1
|
Bartholomay KL, Lightbody AA, Ma Q, Jo B, Jordan TL, Reiss AL. Cognitive and Social-Emotional Development in Girls With Fragile X Syndrome. Pediatrics 2024; 154:e2023065145. [PMID: 39262346 PMCID: PMC11422195 DOI: 10.1542/peds.2023-065145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVES To evaluate the developmental trajectory of key cognitive, social, and emotional features in girls with fragile X syndrome (FXS). METHODS This longitudinal, parallel cohort study collected data between January 2018 and December 2022. Participants were evaluated 3 times with ∼12-18 months between visits. Participants included 65 girls with FXS, 6 to 16 years, and 52 age- and developmentally-matched girls without FXS. Participants' scores from direct assessment and caregiver report evaluated 3 cognitive domains (verbal abilities, nonverbal abilities, executive function) and 4 social-emotional domains (depression, general anxiety, social behavior, and social anxiety). RESULTS Participants included 117 girls (mean [M] [SD] age at study entry: FXS M = 10.59 [3.00]; comparison M = 10.45 [2.40])). Omnibus tests showed 4 domains with significant group differences: Verbal (P < .0001, eg, Differential Abilities Scale-II(DAS-II), Picture Vocabulary (-6.25 [1.87])), nonverbal (P < .0001, eg, Kaufman Test of Educational Achievement, Third Edition, Brief Form, Math (-8.56 [2.90])), executive function (P < .0001, eg, NIH Toolbox List Sorting (-6.26 [1.48])), and social anxiety (P < .03, eg, Anxiety, Depression, and Mood Scale (ADAMS) Social Avoidance (1.50 [0.65])). Three domains had significant group by age interaction: Verbal (P < .04, eg, DAS-II, Word Definitions (-1.33 [0.55])), social behavior (P < .01, eg, Social Responsiveness Scale-2 Social Communication (1.57 [0.51])), and social anxiety (P < .01, eg, ADAMS Social Avoidance (0.46 [0.19])). CONCLUSIONS These findings support the development of early, disorder specific interventions for girls with FXS targeting verbal and nonverbal skills, executive function, social behavior, and social anxiety.
Collapse
Affiliation(s)
- Kristi L. Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Qianheng Ma
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Tracy L. Jordan
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
- Radiology
- Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Wall CA, Shic F, Will EA, Wang Q, Roberts JE. Similar Gap-Overlap Profiles in Children with Fragile X Syndrome and IQ-Matched Autism. J Autism Dev Disord 2024:10.1007/s10803-024-06245-1. [PMID: 38246961 PMCID: PMC11260273 DOI: 10.1007/s10803-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Fragile X syndrome (FXS) is a single-gene disorder characterized by moderate to severe cognitive impairment and a high association with autism spectrum disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD). Atypical visual attention is a feature of FXS, ASD, and ADHD. Thus, studying early attentional patterns in young children with FXS can offer insight into early emerging neurocognitive processes underlying challenges and contribute to our understanding of common and unique features of ASD and ADHD in FXS. METHODS The present study examined visual attention indexed by the gap-overlap paradigm in children with FXS (n = 39) compared to children with ASD matched on intellectual ability and age (n = 40) and age-matched neurotypical controls (n = 34). The relationship between gap-overlap performance and intellectual ability, ASD, and ADHD across groups was characterized. Saccadic reaction times (RT) were collected across baseline, gap, and overlap conditions. RESULTS Results indicate no group differences in RT for any conditions. However, RT of the ASD and NT groups became slower throughout the experiment whereas RT of the FXS group did not change, suggesting difficulties in habituation for the FXS group. There was no relationship between RT and intellectual ability, ADHD, or ASD symptoms in the FXS and ASD groups. In the NT group, slower RT was related to elevated ADHD symptoms only. CONCLUSION Taken together, findings suggest that the social attention differences documented in FXS and ASD may be due to other cognitive factors, such as reward or motivation, rather than oculomotor control of visual attention.
