1
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
2
|
Yum SY, Jang G, Koo O. Target-AID-Mediated Multiplex Base Editing in Porcine Fibroblasts. Animals (Basel) 2021; 11:ani11123570. [PMID: 34944345 PMCID: PMC8697861 DOI: 10.3390/ani11123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary CRISPR/Cas9 driven multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to DNA double-strand breaks at multiple loci simultaneously. To overcome this problem in porcine cells we utilized Target-AID, a base editing system, to edit multiple loci in the porcine genome. We showed that the Target-AID system works well in porcine fibroblasts with up to 63.15% efficiency. This is the first report demonstrating that the Target-AID system works well in porcine cells and can be used to generate genome-edited pigs. Abstract Multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to double-strand DNA breaks at multiple loci simultaneously induced by programmable nucleases, including CRISPR/Cas9. However, recently developed base-editing systems can directly substitute target sequences without double-strand breaks. Thus, the base-editing system is expected to be a safer method for multiplex genome-editing platforms for livestock. Target-AID is a base editing system composed of PmCDA1, a cytidine deaminase from sea lampreys, fused to Cas9 nickase. It can be used to substitute cytosine for thymine in 3–5 base editing windows 18 bases upstream of the protospacer-adjacent motif site. In the current study, we demonstrated Target-AID-mediated base editing in porcine cells for the first time. We targeted multiple loci in the porcine genome using the Target-AID system and successfully induced target-specific base substitutions with up to 63.15% efficiency. This system can be used for the further production of various genome-engineered pigs.
Collapse
Affiliation(s)
- Soo-Young Yum
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-Y.Y.); (G.J.)
- ToolGen, Inc., Seoul 08501, Korea
| | - Goo Jang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-Y.Y.); (G.J.)
| | - Okjae Koo
- ToolGen, Inc., Seoul 08501, Korea
- Correspondence:
| |
Collapse
|
3
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
4
|
de Oliveira VC, Moreira GSA, Bressan FF, Gomes Mariano Junior C, Roballo KCS, Charpentier M, Concordet JP, Meirelles FV, Ambrósio CE. Edition of TFAM gene by CRISPR/Cas9 technology in bovine model. PLoS One 2019; 14:e0213376. [PMID: 30845180 PMCID: PMC6405117 DOI: 10.1371/journal.pone.0213376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial transcription factor A (TFAM) is a mitochondrial DNA (mtDNA) binding protein essential for the initiation of transcription and genome maintenance. Recently it was demonstrated that the primary role of TFAM is to maintain the integrity of mtDNA and that it is a key regulator of mtDNA copy number. It was also shown that TFAM plays a central role in the mtDNA stress-mediated inflammatory response. In our study, we proposed to evaluate the possibility of editing the TFAM gene by CRISPR/Cas9 technology in bovine fibroblasts, as TFAM regulates the replication specificity of mtDNA. We further attempted to maintain these cells in culture post edition in a medium supplemented with uridine and pyruvate to mimic Rho zero cells that are capable of surviving without mtDNA, because it is known that the TFAM gene is lethal in knockout mice and chicken. Moreover, we evaluated the effects of TFAM modification on mtDNA copy number. The CRISPR gRNA was designed to target exon 1 of the bovine TFAM gene and subsequently cloned. Fibroblasts were transfected with Cas9 and control plasmids. After 24 h of transfection, cells were analyzed by flow cytometry to evaluate the efficiency of transfection. The site directed-mutation frequency was assessed by T7 endonuclease assay, and cell clones were analyzed for mtDNA copy number by Sanger DNA sequencing. We achieved transfection efficiency of 51.3%. We selected 23 successfully transformed clones for further analysis, and seven of these exhibited directed mutations at the CRISPR/Cas9 targeted site. Moreover, we also found a decrease in mtDNA copy number in the gene edited clones compared to that in the controls. These TFAM gene mutant cells were viable in culture when supplemented with uridine and pyruvate. We conclude that this CRISPR/Cas9 design was efficient, resulting in seven heterozygous mutant clones and opening up the possibility to use these mutant cell lines as a model system to elucidate the role of TFAM in the maintenance of mtDNA integrity.
