1
|
Keane JA, Ealy AD. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals (Basel) 2024; 14:330. [PMID: 38275789 PMCID: PMC10812430 DOI: 10.3390/ani14020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.
Collapse
Affiliation(s)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| |
Collapse
|
2
|
Effect of milrinone on the meiosis resumption and cytoplasm maturation of buffalo oocytes. ZYGOTE 2022; 30:571-576. [PMID: 35543447 DOI: 10.1017/s0967199421000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Buffalo has many excellent economic traits and it is one of the greatest potential livestock. Compared with cattle, buffalo has poorer reproductivity, it is of great significance to improve the development potential of oocytes. Buffalo oocyte in vitro maturation (IVM) has been widely used in production, but the poor development ability of bovine oocytes IVM limits the development of buffalo reproductivity. Milrinone as a phosphodiesterase inhibitor could affect the maturation of oocytes in goat and mice, but there have been few reported studies in water buffalo. To optimize buffalo oocyte in vitro maturation systems, the effects of phosphodiesterase inhibitor (milrinone) on pre-maturation culture of buffalo oocytes were investigated in this study. Buffalo cumulus-oocyte complexes (COCs) were cultured in medium with different concentrations (0, 12, 25, 50 and 100 mol/l) of milrinone for different times (0, 4, 8, 12, 16, 22 and 24 h). The results showed that the buffalo COCs nuclear maturation process could be inhibited by milrinone (25-100 mol/l) in a dose-dependent manner. The inhibitory effect of milrinone on in vitro maturation of buffalo oocytes did not decrease with the extension of time. This indicated that milrinone can be used as a nuclear maturation inhibitor during the maturation process in buffalo oocytes. In addition, milrinone can inhibit the effect of follicle stimulating hormone (FSH)-induced IVM of buffalo oocytes, but with time FSH partially eliminated the inhibition. Therefore, inhibition of milrinone on the nuclear maturation of buffalo oocytes was reversible, and buffalo oocytes can mature normally after the inhibition is lessened.
Collapse
|
3
|
The use of insulin-transferrin-selenium (ITS), and folic acid on individual in vitro embryo culture systems in cattle. Theriogenology 2022; 184:153-161. [DOI: 10.1016/j.theriogenology.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
|
4
|
Cheruveetil MA, Shetty PK, Rajendran A, Asif M, Rao KA. Effects of prematuration culture with a phosphodiesterase-3 inhibitor on oocyte morphology and embryo quality in in vitro maturation. Clin Exp Reprod Med 2021; 48:352-361. [PMID: 34875742 PMCID: PMC8651754 DOI: 10.5653/cerm.2021.04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The study assessed the developmental potential of germinal vesicle (GV) oocytes subjected to in vitro maturation (IVM) after prematuration culture with cilostamide (a phosphodiesterase-3 inhibitor) and the impact of cilostamide exposure on the morphology of meiosis II (MII) oocytes and subsequent embryo quality. Methods In total, 994 oocytes were collected from 63 patients. Among 307 GV oocytes, 140 oocytes were selected for the experimental group and 130 oocytes for the control group. The denuded GV-stage oocytes were cultured for 6 hours with cilostamide in the experimental group and without cilostamide in the control group. After 6 hours, the oocytes in the experimental group were washed and transferred to fresh IVM medium. The maturational status of the oocytes in both groups was examined at 26, 36, and 48 hours. Fertilization was assessed at 18 hours post-intracytoplasmic sperm injection. Embryo quality was assessed on days 3 and 5. Results In total, 92.1% of the oocytes remained in the GV stage, while 6.4% converted to the MI stage (p<0.01) after cilostamide exposure. In both groups, more MII oocytes were observed at 36 hours (25.8% vs. 21.5%) than at 26 hours (10.8% vs. 14.6%) and 48 hours (13% vs. 7.9%) (p>0.05). With the advent of cilostamide, blastocyst quality was better in the experimental group than in the control group (p<0.05). Conclusions Cilostamide effectively blocked nuclear maturation and promoted cytoplasmic growth. Prematuration culture with cilostamide enabled synchronization between cytoplasmic and nuclear maturity, resulting in better blastocyst outcomes.