Collapse
Affiliation(s)
- Carla A Wall
- Duke University Medical Center, Center for Autism and Brain Development, 2424 Erwin Road, Suite 501, Durham, NC, 27705, USA.
| | - Frederick Shic
- Seattle Children's Research Institute, Center for Child Health, Behavior and Development, 1920 Terry Ave CURE-3, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, 1920 Terry Ave CURE-3, Seattle, WA, 98101, USA
| | - Elizabeth A Will
- Department of Communication Sciences and Disorders, University of South Carolina, Arnold School of Public Health, 6311 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
| | - Jane E Roberts
- Department of Psychology, College of Arts and Sciences, University of South Carolina, 6311 Garners Ferry Road, Columbia, SC, 29209, USA
| |
Collapse
|
3
|
Jordan TL, Bartholomay KL, Lee CHY, Lightbody AA, Reiss AL. Cognition, academic achievement, and adaptive behavior in school-aged girls with fragile X syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 143:104622. [PMID: 37939495 PMCID: PMC10842844 DOI: 10.1016/j.ridd.2023.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism in males and females. Females with FXS typically display a milder cognitive phenotype than males, despite experiencing significant developmental, behavioral, and social-emotional issues. AIMS To measure and distinguish the cognitive-behavioral profile of girls with FXS relative to verbal IQ-matched peers. METHODS AND PROCEDURES Ninety-seven participants (NFXS=55, Ncomparison=42) six to 16 years of age completed assessments evaluating cognition, academic achievement, and adaptive behavior. The comparison group consisted of age-, sex-, and verbal IQ-matched peers. OUTCOMES AND RESULTS Consistent with previous studies, the FXS group demonstrated mean cognitive skills, academic achievement, and adaptive behavior in the borderline to low average range. On average, the FXS group showed poorer nonverbal reasoning, visual pattern recognition, verbal abstraction, math abilities, attention, inhibitory control, and working memory than the comparison group. There were no significant group differences in adaptive behavior. Different patterns of associations between cognition and selected outcomes emerged in each group. CONCLUSIONS AND IMPLICATIONS Results highlight the importance of identifying specific cognitive-behavioral profiles in girls with FXS to inform more targeted interventions for optimizing outcomes and quality of life in this population.
Collapse
Affiliation(s)
- Tracy L Jordan
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Kristi L Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Cindy Hsin-Yu Lee
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA; Department of Radiology, Stanford University School of Medicine, USA; Department of Pediatrics, Stanford University School of Medicine, USA.
| |
Collapse
|
4
|
Cencelli G, Pacini L, De Luca A, Messia I, Gentile A, Kang Y, Nobile V, Tabolacci E, Jin P, Farace MG, Bagni C. Age-Dependent Dysregulation of APP in Neuronal and Skin Cells from Fragile X Individuals. Cells 2023; 12:758. [PMID: 36899894 PMCID: PMC10000963 DOI: 10.3390/cells12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilenia Messia
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Veronica Nobile
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Elisabetta Tabolacci
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
5
|
Martins AAS, Paiva GM, Matosinho CGR, Coser EM, Fonseca PADS, Haase VG, Carvalho MRS. Working memory and arithmetic impairments in children with FMR1 premutation and gray zone alleles. Dement Neuropsychol 2022; 16:105-114. [PMID: 35719251 PMCID: PMC9170264 DOI: 10.1590/1980-5764-dn-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022] Open
Abstract
Expansive mutations in familial mental retardation 1 (FMR1) gene have been associated with different phenotypes. Full mutations are associated with intellectual disability and autism spectrum disorder; premutations are associated with math learning difficulties and working memory impairments. In gray zone, neuropsychological development has not yet been described. Objectives This study aimed to describe the frequency of FMR1 premutation and gray zone alleles in a school population sample representing a broad spectrum of variation in math achievement and detail school achievement and cognitive performance in the children identified with FMR1 premutation or gray zone alleles. Methods We described a two-phase study. In the first phase, 2,195 school-age children were screened for math achievement. In the second phase, 378 children with normal intelligence were neuropsychologically assessed and genotyped for FMR1. Of these, 121 children (61 girls) performed below percentile 25 in mathematics (MD group) and 257 children (146 girls) performed above percentile 25 (control group). Results Four pupils presented expanded alleles, one premutation and three gray zone alleles. The girl with the premutation and one boy with a gray zone allele presented impairments in working memory and arithmetic performance below percentile 6, compatible with the diagnosis of developmental dyscalculia. These children's difficulties were not associated with inaccuracy of nonsymbolic number representations or literacy impairments. Dyscalculia in these children seems to be associated mainly with working memory impairments. Conclusions FMR1 expansions in the gray zone may contribute to dyscalculia in otherwise healthy and normally intelligent children.
