1
|
Ueda E, Matsunaga M, Fujihara H, Kajiwara T, Takeda AK, Watanabe S, Hagihara K, Myowa M. Temperament in Early Childhood Is Associated With Gut Microbiota Composition and Diversity. Dev Psychobiol 2024; 66:e22542. [PMID: 39237483 DOI: 10.1002/dev.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Temperament is a key predictor of human mental health and cognitive and emotional development. Although human fear behavior is reportedly associated with gut microbiome in infancy, infant gut microbiota changes dramatically during the first 5 years, when the diversity and composition of gut microbiome are established. This period is crucial for the development of the prefrontal cortex, which is involved in emotion regulation. Therefore, this study investigated the relationship between temperament and gut microbiota in 284 preschool children aged 3-4 years. Child temperament was assessed by maternal reports of the Children's Behavior Questionnaire. Gut microbiota (alpha/beta diversity and genera abundance) was evaluated using 16S rRNA sequencing of stool samples. A low abundance of anti-inflammatory bacteria (e.g., Faecalibacterium) and a high abundance of pro-inflammatory bacteria (e.g., Eggerthella, Flavonifractor) were associated with higher negative emotionality and stress response (i.e., negative affectivity, β = -0.17, p = 0.004) and lower positive emotionality and reward-seeking (i.e., surgency/extraversion, β = 0.15, p = 0.013). Additionally, gut microbiota diversity was associated with speed of response initiation (i.e., impulsivity, a specific aspect of surgency/extraversion, β = 0.16, p = 0.008). This study provides insight into the biological mechanisms of temperament and takes important steps toward identifying predictive markers of psychological/emotional risk.
Collapse
Affiliation(s)
- Eriko Ueda
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Michiko Matsunaga
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujihara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Takamasa Kajiwara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | | | | | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masako Myowa
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
2
|
Qiu T, Fang Q, Tian X, Feng Z, Cao Y, Li Y, Tu Y, Bai J, Liu Y. Postnatal nighttime light exposure and infant temperament at age 12 months: mediating role of genus Akkermansia. Eur Child Adolesc Psychiatry 2024; 33:2413-2425. [PMID: 38691180 DOI: 10.1007/s00787-024-02445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The gut microbiome has been reported to be associated with nighttime light (NTL) exposure and temperament. However, the specific role of infant gut microbiome plays in NTL exposure and temperament is unclear. This study investigated the potential mediating role of infants' gut microbiome in correlations between NTL exposure and temperament. Demographic information, stool samples, and temperament scores were collected from 40 infants. Temperament was evaluated using the Infants Behavior Questionnaire-Revised (IBQ-R). The gut microbiota was analyzed using 16S rRNA sequencing. Cumulative and lagged effects of NTL exposure were calculated based on residential address (NTLpoint) and a concentric 1 km radius buffer zone around the address (NTL1000m), respectively. Mediation models were utilized for assessing the mediating effects of the gut microbiome. The gut microbiome of infants with higher fear scores was characterized by a higher abundance of Akkermansia and Clostridium_sensu_stricto_1 and a lower abundance of Bacteroides. Mediation models indicated Akkermansia played a full mediating role in associations between NTLpoint, NTL1000m and fear in specific time periods. Genus Akkermansia explained 24.46% and 33.50% of associations between fear and cumulative exposure to NTLpoint and NTL1000m, respectively. This study provides evidence for the mediating role of Akkermansia between NTL exposure and fear. However, further experimental is required to elucidate the mechanisms through which the gut microbiome mediates between NTL exposure and temperament in infants.
Collapse
Affiliation(s)
- Tianlai Qiu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Qingbo Fang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xuqi Tian
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Zijun Feng
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanan Cao
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanting Li
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yiming Tu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Yanqun Liu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
3
|
Huang C, Hernandez CE, Wall H, Tahamtani FM, Ivarsson E, Sun L. Live black soldier fly (Hermetia illucens) larvae in feed for laying hens: effects on hen gut microbiota and behavior. Poult Sci 2024; 103:103429. [PMID: 38244264 PMCID: PMC10831256 DOI: 10.1016/j.psj.2024.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
This study examined the effects of including live black soldier fly (BSF, Hermetia illucens) larvae in the diet of laying hens on gut microbiota, and the association between microbiota and fearfulness. A total of 40 Bovans White laying hens were individually housed and fed 1 of 4 dietary treatments that provided 0, 10, 20%, or ad libitum daily dietary portions of live BSF larvae for 12 wk. Cecum microbiota was collected at the end of the experiment and sequenced. Behavioral fear responses to novel objects and open field tests on the same hens were compared against results from gut microbiota analyses. The results showed that the bacteria genera Enterococcus, Parabacteroides, and Ruminococcus torques group were positively associated with increased dietary portion of live larvae, while Lactobacillus, Faecalibacterium, Bifidobacterium, Subdoligranulum, and Butyricicoccus were negatively associated with larvae in the diet. Inclusion of larvae did not affect fear behavior, but the relative abundance of Lachnospiraceae CHKCI001 and Erysipelatoclostridium was associated with fear-related behaviors. Further studies are needed to determine whether the change in gut microbiota affects fearfulness in the long-term.
Collapse
Affiliation(s)
- Chenxuan Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden; College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Carlos E Hernandez
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | | | - Emma Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden.
| |
Collapse
|
4
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|