1
|
Wang N, Seko A, Takeda Y, Kikuma T, Ito Y. Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding. Glycobiology 2015; 25:1090-9. [PMID: 26085184 DOI: 10.1093/glycob/cwv043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022] Open
Abstract
Calnexin (CNX), known as a lectin chaperone located in the endoplasmic reticulum (ER), specifically recognizes G1M9GN2-proteins and facilitates their proper folding with the assistance of ERp57 in mammalian cells. However, it has been left unidentified how CNX works in Aspergillus oryzae, which is a filamentous fungus widely exploited in biotechnology. In this study, we found that a protein disulfide isomerase homolog TigA can bind with A. oryzae CNX (AoCNX), which was revealed to specifically recognize monoglucosylated glycans, similarly to CNX derived from other species, and accelerate the folding of G1M9GN2-ribonuclease (RNase) in vitro. For refolding experiments, a homogeneous monoglucosylated high-mannose-type glycoprotein G1M9GN2-RNase was chemoenzymatically synthesized from G1M9GN-oxazoline and GN-RNase. Denatured G1M9GN2-RNase was refolded with highest efficiency in the presence of both soluble form of AoCNX and TigA. TigA contains two thioredoxin domains with CGHC motif, mutation analysis of which revealed that the one in N-terminal regions is involved in binding to AoCNX, while the other in catalyzing protein refolding. The results suggested that in glycoprotein folding process of A. oryzae, TigA plays a similar role as ERp57 in mammalian cells, as a partner protein of AoCNX.
Collapse
Affiliation(s)
- Ning Wang
- Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kikuma
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Atanasova L, Druzhinina IS. Review: Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. J Zhejiang Univ Sci B 2010; 11:151-68. [PMID: 20205302 DOI: 10.1631/jzus.b1000007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool.
Collapse
Affiliation(s)
- Lea Atanasova
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria
| | | |
Collapse
|
3
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
4
|
David H, Ozçelik IS, Hofmann G, Nielsen J. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 2008; 9:163. [PMID: 18405346 PMCID: PMC2386489 DOI: 10.1186/1471-2164-9-163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 04/11/2008] [Indexed: 11/30/2022] Open
Abstract
Background Aspergillus nidulans is a member of a diverse group of filamentous fungi, sharing many of the properties of its close relatives with significance in the fields of medicine, agriculture and industry. Furthermore, A. nidulans has been a classical model organism for studies of development biology and gene regulation, and thus it has become one of the best-characterized filamentous fungi. It was the first Aspergillus species to have its genome sequenced, and automated gene prediction tools predicted 9,451 open reading frames (ORFs) in the genome, of which less than 10% were assigned a function. Results In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated, and to look for candidate ORFs in the genome of A. nidulans by comparing its sequence to sequences of well-characterized genes in other species encoding the function of interest. A classification system, based on defined criteria, was developed for evaluating and selecting the ORFs among the candidates, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene expression data concerning a study on glucose repression, thereby providing a means of upgrading the information content of experimental data and getting further insight into this phenomenon in A. nidulans. Conclusion We demonstrate how pathway modeling of A. nidulans can be used as an approach to improve the functional annotation of the genome of this organism. Furthermore we show how the metabolic model establishes functional links between genes, enabling the upgrade of the information content of transcriptome data.