Collapse
Affiliation(s)
- Aline Aparecida Silva Martins
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Giulia Moreira Paiva
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Carolina Guimarães Ramos Matosinho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Elisângela Monteiro Coser
- Fundação Oswaldo Cruz, Instituto René Rachou, Departamento de Informática de Biossistemas e Genômica, Belo Horizonte MG, Brazil
| | - Pablo Augusto de Souza Fonseca
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Vitor Geraldi Haase
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Postgraduate Program em Saúde da Criança e do Adolescente Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Postgraduate Program em Psicologia, Belo Horizonte MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Cognição, Comportamento e Ensino, São Carlos SP, Brazil
| | - Maria Raquel Santos Carvalho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| |
Collapse
|
6
|
Bush L, Scott MN. Neuropsychological and ASD phenotypes in rare genetic syndromes: A critical review of the literature. Clin Neuropsychol 2021; 36:993-1027. [PMID: 34569897 DOI: 10.1080/13854046.2021.1980111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by core deficits in social communication and restricted and repetitive behaviors and interests. Recent advances in clinical genetics have improved our understanding of genetic syndromes associated with ASD, which has helped clarify distinct etiologies of ASD and document syndrome-specific profiles of neurocognitive strengths and weaknesses. Pediatric neuropsychologists have the potential to be impactful members of the care team for children with genetic syndromes and their families. METHOD We provide a critical review of the current literature related to the neuropsychological profiles of children with four genetic syndromes associated with ASD, including Tuberous Sclerosis Complex (TSC), fragile X syndrome (FXS), 22q11.2 deletion syndrome, and Angelman syndrome. Recommendations for assessment, intervention, and future directions are provided. RESULTS There is vast heterogeneity in terms of the cognitive, language, and developmental abilities of these populations. The within- and across-syndrome variability characteristic of genetic syndromes should be carefully considered during clinical evaluations, including possible measurement limitations, presence of intellectual disability, and important qualitative differences in the ASD-phenotypes across groups. CONCLUSIONS Individuals with genetic disorders pose challenging diagnostic and assessment questions. Pediatric neuropsychologists with expertise in neurodevelopmental processes are well suited to address these questions and identify profiles of neurocognitive strengths and weaknesses, tailor individualized recommendations, and provide diagnostic clarification.
Collapse
Affiliation(s)
- Lauren Bush
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Megan N Scott
- The Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, IL, USA
| |
Collapse
|
7
|
Lee CH, Bartholomay KL, Marzelli MJ, Miller JG, Bruno JL, Lightbody AA, Reiss AL. Neuroanatomical Profile of Young Females with Fragile X Syndrome: A Voxel-Based Morphometry Analysis. Cereb Cortex 2021; 32:2310-2320. [PMID: 34546362 DOI: 10.1093/cercor/bhab319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome is a genetic condition associated with alterations in brain and subsequent cognitive development. However, due to a milder phenotype relative to males, females with fragile X syndrome are underrepresented in research studies. In the current study, we investigate neuroanatomical differences in young females (age range: 6.03-16.32 years) with fragile X syndrome (N = 46) as compared to age-, sex-, and verbal abilities-matched participants (comparison group; N = 35). Between-group analyses of whole-brain and regional brain volumes were assessed using voxel-based morphometry. Results demonstrate significantly larger total gray and white matter volumes in girls with fragile X syndrome compared to a matched comparison group (Ps < 0.001). In addition, the fragile X group showed significantly larger gray matter volume in a bilateral parieto-occipital cluster and a right parieto-occipital cluster (Ps < 0.001). Conversely, the fragile X group showed significantly smaller gray matter volume in the bilateral gyrus rectus (P < 0.03). Associations between these regional brain volumes and key socio-emotional variables provide insight into gene-brain-behavior relationships underlying the fragile X syndrome phenotype in females. These findings represent the first characterization of a neuroanatomical phenotype in a large sample of girls with fragile X syndrome and expand our knowledge about potential neurodevelopmental mechanisms underlying cognitive-behavioral outcomes in this condition.
