1
|
Choi KH, Lee DK, Jeong J, Ahn Y, Go DM, Kim DY, Lee CK. Inhibition of BMP-mediated SMAD pathway supports the pluripotency of pig embryonic stem cells in the absence of feeder cells. Theriogenology 2024; 225:67-80. [PMID: 38795512 DOI: 10.1016/j.theriogenology.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Here, we examined the effects of the BMP signaling pathway inhibitor LDN-193189 on the pluripotency of porcine embryonic stem cells (ESCs) in the absence of feeder cells using molecular and transcriptomic techniques. Additionally, the effects of some extracellular matrix components on porcine ESC pluripotency were evaluated to develop an optimized and sustainable feeder-free culture system for porcine ESCs. Feeder cells were found to play an important role in supporting the pluripotency of porcine ESCs by blocking trophoblast and mesodermal differentiation through the inhibition of the BMP pathway. Additionally, treatment with LDN-193189, an inhibitor of the BMP pathway, maintained the pluripotency and homogeneity of porcine ESCs for an extended period in the absence of feeder cells by stimulating the secretion of chemokines and suppressing differentiation, based on transcriptome analysis. Conclusively, these results suggest that LDN-193189 could be a suitable replacement for feeder cells in the maintenance of porcine ESC pluripotency during culture. Additionally, these findings contribute to the understanding of pluripotency gene networks and comparative embryogenesis.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Research and Development Center, Space F Corporation, Hwaseong, Gyeonggi-do, 18471, Republic of Korea; Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dong-Kyung Lee
- Research and Development Center, Space F Corporation, Hwaseong, Gyeonggi-do, 18471, Republic of Korea; Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, 25354, Republic of Korea.
| |
Collapse
|
2
|
Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oocyte/embryo in vitro culture is one of the most important assisted reproductive technologies used as a tool for maintaining genetic resources biodiversity and the inheritance of valuable genetic resources through generations. The success of such processes affects the final goal of the in vitro culture, getting viable and healthy offspring. In common in vitro oocyte maturation and/or embryo development techniques, the development of oocytes/embryos is carried out at 5% carbon dioxide and roughly 20% atmosphere-borne oxygen ratios in cell culture incubators due to their reduced cost in comparison with low atmospheric oxygen-tension incubators. These conditions are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles, as well as genetic material. The present review mainly focuses on the antioxidant roles of different vitamins on in vitro oocyte maturation competence and embryo development in farm animals. Because, the conditions of in vitro embryo production (IVEP) are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles as well as genetic material. The use of antioxidant agents may prevent the extreme augmentation of ROS generation and enhance in vitro matured oocyte competence and embryo development. Therefore, this review aimed to provide an updated outline of the impact of antioxidant vitamin (Vit) supplementations during in vitro maturation (IVM) and in vitro fertilization (IVF) on oocyte maturation and consequent embryo development, in various domestic animal species. Thus, the enrichment of the culture media with antioxidant agents may prevent and neutralize the extreme augmentation of ROS generation and enhance the in vitro embryo production (IVEP) outcomes.
Collapse
|
3
|
Song XT, Zhang JN, Zhao DW, Zhai YF, Lu Q, Qi MY, Lu MH, Deng SL, Han HB, Yang XQ, Yao YC. Molecular cloning, expression, and functional features of IGF1 splice variants in sheep. Endocr Connect 2021; 10:980-994. [PMID: 34319906 PMCID: PMC8428077 DOI: 10.1530/ec-21-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor 1 (IGF1), also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.
Collapse
Affiliation(s)
- Xu-Ting Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jia-Nan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Duo-Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yu-Fei Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mei-Yu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming-Hai Lu
- Department of Animal Science, Heilongjiang State Farms Science Technology Vocational College, Harbin, China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Bing Han
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiu-Qin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Correspondence should be addressed to Y-C Yao or X-Q Yang: or
| | - Yu-Chang Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Correspondence should be addressed to Y-C Yao or X-Q Yang: or
| |
Collapse
|
4
|
Ferreira-Silva JC, Oliveira Silva RL, Travassos Vieira JI, Silva JB, Tavares LS, Cavalcante Silva FA, Nunes Pena EP, Chaves MS, Moura MT, Junior TC, Benko-Iseppon AM, Figueirêdo Freitas VJ, Lemos Oliveira MA. Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology 2021; 101:115-124. [PMID: 33964298 DOI: 10.1016/j.cryobiol.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.
