which is involved in melanin synthesis and pathogenicity, and found that the melanization defect did not affect appressorial turgor pressure in C. gloeosporioides.
Collapse
Affiliation(s)
| | | | | | | | | | - Haozhen Nie
- Correspondence: (H.N.); (L.X.); Tel.: +86-021-5434-1012 (L.X.)
| | - Ling Xu
- Correspondence: (H.N.); (L.X.); Tel.: +86-021-5434-1012 (L.X.)
| |
Collapse
|
12
|
Kim JW, Shim SH. The fungus Colletotrichum as a source for bioactive secondary metabolites. Arch Pharm Res 2019; 42:735-753. [PMID: 30915681 DOI: 10.1007/s12272-019-01142-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
Colletotrichum sp. is a widely distributed fungal genus, which is mainly known to cause anthracnose on cereals, legumes, fruit trees, and vegetables. Even though many of the Colletotrichum sp. are plant pathogens, a variety of secondary metabolites with diverse bioactivities have been reported to be produced by this fungus. At least 109 secondary metabolites from the fungus Colletotrichum have been reported to date. They mostly include nitrogen-containing metabolites, sterols, terpenes, pyrones, phenolics, and fatty acids. Herein, the authors review the structurally interesting secondary metabolites produced by Colletotrichum and their biological activities.
Collapse
Affiliation(s)
- Jung Wha Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Sang Hee Shim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
13
|
Wang Y, Hu X, Fang Y, Anchieta A, Goldman PH, Hernandez G, Klosterman SJ. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. MICROBIOLOGY (READING, ENGLAND) 2018; 164:685-696. [PMID: 29485393 PMCID: PMC5982140 DOI: 10.1099/mic.0.000633] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and genomic analysis identified a cluster of genes in V. dahliae that encodes some dihydroxynaphthalene (DHN) melanin biosynthetic pathway homologues found in related fungi. In this study, we explored the roles of cluster-specific transcription factor VdCmr1, as well as two other genes within the cluster encoding a polyketide synthase (VdPKS1) and a laccase (VdLac1), enzymes at initial and endpoint steps in DHN melanin production. The results revealed that VdCmr1 and VdPKS1 are required for melanin production, but neither is required for microsclerotia production. None of the three genes were required for pathogenesis on tobacco and lettuce. Exposure of ΔVdCmr1 and wild-type strains to UV irradiation, or to high temperature (40 °C), revealed an approx. 50 % reduction of survival in the ΔVdCmr1 strain, relative to the wild-type strain, in response to either condition. Expression profiles revealed that expression of some melanin biosynthetic genes are in part dependent on VdCmr1. Combined data indicate VdCmr1 is a key regulator of melanin biosynthesis, and that via regulation of melanogenesis, VdCmr1 affects survival of V. dahliae in response to abiotic threats. We conclude with a model showing regulation of VdCmr1 by a high osmolarity glycerol response (Hog)-type MAP kinase pathway.
Collapse
Affiliation(s)
- Yonglin Wang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Xiaoping Hu
- Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Yulin Fang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Amy Anchieta
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Polly H. Goldman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Gustavo Hernandez
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| |
Collapse
|
14
|
Vieira A, Cabral A, Fino J, Azinheira HG, Loureiro A, Talhinhas P, Pires AS, Varzea V, Moncada P, Oliveira H, Silva MDC, Paulo OS, Batista D. Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS One 2016; 11:e0150651. [PMID: 26950697 PMCID: PMC4780792 DOI: 10.1371/journal.pone.0150651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica—C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica—C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.
Collapse
Affiliation(s)
- Ana Vieira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cabral
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Joana Fino
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena G. Azinheira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Loureiro
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Talhinhas
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Sofia Pires
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vitor Varzea
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | | | - Helena Oliveira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria do Céu Silva
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Batista
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Chand R, Kumar M, Kushwaha C, Shah K, Joshi AK. Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley. Curr Microbiol 2014; 69:202-11. [PMID: 24691547 DOI: 10.1007/s00284-014-0559-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Eighteen barley isolates of Bipolaris sorokiniana belonging to wild and clonal type of black, mixed and white subpopulations were quantitatively assayed for their melanin content and aggressiveness with respect to production of some of the extracellular enzymes such as cellulase, pectinase, amylase and protease. Cellulase and pectinase constituted major portion of the enzymes recovered from the black, mixed and white isolates. Enzyme production and aggressiveness were relatively higher in melanin devoid or low melanin isolates. The melanin deficient isolates were also differentiated from black and mixed isolates on the basis of variation in internal transcribed spacer region of the ribosomal DNA. Higher enzyme productions positively correlated with area under disease progress curve (AUDPC) and lesion development. Melanin content was negatively correlated with extracellular enzymes and aggressiveness of the isolates. Based on melanin content, lesion size, AUDPC and extracellular enzymes, the isolates were grouped in two major clusters (I and II) with further division of cluster II into two sub-clusters (II-A and II-B). The results appears to indicate a possible role of melanin in release of extracellular enzymes and hence in evolution and selection of aggressive isolates of B. sorokiniana in barley.