Collapse
Affiliation(s)
- Cindy H Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kristi L Bartholomay
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Marzelli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jonas G Miller
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L Bruno
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Amy A Lightbody
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan L Reiss
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Sauna‐aho O, Bjelogrlic‐Laakso N, Rautava P, Arvio M. Ageing and cognition in men with fragile X syndrome. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2020; 33:1113-1118. [DOI: 10.1111/jar.12733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Oili Sauna‐aho
- KTO‐Special Welfare District of Varsinais‐Suomi Paimio Finland
- Public Health Turku University Hospital Turku University Turku Finland
| | | | - Päivi Rautava
- Public Health Turku University Hospital Turku University Turku Finland
| | - Maria Arvio
- Clinical Genetics Turku University Hospital Turku Finland
- Neurology Päijät‐Häme Joint Municipal Authority Lahti Finland
- PEDEGO University of Oulu Oulu Finland
| |
Collapse
|
10
|
Baker EK, Arpone M, Vera SA, Bretherton L, Ure A, Kraan CM, Bui M, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field MJ, Cohen J, Maria LS, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord 2019; 11:41. [PMID: 31878865 PMCID: PMC6933737 DOI: 10.1186/s11689-019-9288-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fragile X syndrome (FXS) is a common cause of intellectual disability and autism spectrum disorder (ASD) usually associated with a CGG expansion, termed full mutation (FM: CGG ≥ 200), increased DNA methylation of the FMR1 promoter and silencing of the gene. Mosaicism for presence of cells with either methylated FM or smaller unmethylated pre-mutation (PM: CGG 55–199) alleles in the same individual have been associated with better cognitive functioning. This study compares age- and sex-matched FM-only and PM/FM mosaic individuals on intellectual functioning, ASD features and maladaptive behaviours. Methods This study comprised a large international cohort of 126 male and female participants with FXS (aged 1.15 to 43.17 years) separated into FM-only and PM/FM mosaic groups (90 males, 77.8% FM-only; 36 females, 77.8% FM-only). Intellectual functioning was assessed with age appropriate developmental or intelligence tests. The Autism Diagnostic Observation Schedule-2nd Edition was used to examine ASD features while the Aberrant Behavior Checklist-Community assessed maladaptive behaviours. Results Comparing males and females (FM-only + PM/FM mosaic), males had poorer intellectual functioning on all domains (p < 0.0001). Although females had less ASD features and less parent-reported maladaptive behaviours, these differences were no longer significant after controlling for intellectual functioning. Participants with PM/FM mosaicism, regardless of sex, presented with better intellectual functioning and less maladaptive behaviours compared with their age- and sex-matched FM-only counterparts (p < 0.05). ASD features were similar between FM-only and PM/FM mosaics within each sex, after controlling for overall intellectual functioning. Conclusions Males with FXS had significantly lower intellectual functioning than females with FXS. However, there were no significant differences in ASD features and maladaptive behaviours, after controlling for intellectual functioning, independent of the presence or absence of mosaicism. This suggests that interventions that primarily target cognitive abilities may in turn reduce the severity of maladaptive behaviours including ASD features in FXS.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange Aliaga Vera
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Alexandra Ure
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pediatrics, Monash University, Clayton, VIC, Australia
| | - Claudine M Kraan
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, VIC, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Department of Pediatrics, Monash University, Clayton, VIC, Australia.,Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, Centre for Developmental Disability Health Victoria, Monash University, North Caulfield, Clayton, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Victor Faundes
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Bianca Curotto
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Paulina Morales
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Cesar Trigo
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Isabel Salas