Collapse
Affiliation(s)
- José Carlos Ferreira-Silva
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Roberta Lane Oliveira Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Joane Isis Travassos Vieira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Jéssica Barboza Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Lethicia Souza Tavares
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Elton Pedro Nunes Pena
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Maiana Silva Chaves
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil. maiana-@hotmail.com
| | - Marcelo Tigre Moura
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Tercilio Calsa Junior
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Marcos Antonio Lemos Oliveira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| |
Collapse
|
5
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
6
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
7
|
Metabolomic alternations of follicular fluid of obese women undergoing in-vitro fertilization treatment. Sci Rep 2020; 10:5968. [PMID: 32249791 PMCID: PMC7136245 DOI: 10.1038/s41598-020-62975-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/23/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity exerts negative effects on the metabolic homeostasis of cells in various tissues, but how it influences ovum metabolism is not fully understood. Previous studies demonstrate that oocyte genes that regulate oxidative stress, lipid metabolism, and inflammation are highly expressed in obese women. However, the metabolic effects of these genetic variations are not clear. To address this gap, we conducted an exploratory evaluation of follicular fluid (FF) metabolites in underweight, normal-weight, overweight, and obese women undergoing in vitro fertilization (IVF) treatment. The FF samples from the underweight (Group A, n = 40), normal-weight (Group B, n = 40), overweight (Group C, n = 40), and obese women (Group D, n = 40) were analyzed using ultra-performance liquid chromatography high-resolution mass spectrometry. A novel, high-coverage, semi-targeted metabolomics method (SWATH to MRM) and a targeted metabolomics method were employed to identify and verify the differential metabolites between the four groups. Sixteen differentially expressed FF metabolites were identified. Increase of BMI was associated with upregulation of 5 metabolites, ganoderiol H, LPI (18:3), sedoheptulose 1,7-bisphosphate, austalide L and 2 - {[hydroxyl (3-hydroxy-4-methoxyphenylmethylidene] amino} acetic acid, and downregulation of 5 metabolites, 1-phenyl-1,3-elcosanedione, retinol acetate, p-Cresol sulfate, setariol and arachidonyl carnitine. These metabolites were enriched in different metabolic pathways of retinol metabolism and fatty acid metabolism. These obesity-related differential metabolites provide a pathogenesis mechanism that explains the decline of oocyte development during obesity. These results suggest that obesity affects follicular environment prior to pregnancy, a time-window that may be important for lifestyle interventions to decrease obesity levels.
Collapse
|
8
|
Abdelnour SA, Abd El-Hack ME, Swelum AAA, Saadeldin IM, Noreldin AE, Khafaga AF, Al-Mutary MG, Arif M, Hussein ESOS. The Usefulness of Retinoic Acid Supplementation during In Vitro Oocyte Maturation for the In Vitro Embryo Production of Livestock: A Review. Animals (Basel) 2019; 9:ani9080561. [PMID: 31443306 PMCID: PMC6720576 DOI: 10.3390/ani9080561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/31/2023] Open
Abstract
Simple Summary In this review, we provide the previous studies, state-of-the-art practices, and potential implications of retinoic acid for improving in vitro livestock embryo production. Abstract Retinoic acid (RA) is an indigenous metabolite and descriptive physiologically functioning constituent of vitamin A. Retinoids were documented as vital regulators for cell development and distinction, embryonic growth, and reproductive function in both male and female livestock. Previously, RA has been shown to have several positive impacts in vivo and in vitro and critically control many reproductive events, such as oocyte development, follicular growth, and early embryonic growth. In addition, RA manages apoptotic signaling and oxidative damages in cells. Recently, RA has been used widely in assisted reproductive technology fields, especially during in vitro embryo development in various mammalian species, including buffaloes, bovine, goats, sheep, pigs, and rabbits. However, the optimum concentration of RA greatly differs based on the condition of maturation media and species. Based on the obtained findings, it was generally accepted that RA enhances nuclear oocyte maturation, cleavage and maturation rates, blastocyst formation, and embryo development. As such, it possesses antioxidant properties against reactive oxygen species (ROS) and an anti-apoptotic effect through enhancing the transcription of some related genes such as superoxide dismutase, prostaglandin synthase, glutathione peroxidase, peroxiredoxins, and heme oxygenase. Therefore, the current review concludes that an addition of RA (up to 50 nM) has the potential to improve the oocyte maturation media of various species of livestock due to its antioxidant activity.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohsen G Al-Mutary
- Basic Sciences Department, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Yang RF, Xiong XR, Zi XD. Effect of cysteine, insulin-like growth factor-1 and epidermis growth factor during in vitro oocyte maturation and in vitro culture of yak-cattle crossbred embryos. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1663353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rao-fen Yang
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Xian-rong Xiong
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Xiang-dong Zi
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Antioxidant and developmental capacity of retinol on the in vitro culture of rabbit embryos. ZYGOTE 2018; 26:326-332. [DOI: 10.1017/s0967199418000308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryOxidative stress is a major cause of defective embryo development during in vitro culture. Retinoids are recognized as non-enzymatic antioxidants and may have an important role in the regulation of cell differentiation and vertebrate development. However, there are not enough reports discussing the antioxidant and developmental capacity of retinoids, including retinol (RT), on the in vitro development of embryos recovered from livestock animals, particularly in rabbit species. Therefore, morula embryos obtained from nulliparous Red Baladi rabbit does were cultured for 48 h in TCM199 medium in the absence of RT (control group) or in the presence of RT at concentrations of 10, 100 and 1000 nM. The developmental capacity to the hatched blastocyst stage, the antioxidant biomarker assay and the expression of several selected genes were analyzed in each RT group. The data show that RT significantly (P<0.001) promoted the embryo hatchability rate at the concentration of 1000 nM to 69.44% versus 29.71% for the control. The activity of malondialdehyde (MDA) level was significantly (P<0.05) lower in the RT groups than in the control group, while the total antioxidant capacity (TAC), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly (P<0.05) higher following treatment with RT. Furthermore, RT treatment considerably upregulated the relative expression of gap junction protein alpha 1 (GJA1), POU class 5 homeobox 1 (POU5F1) and superoxide dismutase 1 (SOD1) genes compared with the control group. The current study highlights the potential effects of RT as antioxidant in the culture medium on the in vitro development of rabbit embryos.
Collapse
|