Collapse
Affiliation(s)
| | - Prasanna Kumar Shetty
- KSHEMA IVF Fertility and Reproductive Medicine Center, Nitte University, Deralakatte, Mangaluru, India
| | | | | | | |
Collapse
|
5
|
Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira Leme L, Kussano NR, Zangeronimo MG, Dode MAN. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS One 2021; 16:e0247518. [PMID: 33667248 PMCID: PMC7935280 DOI: 10.1371/journal.pone.0247518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.
Collapse
Affiliation(s)
| | - Mauricio Machaim Franco
- Federal University Uberlândia, Animal Science, Uberlândia, Minas Gerais, Brazil
- Institute of Genetics and Biochemistry of Federal, University of Uberlandia, Uberlândia, Minas Gerais, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Margot Alves Nunes Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- University of Brasilia, Animal Science, Brasilia, Distrito Federal, Brazil
- University of Brasilia, Institute of Biology, Brasilia, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
6
|
Gupta A, Pandey AN, Sharma A, Tiwari M, Yadav PK, Yadav AK, Pandey AK, Shrivastav TG, Chaube SK. Cyclic nucleotide phosphodiesterase inhibitors: possible therapeutic drugs for female fertility regulation. Eur J Pharmacol 2020; 883:173293. [PMID: 32663542 DOI: 10.1016/j.ejphar.2020.173293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes responsible for the hydrolysis of cyclic adenosine 3', 5' monophosphate (cAMP) and cyclic guanosine 3', 5' monophosphate (cGMP) levels in wide variety of cell types. These PDEs are detected in encircling granulosa cells or in oocyte with in follicular microenvironment and responsible for the decrease of cAMP and cGMP levels in mammalian oocytes. A transient decrease of cAMP level initiates downstream pathways to cause spontaneous meiotic resumption from diplotene arrest and induces oocyte maturation. The nonspecific PDE inhibitors (caffeine, pentoxifylline, theophylline, IBMX etc.) as well as specific PDE inhibitors (cilostamide, milrinone, org 9935, cilostazol etc.) have been used to elevate cAMP level and inhibit meiotic resumption from diplotene arrest and oocyte maturation, ovulation, fertilization and pregnancy rates both in vivo as well as under in vitro culture conditions. The PDEs inhibitors are used as powerful experimental tools to demonstrate cyclic nucleotide mediated changes in ovarian functions and thereby fertility. Indeed, non-hormonal nature and reversible effects of nonspecific as well as specific PDE inhibitors hold promise for the development of novel therapeutic drugs for female fertility regulation.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, 110067, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
7
|
Li A, Ni Z, Zhang J, Cai Z, Kuang Y, Yu C. Transferrin Insufficiency and Iron Overload in Follicular Fluid Contribute to Oocyte Dysmaturity in Infertile Women With Advanced Endometriosis. Front Endocrinol (Lausanne) 2020; 11:391. [PMID: 32636803 PMCID: PMC7317002 DOI: 10.3389/fendo.2020.00391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: To screen out specific protein with different concentration in follicular fluid from advanced endometriosis and determine its direct effect on mouse oocytes matured in vitro. Methods: FF samples were obtained from 25 patients (EMS group, n = 15; control group, n = 10) to screen the differential proteins by using iTRAQ Labeling and 2D LC-MS. Transferrin (TRF) in was found significantly decreased in EMS group, which was verified using ELISA in enlarged FF samples (EMS group, n = 31; control group, n = 27). The contents of ferric ion in FFs were detected by ELISA and TRF saturations were calculated in two groups. Germinal vesicle (GV) oocytes of mouse were maturated in vitro interfered with the FFs in five groups, whose concentrations of TRF were modulated, and maturation in vitro rates were compared among groups. Results: The reduced concentration of TRF with three analogs and increased concentration of ferric ion were found in the FF of the EMS group (p < 0.05). The numerical values of TSAT was 54.8% in EMS group, indicating iron overload in the FF. The EMS-FF showed significantly decreased maturation in vitro rate (p < 0.05) of mouse oocytes, which was improved with the supplementation of TRF, compared with the control-FF. The effect was blocked by the TRF antibody (p < 0.05). Conclusions: Being aware of the relatively small sample size, our results possibly suggest that TRF insufficiency and iron overload in FF from advanced EMS contribute to oocytes dysmaturity, which may be a cause of EMS-related infertility.