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Bruno JL, Hosseini SH, Lightbody AA, Manchanda MK, Reiss AL. Brain circuitry, behavior, and cognition: A randomized placebo-controlled trial of donepezil in fragile X syndrome. J Psychopharmacol 2019; 33:975-985. [PMID: 31264943 PMCID: PMC6894490 DOI: 10.1177/0269881119858304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause for intellectual disability, is associated with alterations in cholinergic among other neurotransmitter systems. This study investigated the effects of donepezil hydrochloride, a cholinesterase inhibitor that has potential to correct aberrant cholinergic signaling. METHOD Forty-two individuals with fragile X syndrome (mean age=19.61 years) were randomized to receive 2.5-10.0 mg of donepezil (n=20, seven females) or placebo (n=22, eight females) per day. One individual in the active group withdrew at week 7. Outcomes included the contingency naming test, the aberrant behavior checklist, and behavior and brain activation patterns during a functional magnetic resonance imaging gaze discrimination task. RESULTS There were no significant differences between active and placebo groups on cognitive (contingency naming task) or behavioral (total score or subscales of the aberrant behavior checklist) outcomes. At baseline, the active and placebo groups did not differ in functional magnetic resonance imaging activation patterns during the gaze task. After 12 weeks of treatment the active group displayed reduced activation in response to the averted vs direct gaze contrast, relative to the placebo group, in the left superior frontal gyrus. CONCLUSIONS Reduced functional brain activation for the active group may represent less arousal in response to direct eye gaze, relative to the placebo group. Change in functional magnetic resonance imaging activation patterns may serve as a more sensitive metric and predictor of response to treatment when compared to cognitive and behavioral assessments. Our results suggest that donepezil may have an impact on brain functioning, but longer term follow-up and concomitant behavioral intervention may be required to demonstrate improvement in cognition and behavior.
Collapse
Affiliation(s)
- Jennifer L. Bruno
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,To whom correspondence should be addressed: 401 Quarry Road, Palo Alto, CA 94304, Phone: 818-415-9119, Fax: (650) 724-4761,
| | - S.M. Hadi Hosseini
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Mai K. Manchanda
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,Department of Radiology, Stanford University.,Department of Pediatrics, Stanford University
| |
Collapse
|
12
|
Baker EK, Arpone M, Aliaga SM, Bretherton L, Kraan CM, Bui M, Slater HR, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field M, Cohen J, Cornish K, Santa Maria L, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Mol Autism 2019; 10:21. [PMID: 31073396 PMCID: PMC6499941 DOI: 10.1186/s13229-019-0271-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Fragile X syndrome (FXS) is a common monogenic cause of intellectual disability with autism features. While it is caused by loss of the FMR1 product (FMRP), mosaicism for active and inactive FMR1 alleles, including alleles termed premutation (PM: 55-199 CGGs), is not uncommon. Importantly, both PM and active full mutation (FM: ≥ 200 CGGs) alleles often express elevated levels of mRNA that are thought to be toxic. This study determined if complete FMR1 mRNA silencing from FM alleles and/or levels of FMR1 mRNA (if present) in blood are associated with intellectual functioning and autism features in FXS. Methods The study cohort included 98 participants (70.4% male) with FXS (FM-only and PM/FM mosaic) aged 1-43 years. A control group of 14 females were used to establish control FMR1 mRNA reference range. Intellectual functioning and autism features were assessed using the Mullen Scales of Early Learning or an age-appropriate Wechsler Scale and the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2), respectively. FMR1 mRNA was analysed in venous blood collected at the time of assessments, using the real-time PCR relative standard curve method. Results Females with FXS had significantly higher levels of FMR1 mRNA (p < 0.001) than males. FMR1 mRNA levels were positively associated with age (p < 0.001), but not with intellectual functioning and autistic features in females. FM-only males (aged < 19 years) expressing FM FMR1 mRNA had significantly higher ADOS calibrated severity scores compared to FM-only males with completely silenced FMR1 (p = 0.011). However, there were no significant differences between these subgroups on intellectual functioning. In contrast, decreased levels of FMR1 mRNA were associated with decreased intellectual functioning in FXS males (p = 0.029), but not autism features, when combined with the PM/FM mosaic group. Conclusion Incomplete silencing of toxic FM RNA may be associated with autistic features, but not intellectual functioning in FXS males. While decreased levels of mRNA may be more predictive of intellectual functioning than autism features. If confirmed in future studies, these findings may have implications for patient stratification, outcome measure development, and design of clinical and pre-clinical trials in FXS.