Collapse
Affiliation(s)
- Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India,
| | | | | | | | | |
Collapse
|
16
|
Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS One 2013; 8:e67150. [PMID: 23840606 PMCID: PMC3694141 DOI: 10.1371/journal.pone.0067150] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.
Collapse
Affiliation(s)
- Diana P. Garnica
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Narayana M. Upadhyaya
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Peter N. Dodds
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - John P. Rathjen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Yu SM, Ramkumar G, Lee Y. Light quality influences the virulence and physiological responses of Colletotrichum acutatum
causing anthracnose in pepper plants. J Appl Microbiol 2013; 115:509-16. [DOI: 10.1111/jam.12252] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- S.-M. Yu
- Division of Biotechnology; Chonbuk National University; Iksan Jeonbuk, Korea
| | - G. Ramkumar
- Division of Biotechnology; Chonbuk National University; Iksan Jeonbuk, Korea
| | - Y.H. Lee
- Division of Biotechnology; Chonbuk National University; Iksan Jeonbuk, Korea
- Advanced Institute of Environment and Bioscience; Plant Medical Research Center; Chonbuk National University; Iksan Jeonbuk, Korea
| |
Collapse
|
18
|
Asakura M, Yoshino K, Hill AM, Kubo Y, Sakai Y, Takano Y. Primary and secondary metabolism regulates lipolysis in appressoria of Colletotrichum orbiculare. Fungal Genet Biol 2012; 49:967-75. [PMID: 22982088 DOI: 10.1016/j.fgb.2012.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
Abstract
The conidia of Colletotrichum orbiculare, the causal agent of cucumber anthracnose, develop appressoria that are pigmented with melanin for host plant infection. Premature appressoria contain abundant lipid droplets (LDs), but these disappear during appressorial maturation, indicating lipolysis inside the appressorial cells. The lipolysis and melanization in appressoria require the peroxin PEX6, suggesting the importance of peroxisomal metabolism in these processes. To investigate the relationships between appressorial lipolysis and fungal metabolic pathways, C. orbiculare knockout mutants of MFE1, which encodes a peroxisomal multifunctional enzyme, were generated in this study, and the phenotype of the mfe1 mutants was investigated. In contrast to the wild-type strain, which forms melanized appressoria, the mfe1 mutants formed colorless nonmelanized appressoria with abundant LDs, similar to those of pex6 mutants. This indicates that fatty acid β-oxidation in peroxisomes is critical for the appressorial melanization and lipolysis of C. orbiculare. Soraphen A, a specific inhibitor of acetyl-CoA carboxylase, inhibited appressorial lipolysis and melanization, producing phenocopies of the mfe1 mutants. This suggests that the conversion of acetyl-CoA, derived from fatty acid β-oxidation, to malonyl-CoA is required for the activation of lipolysis in appressoria. Surprisingly, we found that genetically blocking PKS1-dependent polyketide synthesis, an initial step in melanin biosynthesis, also impaired appressorial lipolysis. In contrast, genetically or pharmacologically blocking the steps in melanin synthesis downstream from PKS1 did not abolish appressorial lipolysis. These findings indicate that melanin biosynthesis, as well as fatty acid β-oxidation, is involved in the regulation of lipolysis inside fungal infection structures.
Collapse
Affiliation(s)
- Makoto Asakura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Cloning of Sal1, a scytalone dehydratase gene involved in melanin biosynthesis in Cochliobolus heterostrophus. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0162-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Dairi T, Kuzuyama T, Nishiyama M, Fujii I. Convergent strategies in biosynthesis. Nat Prod Rep 2011; 28:1054-86. [PMID: 21547300 DOI: 10.1039/c0np00047g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review article focuses on how nature sometimes solves the same problem in the biosynthesis of small molecules but using very different approaches. Four examples, involving isopentenyl diphosphate, menaquinone, lysine, and aromatic polyketides, are highlighted that represent different strategies in convergent metabolism.