Collapse
Affiliation(s)
- Anji Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Zhang
- Department of Assisted Reproduction of the Ninth People's Hospital, Shanghai, China
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction of the Ninth People's Hospital, Shanghai, China
- *Correspondence: Yanping Kuang
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Chaoqin Yu
| |
Collapse
|
8
|
Toxicological evaluation of 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole through the bovine oocyte in vitro maturation model. Toxicol In Vitro 2019; 62:104678. [PMID: 31629896 DOI: 10.1016/j.tiv.2019.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
The development of new bioactive molecules based on the molecular hybridization has been widely explored. In line with this, reliable tests should be employed to give information about the toxicology of these new molecules. In this sense, the use of in vitro tests is a valuable tool, especially the in vitro maturation of oocytes (IVM), which is an efficient resource to discover the potential toxicity of synthetic molecules. Thus, the aim of the present study was to evaluate the toxicological effects of the selenium-containing indolyl compound 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole (CMI), on different quality parameters of bovine oocytes through the IVM. Different concentrations of the CMI compound (0, 25, 50, 100, 200 μM) were supplemented during the in vitro maturation process. After, the oocyte maturation rate, glutathione (GSH) levels, reactive oxygen species (ROS) levels, membrane, and mitochondrial integrity were evaluated. The results showed that the lowest concentration of CMI induced the highest GSH production (P < 0.05), an important marker of cytoplasmic quality and maturation. All treatments increased ROS production in relation to non-supplementation (P < 0.05). In addition, oocyte maturation was reduced only with the highest concentration of CMI (P < 0.05). Supplementation with CMI did not impact mitochondrial activity, integrity and cell membrane. To our knowledge, this is the first study that evaluates CMI on the oocyte in vitro maturation process. Importantly, our results did not find any toxic effect of CMI on bovine oocytes. CMI was efficient for cytoplasmic maturation by promoting an increase in the intracellular levels of glutathione.
Collapse
|
9
|
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232:R1-R26. [PMID: 27875265 DOI: 10.1530/joe-16-0302] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer. ZYGOTE 2016; 25:32-40. [PMID: 27780485 DOI: 10.1017/s0967199416000289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to evaluate the effect of meiotic arrest using phosphodiesterase type 3A (PDE 3A) inhibitors, cilostamide and C-type natriuretic peptide (NPPC), on pre-maturation (PM) of oocytes to be used in the production of cloned embryos. Nuclear maturation, in vitro embryo production (IVP), somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA), and total cells number of cloned embryos were evaluated. The results were analysed by chi-squared and Kruskal-Wallis test with a P-value 0.05) between control and PM, both for cleavage (78.2% and 76.9%) and blastocyst (35.5% and 29.3%) rates. After SCNT, cleavage rate was also similar (P > 0.05) between control and PM (66% and 51.9%) however, blastocyst rate was lower (P < 0.05) in the PM group than in the control group (7.4% and 30.2%). After 6 h of PM with 100 nM of NPPC, approximately 84.9% of the oocytes remained at GV. No difference was found between control and PM in cleavage (69.2% and 76.1%) and blastocyst rates (37,4% and 35%) after IVP. Similarly, no differences between PM and control groups were observed for cleavage (69.2% and 68.4%) and blastocyst (24.4% and 21.5%) rates. SCNT and PA embryos from control or PM oocytes had similar total cell number. It can be concluded that PM for 6 h with 100 nM NPPC is feasible for cloned embryo production without affecting embryo outcome.
Collapse
|