Collapse
Affiliation(s)
- Emma K. Baker
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Brain and Mind, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Solange M. Aliaga
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Claudine M. Kraan
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Australia
| | - Howard R. Slater
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC Australia
| | - Matthew F. Hunter
- Monash Genetics, Monash Health, Melbourne, VIC Australia
- Department of Paediatrics, Monash University, Clayton, VIC Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, North Caulfield, VIC and Center for Developmental Disability Health Victoria, Monash University, Clayton, Australia
| | - Kim Cornish
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, VIC Australia
| | - Lorena Santa Maria
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Victor Faundes
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Bianca Curotto
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Paulina Morales
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Cesar Trigo
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Isabel Salas
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Angelica M. Alliende
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - David J. Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Neurodisability and Rehabilitation, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - David E. Godler
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Schmitt LM, Shaffer RC, Hessl D, Erickson C. Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sci 2019; 9:E15. [PMID: 30654486 PMCID: PMC6356760 DOI: 10.3390/brainsci9010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Executive function (EF) supports goal-directed behavior and includes key aspects such as working memory, inhibitory control, cognitive flexibility, attention, processing speed, and planning. Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and is phenotypically characterized by EF deficits beyond what is expected given general cognitive impairments. Yet, a systematic review of behavioral studies using performance-based measures is needed to provide a summary of EF deficits across domains in males and females with FXS, discuss clinical and biological correlates of these EF deficits, identify critical limitations in available research, and offer suggestions for future studies in this area. Ultimately, this review aims to advance our understanding of the underlying pathophysiological mechanisms contributing to EF in FXS and to inform the development of outcome measures of EF and identification of new treatment targets in FXS.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - David Hessl
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA.
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
Sandoval GM, Shim S, Hong DS, Garrett AS, Quintin EM, Marzelli MJ, Patnaik S, Lightbody AA, Reiss AL. Neuroanatomical abnormalities in fragile X syndrome during the adolescent and young adult years. J Psychiatr Res 2018; 107:138-144. [PMID: 30408626 PMCID: PMC6249038 DOI: 10.1016/j.jpsychires.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Abnormal brain development and cognitive dysfunction have been reported both in children and in adults with fragile X syndrome (FXS). However, few studies have examined neuroanatomical abnormalities in FXS during adolescence. In this study we focus on adolescent subjects with FXS (N = 54) as compared to age- and sex-matched subjects with idiopathic intellectual disability (Comparison Group) (N = 32), to examine neuroanatomical differences during this developmental period. Brain structure was assessed with voxel-based morphometry and independent groups t-test in SPM8 software. Results showed that the FXS group, relative to the comparison group, had significantly larger gray matter volume (GMV) in only one region: the bilateral caudate nucleus, but have smaller GMV in several regions including bilateral medial frontal, pregenual cingulate, gyrus rectus, insula, and superior temporal gyrus. Group differences also were noted in white matter regions. Within the FXS group, lower FMRP levels were associated with less GMV in several regions including cerebellum and gyrus rectus, and less white matter volume (WMV) in pregenual cingulate, middle frontal gyrus, and other regions. Lower full scale IQ within the FXS group was associated with larger right caudate nucleus GMV. In conclusion, adolescents and young adults with FXS demonstrate neuroanatomical abnormalities consistent with those previously reported in children and adults with FXS. These brain variations likely result from reduced FMRP during early neurodevelopment and mediate downstream deleterious effects on cognitive function.
Collapse
|
15
|
Longitudinal identification of clinically distinct neurophenotypes in young children with fragile X syndrome. Proc Natl Acad Sci U S A 2017; 114:10767-10772. [PMID: 28923933 DOI: 10.1073/pnas.1620994114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability. The cognitive, behavioral, and neurological phenotypes observed in affected individuals can vary considerably, making it difficult to predict outcomes and determine the need for interventions. We sought to examine early structural brain growth as a potential marker for identification of clinically meaningful subgroups. Participants included 42 very young boys with FXS who completed a T1-weighted anatomical MRI and cognitive/behavioral assessment at two longitudinal time points, with mean ages of 2.89 y and 4.91 y. Topological data analysis (TDA), an unsupervised approach to multivariate pattern analysis, was applied to the longitudinal anatomical data to identify coherent but heretofore unknown subgroups. TDA revealed two large subgroups within the study population based solely on longitudinal MRI data. Post hoc comparisons of cognition, adaptive functioning, and autism severity scores between these groups demonstrated that one group was consistently higher functioning on all measures at both time points, with pronounced and significant unidirectional differences (P < 0.05 for time point 1 and/or time point 2 for each measure). These results support the existence of two longitudinally defined, neuroanatomically distinct, and clinically relevant phenotypes among boys with FXS. If confirmed by additional analyses, such information may be used to predict outcomes and guide design of targeted therapies. Furthermore, TDA of longitudinal anatomical MRI data may represent a useful method for reliably and objectively defining subtypes within other neuropsychiatric disorders.