Collapse
Affiliation(s)
- Tohru Dairi
- Faculty of Engineering and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
21
|
Chung KR. Elsinoë fawcettii and Elsinoë australis: the fungal pathogens causing citrus scab. MOLECULAR PLANT PATHOLOGY 2011; 12:123-35. [PMID: 21199563 PMCID: PMC6640467 DOI: 10.1111/j.1364-3703.2010.00663.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED Elsinoë fawcettii and E. australis are important pathogens of citrus. Both species are known to produce red or orange pigments, called elsinochrome. Elsinochrome is a nonhost-selective phytotoxin and is required for full fungal virulence and lesion formation. This article discusses the taxonomy, epidemiology, genetics and pathology of the pathogens. It also provides a perspective on the cellular toxicity, biosynthetic regulation and pathological role of elsinochrome phytotoxin. TAXONOMY Elsinoë fawcettii (anamorph: Sphaceloma fawcettii) and E. australis (anamorph: S. australis) are classified in the Phylum Ascomycota, Class Dothideomycetes, Order Myriangiales and Family Elsinoaceae. HOST RANGE Elsinoë fawcettii causes citrus scab (formerly sour orange scab and common scab) on various species and hybrids in the Rutaceae family worldwide, whereas E. australis causes sweet orange scab, primarily on sweet orange and some mandarins, and has a limited geographical distribution. DISEASE SYMPTOMS Citrus tissues infested with Elsinoë often display erumpent scab pustules with a warty appearance. TOXIN PRODUCTION: Elsinochrome and many perylenequinone-containing phytotoxins of fungal origin are grouped as photosensitizing compounds that are able to absorb light energy, react with oxygen molecules and produce reactive oxygen species, such as superoxide and singlet oxygen. Elsinochrome has been documented to cause peroxidation of cell membranes and to induce rapid electrolyte leakage from citrus tissues. Elsinochrome biosynthesis and conidiation are coordinately regulated in E. fawcettii, and the environmental and physiological inducers commonly involved in both processes have begun to be elucidated.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, and Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| |
Collapse
|
22
|
Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 2009; 9:177. [PMID: 19703288 PMCID: PMC2740851 DOI: 10.1186/1471-2180-9-177] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 08/24/2009] [Indexed: 11/13/2022] Open
Abstract
Background Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. Results We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2) showed point mutations (missense mutation, deletion or insertion) in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost electron dense layer responsible for the ornamentations seen on the conidial surface in wild-type strains. Finally, analysis of the conidial surface of mutant isolates by atomic force microscopy demonstrated the absence of the outer cell wall rodlet layer which is composed of hydrophobins. Conclusion These results suggest that, in addition to a protective role against the host's immune defences, melanin is also a structural component of the conidial wall that is required for correct assembly of the cell wall layers and the expression at the conidial surface of adhesins and other virulence factors.
Collapse
|
23
|
Pseudocercospora griseola Causing Angular Leaf Spot on Phaseolus vulgaris Produces 1,8-Dihydroxynaphthalene-Melanin. Mycopathologia 2009; 168:41-7. [DOI: 10.1007/s11046-009-9194-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
24
|
Kogej T, Wheeler MH, Lanisnik Rizner T, Gunde-Cimerman N. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 2004; 232:203-9. [PMID: 15033240 DOI: 10.1016/s0378-1097(04)00073-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 11/20/2022] Open
Abstract
The ascomycetous black yeasts Hortaea werneckii, Phaeotheca triangularis, and Trimmatostroma salinum are halophilic fungi that inhabit hypersaline water of solar salterns. They are characterized by slow, meristematic growth and very thick, darkly pigmented cell walls. The dark pigment, generally thought to be melanin, is consistently present in their cell walls when they grow under saline and non-saline conditions. We used the inhibitor tricyclazole to test the fungi in this study for the presence of 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, since fungal melanins reportedly are derived either from DHN, tyrosine via 3,4-dihydroxyphenylalanine, gamma-glutaminyl-3,4-dihydroxybenzene, or catechol. Tricyclazole-treated cultures of the fungi were reddish-brown in color and contained typical intermediates of the DHN-melanin pathway, as demonstrated by high-performance liquid chromatography. This investigation showed that the three fungi synthesized DHN-melanin under saline and non-saline growth conditions.
Collapse
Affiliation(s)
- Tina Kogej
- University of Ljubljana, Biotech. Faculty, Department of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|