1
|
Ca 2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:389-412. [PMID: 29594869 DOI: 10.1007/978-3-319-55858-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Interest in the role of Ca2+ signalling as a possible regulator of the combinatorial processes that result in the separation of the daughter cells during cytokinesis, extend back almost a 100 years. One of the key processes required for the successful completion of cytokinesis in animal cells (especially in the large holoblastically and meroblastically dividing embryonic cells of a number of amphibian and fish species), is the dynamic remodelling of the plasma membrane. Ca2+ signalling was subsequently demonstrated to regulate various different aspects of cytokinesis in animal cells, and so here we focus specifically on the role of Ca2+ signalling in the remodelling of the plasma membrane. We begin by providing a brief history of the animal models used and the research accomplished by the early twentieth century investigators, with regards to this aspect of animal cell cytokinesis. We then review the most recent progress made (i.e., in the last 10 years), which has significantly advanced our current understanding on the role of cytokinetic Ca2+ signalling in membrane remodelling. To this end, we initially summarize what is currently known about the Ca2+ transients generated during animal cell cytokinesis, and then we describe the latest findings regarding the source of Ca2+ generating these transients. Finally, we review the current evidence about the possible targets of the different cytokinetic Ca2+ transients with a particular emphasis on those that either directly or indirectly affect plasma membrane dynamics. With regards to the latter, we discuss the possible role of the early Ca2+ signalling events in the deformation of the plasma membrane at the start of cytokinesis (i.e., during furrow positioning), as well as the role of the subsequent Ca2+ signals in the trafficking and fusion of vesicles, which help to remodel the plasma membrane during the final stages of cell division. As it is becoming clear that each of the cytokinetic Ca2+ transients might have multiple, integrated targets, deciphering the precise role of each transient represents a significant (and ongoing) challenge.
Collapse
|
2
|
SOCE proteins, STIM1 and Orai1, are localized to the cleavage furrow during cytokinesis of the first and second cell division cycles in zebrafish embryos. ZYGOTE 2016; 24:880-889. [PMID: 27702423 DOI: 10.1017/s0967199416000216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In zebrafish embryos, distinct Ca2+ transients are localized to the early cleavage furrows during the first few cell division cycles. These transients are generated mainly by release via IP3Rs in the endoplasmic reticulum, and they are necessary for furrow positioning, propagation, deepening and apposition. We previously showed, via the use of inhibitors, that store-operated Ca2+ entry (SOCE) also appears to be essential for maintaining the IP3R-mediated elevated levels of [Ca2+]i for the extended periods required for the completion of successful furrow deepening and daughter cell apposition in these large embryonic cells. Here, newly fertilized, dechorionated embryos were fixed at various times during the first and second cell division cycles and immunolabelled with antibodies to STIM1 and/or Orai1 (key components of SOCE). We show that both of these proteins have a dynamic pattern of localization during cytokinesis of the first two cell division cycles. These new data help to support our previous inhibitor results, and provide additional evidence that SOCE contributes to the maintenance of the sustained elevated Ca2+ that is required for the successful completion of cytokinesis in the large cells of embryonic zebrafish.
Collapse
|
3
|
Biphasic assembly of the contractile apparatus during the first two cell division cycles in zebrafish embryos. ZYGOTE 2013; 22:218-28. [DOI: 10.1017/s0967199413000051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe large and optically clear embryos of the zebrafish provide an excellent model system in which to study the dynamic assembly of the essential contractile band components, actin and myosin, via double fluorescent labelling in combination with confocal microscopy. We report the rapid appearance (i.e. within <2 min) of a restricted arc of F-actin patches along the prospective furrow plane in a central, apical region of the blastodisc cortex. These patches then fused with each other end-to-end forming multiple actin cables, which were subsequently bundled together forming an F-actin band. During this initial assembly phase, the F-actin-based structure did not elongate laterally, but was still restricted to an arc extending ~15° either side of the blastodisc apex. This initial assembly phase was then followed by an extension phase, where additional F-actin patches were added to each end of the original arc, thus extending it out to the edges of the blastodisc. The dynamics of phosphorylated myosin light chain 2 (MLC2) recruitment to this F-actin scaffold also reflect the two-phase nature of the contractile apparatus assembly. MLC2 was not associated with the initial F-actin arc, but MLC2 clusters were recruited and assembled into the extending ends of the band. We propose that the MLC2-free central region of the contractile apparatus acts to position and then extend the cleavage furrow in the correct plane, while the actomyosin ends alone generate the force required for furrow ingression. This biphasic assembly strategy may be required to successfully divide the early cells of large embryos.
Collapse
|
4
|
Webb SE, Fluck RA, Miller AL. Calcium signaling during the early development of medaka and zebrafish. Biochimie 2011; 93:2112-25. [DOI: 10.1016/j.biochi.2011.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
5
|
Disruption of blastomeric F-actin: a potential early biomarker of developmental toxicity in zebrafish. Mol Cell Biochem 2011; 353:283-90. [PMID: 21461911 DOI: 10.1007/s11010-011-0797-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/17/2011] [Indexed: 01/21/2023]
Abstract
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.
Collapse
|
6
|
Fuentes R, Fernández J. Ooplasmic segregation in the zebrafish zygote and early embryo: Pattern of ooplasmic movements and transport pathways. Dev Dyn 2010; 239:2172-89. [DOI: 10.1002/dvdy.22349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Abstract
SummaryIncreases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish,Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.