Collapse
Affiliation(s)
- Helga David
- Fluxome Sciences A/S, Diplomvej 378, Kgs. 2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
5
|
Wang Y, Xue W, Sims AH, Zhao C, Wang A, Tang G, Qin J, Wang H. Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 2008; 45:17-27. [DOI: 10.1016/j.fgb.2007.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
6
|
Mogensen J, Nielsen HB, Hofmann G, Nielsen J. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 2006; 43:593-603. [PMID: 16698295 DOI: 10.1016/j.fgb.2006.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
Here, we describe how the recently published Aspergillus nidulans genome sequence [Galagan, J.E., Calvo, S.E., Cuomo, C., Li-Jun, M., Wortman, J.R., et al., 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 (7071), 1105-1115] was used to design a high-density oligo array with probes for 3,278 selected genes using the Febit Geniom One array system. For this purpose, the program OligoWiz II was used to design 24,125 probes to cover the 3,278 selected genes. Subsequently, the Febit system was used to investigate carbon catabolite repression by comparing the gene expression of a creA deleted mutant strain with a reference strain grown either with glucose or ethanol as the sole carbon source. In order to identify co-regulated genes and genes influenced by either the carbon source or CreA, the most significantly regulated genes (p<or=0.01) were grouped in eight clusters based on their expression profile. Analysis of the clusters allowed identification of numerous genes that are presumably not regulated by CreA, or alternatively are either directly or indirectly regulated by CreA. Surprisingly, we found evidence that more than 25% of the genes (54 out of the 200 significantly regulated) that are repressed by glucose are not completely de-repressed during growth on ethanol, as deletion of the creA resulted in increased expression of the genes in question even during growth on ethanol. Thus, the expression profiles obtained in the eight clusters indicate that the carbon catabolite repression is not a simple on/off switch but a more complex system not only dependent on the presence or absence of CreA but also on the carbon source.
Collapse
Affiliation(s)
- Jesper Mogensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
7
|
Ribichich KF, Georg RC, Gomes SL. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii. BMC Genomics 2006; 7:177. [PMID: 16836762 PMCID: PMC1550239 DOI: 10.1186/1471-2164-7-177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 07/12/2006] [Indexed: 11/23/2022] Open
Abstract
Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.
Collapse
Affiliation(s)
- Karina F Ribichich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Raphaela C Georg
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
8
|
Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 2006; 72:2126-33. [PMID: 16517662 PMCID: PMC1393202 DOI: 10.1128/aem.72.3.2126-2133.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria.
| | | | | | | |
Collapse
|
9
|
|
10
|
Sims AH, Gent ME, Lanthaler K, Dunn-Coleman NS, Oliver SG, Robson GD. Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 2005; 71:2737-47. [PMID: 15870366 PMCID: PMC1087583 DOI: 10.1128/aem.71.5.2737-2747.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi have a high capacity for producing large amounts of secreted proteins, a property that has been exploited for commercial production of recombinant proteins. However, the secretory pathway, which is key to the production of extracellular proteins, is rather poorly characterized in filamentous fungi compared to yeast. We report the effects of recombinant protein secretion on gene expression levels in Aspergillus nidulans by directly comparing a bovine chymosin-producing strain with its parental wild-type strain in continuous culture by using expressed sequence tag microarrays. This approach demonstrated more subtle and specific changes in gene expression than those observed when mimicking the effects of protein overproduction by using a secretion blocker. The impact of overexpressing a secreted recombinant protein more closely resembles the unfolded-protein response in vivo.
Collapse
Affiliation(s)
- Andrew H Sims
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
11
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447519 DOI: 10.1002/cfg.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Nevalainen H, Te'o V, Penttilä M, Pakula T. Heterologous Gene Expression in Filamentous Fungi: A Holistic View. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
13
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
14
|
Sims AH, Dunn-Coleman NS, Robson GD, Oliver SG. Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiol Lett 2004; 239:95-101. [PMID: 15451106 DOI: 10.1016/j.femsle.2004.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 07/20/2004] [Accepted: 08/18/2004] [Indexed: 11/19/2022] Open
Abstract
Glutamic proteases are a distinct, and recently re-classified, group of peptidases that are thought to be found only in fungi. We have identified and analysed the distribution of over 20 putative glutamic proteases from all fungal species whose genomes have been sequenced so far. Although absent from the Saccharomycetales class, glutamic proteases appear to be present in all other ascomycetes species examined. A large number of coding regions for glutamic proteases were also found clustered together in the Phanerochaete chrysosporium genome, despite apparently being absent from three other species of Basidiomycota.
Collapse
Affiliation(s)
- Andrew H Sims
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|