Collapse
|
16
|
Budimirovic DB, Berry-Kravis E, Erickson CA, Hall SS, Hessl D, Reiss AL, King MK, Abbeduto L, Kaufmann WE. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord 2017; 9:14. [PMID: 28616097 PMCID: PMC5467057 DOI: 10.1186/s11689-017-9193-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Fragile X syndrome (FXS) has been the neurodevelopmental disorder with the most active translation of preclinical breakthroughs into clinical trials. This process has led to a critical assessment of outcome measures, which resulted in a comprehensive review published in 2013. Nevertheless, the disappointing outcome of several recent phase III drug trials in FXS, and parallel efforts at evaluating behavioral endpoints for trials in autism spectrum disorder (ASD), has emphasized the need for re-assessing outcome measures and revising recommendations for FXS. METHODS After performing an extensive database search (PubMed, Food and Drug Administration (FDA)/National Institutes of Health (NIH)'s www.ClinicalTrials.gov, etc.) to determine progress since 2013, members of the Working Groups who published the 2013 Report evaluated the available outcome measures for FXS and related neurodevelopmental disorders using the COSMIN grading system of levels of evidence. The latter has also been applied to a British survey of endpoints for ASD. In addition, we also generated an informal classification of outcome measures for use in FXS intervention studies as instruments appropriate to detect shorter- or longer-term changes. RESULTS To date, a total of 22 double-blind controlled clinical trials in FXS have been identified through www.ClinicalTrials.gov and an extensive literature search. The vast majority of these FDA/NIH-registered clinical trials has been completed between 2008 and 2015 and has targeted the core excitatory/inhibitory imbalance present in FXS and other neurodevelopmental disorders. Limited data exist on reliability and validity for most tools used to measure cognitive, behavioral, and other problems in FXS in these trials and other studies. Overall, evidence for most tools supports a moderate tool quality grading. Data on sensitivity to treatment, currently under evaluation, could improve ratings for some cognitive and behavioral tools. Some progress has also been made at identifying promising biomarkers, mainly on blood-based and neurophysiological measures. CONCLUSION Despite the tangible progress in implementing clinical trials in FXS, the increasing data on measurement properties of endpoints, and the ongoing process of new tool development, the vast majority of outcome measures are at the moderate quality level with limited information on reliability, validity, and sensitivity to treatment. This situation is not unique to FXS, since reviews of endpoints for ASD have arrived at similar conclusions. These findings, in conjunction with the predominance of parent-based measures particularly in the behavioral domain, indicate that endpoint development in FXS needs to continue with an emphasis on more objective measures (observational, direct testing, biomarkers) that reflect meaningful improvements in quality of life. A major continuous challenge is the development of measurement tools concurrently with testing drug safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Behavioral Sciences, Kennedy Krieger Institute and Child Psychiatry, Johns Hopkins University School of Medicine, 716 N. Broadway, Baltimore, MD 21205 USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, 1725 West Harrison, Suite 718, Chicago, IL 60612 USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| | - Scott S. Hall
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Allan L. Reiss
- Division of Interdisciplinary Brain Sciences, Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - Margaret K. King
- Autism & Developmental Medicine Institute, Geisinger Health System, Present address: Novartis Pharmaceuticals Corporation, US Medical, One Health Plaza, East Hanover, NJ 07936 USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Walter E. Kaufmann
- Center for Translational Research, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646 USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115 USA
| |
Collapse
|
17
|
Doherty BR, Scerif G. Genetic Syndromes and Developmental Risk for Autism Spectrum and Attention Deficit Hyperactivity Disorders: Insights From Fragile X Syndrome. CHILD DEVELOPMENT PERSPECTIVES 2017. [DOI: 10.1111/cdep.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|