Collapse
|
8
|
A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 2009; 5:e1000413. [PMID: 19282986 PMCID: PMC2652113 DOI: 10.1371/journal.pgen.1000413] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/09/2009] [Indexed: 12/02/2022] Open
Abstract
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses. One of the earliest cell movement processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the blastoderm cells spread over and enclose the yolk cell. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. We demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the bbp mutant gene and identified it as the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved within a p38 MAP kinase pathway, thus identifying a new pathway in the regulation of this fundamental cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates F-actin contraction at the yolk cell margin circumference, allowing the gradual closure of the cells over the yolk cell as epiboly progresses.
Collapse
|
9
|
Webb SE, Li WM, Miller AL. Calcium signalling during the cleavage period of zebrafish development. Philos Trans R Soc Lond B Biol Sci 2008; 363:1363-9. [PMID: 18198156 PMCID: PMC2610124 DOI: 10.1098/rstb.2007.2253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imaging studies, using both luminescent and fluorescent Ca(2+)-sensitive reporters, have revealed that during the first few meroblastic cleavages of the large embryos of teleosts, localized elevations of intracellular Ca(2+) accompany positioning, propagation, deepening and apposition of the cleavage furrows. Here, we will review the Ca(2+) transients reported during the cleavage period in these embryos, with reference mainly to that of the zebrafish (Danio rerio). We will also present the latest findings that support the proposal that Ca(2+) transients are an essential feature of embryonic cytokinesis. In addition, the potential upstream triggers and downstream targets of the different cytokinetic Ca(2+) transients will be discussed. Finally, we will present a hypothetical model that summarizes what has been suggested to be the various roles of Ca(2+) signalling during cytokinesis in teleost embryos.
Collapse
Affiliation(s)
| | | | - Andrew L Miller
- Department of Biology, The Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
10
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 3:387-98. [PMID: 18377219 DOI: 10.1089/zeb.2006.3.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Li WM, Webb SE, Chan CM, Miller AL. Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 2008; 316:228-48. [PMID: 18313658 DOI: 10.1016/j.ydbio.2008.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
The generation of a required series of localized Ca(2+) transients during cytokinesis in zebrafish embryos suggests that Ca(2+) plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca(2+), which is released from IP(3)-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca(2+) released via IP(3) receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca(2+)-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca(2+) is involved in regulating several key events during furrow deepening and subsequent apposition.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
12
|
Webb SE, Miller AL. Ca2+SIGNALLING AND EARLY EMBRYONIC PATTERNING DURING ZEBRAFISH DEVELOPMENT. Clin Exp Pharmacol Physiol 2007; 34:897-904. [PMID: 17645637 DOI: 10.1111/j.1440-1681.2007.04709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
13
|
Ashworth R, Devogelaere B, Fabes J, Tunwell RE, Koh KR, De Smedt H, Patel S. Molecular and functional characterization of inositol trisphosphate receptors during early zebrafish development. J Biol Chem 2007; 282:13984-93. [PMID: 17331947 DOI: 10.1074/jbc.m700940200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Embryo, Nonmammalian/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Developmental
- Inositol 1,4,5-Trisphosphate Receptors/classification
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/metabolism
- Thapsigargin/pharmacology
- Zebrafish/embryology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Rachel Ashworth
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ca2+ signaling during embryonic cytokinesis in animal systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Webb SE, Miller AL. Ca2+ signaling and early embryonic patterning during the Blastula and Gastrula Periods of Zebrafish and Xenopus development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1192-208. [PMID: 16962186 DOI: 10.1016/j.bbamcr.2006.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/02/2006] [Indexed: 11/23/2022]
Abstract
It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming pathways known to modulate early developmental events (such as the Wnt/Ca(2+)pathway; [T.A. Westfall, B. Hjertos, D.C. Slusarski, Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning, Dev. Biol. 259 (2003) 380-391]).
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
16
|
Li WM, Webb SE, Lee KW, Miller AL. Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos. Exp Cell Res 2006; 312:3260-75. [PMID: 16876784 DOI: 10.1016/j.yexcr.2006.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/21/2022]
Abstract
Cytokinesis is the final stage in cell division that serves to partition cytoplasm and daughter nuclei into separate cells. Membrane remodeling at the cleavage plane is a required feature of cytokinesis in many species. In animal cells, however, the precise mechanisms and molecular interactions that mediate this process are not yet fully understood. Using real-time imaging in live, early stage zebrafish embryos, we demonstrate that vesicles labeled with the v-SNARE, VAMP-2, are recruited to the cleavage furrow during deepening in a microtubule-dependent manner. These vesicles then fuse with, and transfer their VAMP-2 fluorescent label to, the plasma membrane during both furrow deepening and subsequent apposition. This observation indicates that new membrane is being inserted during these stages of cytokinesis. Inhibition of SNAP-25 (a cognate t-SNARE of VAMP-2), using a monoclonal antibody, blocked VAMP-2 vesicle fusion and furrow apposition. Transient expression of mutant forms of SNAP-25 also produced defects in furrow apposition. SNAP-25 inhibition by either method, however, did not have any significant effect on furrow deepening. Thus, our data clearly indicate that VAMP-2 and SNAP-25 play an essential role in daughter blastomere apposition, possibly via the delivery of components that promote the cell-to-cell adhesion required for the successful completion of cytokinesis. Our results also support the idea that new membrane addition, which occurs during late stage cytokinesis, is not required for furrow deepening that results from contractile band constriction.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | | | | | |
Collapse
|