Collapse
Affiliation(s)
- Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriel Sassarão Alves Moreira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Clésio Gomes Mariano Junior
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Kelly Cristine Santos Roballo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marine Charpentier
- Laboratoire Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris, France
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang X, Li W, Wu Y, Peng X, Lou B, Wang L, Liu M. Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro -produced embryos. Theriogenology 2017; 91:163-172.e2. [DOI: 10.1016/j.theriogenology.2016.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/12/2022]
|
6
|
Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Sci Rep 2016; 6:27185. [PMID: 27324781 PMCID: PMC4914850 DOI: 10.1038/srep27185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022] Open
Abstract
Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two. Some of them expressed strong fluorescence and the transgene in the oocytes from a superovulating one were detected by PCR and sequencing. To investigate genomic variants by the transgene transposition, whole genomic DNA were analyzed by NGS. We found that preferred transposable integration (TA or TTAA) was identified in their genome. Even though multi-copies (i.e. fifteen) were confirmed, there was no significant difference in genome instabilities. In conclusion, we demonstrated that transgenic cattle using the DNA transposon system could be efficiently generated, and all those animals could be a valuable resource for agriculture and veterinary science.
Collapse
|
7
|
Bevacqua RJ, Fernandez-Martín R, Savy V, Canel NG, Gismondi MI, Kues WA, Carlson DF, Fahrenkrug SC, Niemann H, Taboga OA, Ferraris S, Salamone DF. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 2016; 86:1886-1896.e1. [PMID: 27566851 DOI: 10.1016/j.theriogenology.2016.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/17/2016] [Accepted: 06/05/2016] [Indexed: 12/19/2022]
Abstract
The recently developed engineered nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) 9, provide new opportunities for gene editing in a straightforward manner. However, few reports are available regarding CRISPR application and efficiency in cattle. Here, the CRISPR/Cas9 system was used with the aim of inducing knockout and knock-in alleles of the bovine PRNP gene, responsible for mad cow disease, both in bovine fetal fibroblasts and in IVF embryos. Five single-guide RNAs were designed to target 875 bp of PRNP exon 3, and all five were codelivered with Cas9. The feasibility of inducing homologous recombination (HR) was evaluated with a reporter vector carrying EGFP flanked by 1 kbp PRNP regions (pHRegfp). For somatic cells, plasmids coding for Cas9 and for each of the five single-guide RNAs (pCMVCas9 and pSPgRNAs) were transfected under two different conditions (1X and 2X). For IVF zygotes, cytoplasmic injection was conducted with either plasmids or mRNA. For plasmid injection groups, 1 pg pCMVCas9 + 0.1 pg of each pSPgRNA (DNA2X) was used per zygote. In the case of RNA, two amounts (RNA1X and RNA2X) were compared. To assess the occurrence of HR, a group additionally cotransfected or coinjected with pHRegfp plasmid was included. Somatic cell lysates were analyzed by polymerase chain reaction and surveyor assay. In the case of embryos, the in vitro development and the genotype of blastocysts were evaluated by polymerase chain reaction and sequencing. In somatic cells, 2X transfection resulted in indels and large deletions of the targeted PRNP region. Regarding embryo injection, higher blastocyst rates were obtained for RNA injected groups (46/103 [44.6%] and 55/116 [47.4%] for RNA1X and RNA2X) than for the DNA2X group (26/140 [18.6%], P < 0.05). In 46% (26/56) of the total sequenced blastocysts, specific gene editing was detected. The total number of genetic modifications (29) was higher than the total number of gene-edited embryos, as three blastocysts from the group RNA2X reported more than one type of modification. The modifications included indels (10/56; 17.9%) and large deletions (19/56; 33.9%). Moreover, it was possible to detect HR in 1/8 (12.5%) embryos treated with RNA2X. These results report that the CRISPR/Cas9 system can be applied for site-specific edition of the bovine genome, which could have a great impact on the development of large animals resistant to important zoonotic diseases.
Collapse
Affiliation(s)
- R J Bevacqua
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - R Fernandez-Martín
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - V Savy
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - N G Canel
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - M I Gismondi
- Instituto de Biotecnología, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - W A Kues
- Institute of Farm Animal Genetics (FLI), Mariensee, Hannover, Germany
| | | | | | - H Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Hannover, Germany
| | - O A Taboga
- Instituto de Biotecnología, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - S Ferraris
- Cloning and Transgenesis Laboratory, Maimonides University, Buenos Aires, Argentina
| | - D F Salamone
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|