1
|
Porras-Gómez TJ, Moreno-Mendoza N. Identification of the proliferative activity of germline progenitor cells in the adult ovary of the bat Artibeus jamaicensis. ZYGOTE 2024; 32:366-375. [PMID: 39445446 DOI: 10.1017/s0967199424000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Until a few years ago, it was assumed that oocyte renewal did not take place in the ovary of adult organisms; however, the existence of germline progenitor cells (GPCs), which renew the ovarian follicular reserve, has now been documented in mammals. Specifically, in the adult ovary of bats, the presence of cells located in the cortical region with characteristics similar to GPCs, called adult cortical germ cells (ACGC), has been observed. One of the requirements that a GPC must fulfil is to be able to proliferate mitotically, so the evaluation of cell proliferation in ACGC is of utmost importance in order to be able to relate them to a parental lineage. Currently, there are several methods to determine cell proliferation, including BrdU labelling or the use of endogenous proliferation markers. Thus, the aim of this work was to evaluate the proliferative activity of ACGC in the adult ovary of the bat Artibeus jamaicensis, using different proliferation markers and correlating these with the protein expression of the transcription factor Oct4 and the germ line marker Ddx4. We found that the expression pattern of the proliferation markers BrdU, PCNA, Ki-67 and pH3 occurs at different times of the cell cycle, so co-localization of two or more of these markers allows us to identify proliferating cells. This allowed us to identify ACGC with proliferative capacity in the adult ovary of A. jamaicensis, suggesting that GPCs renew the follicle reserve during the adult life of the organism.
Collapse
Affiliation(s)
- Tania J Porras-Gómez
- Department of Cell Biology and Phisiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228 Ciudad de México04510, Mexico
| | - Norma Moreno-Mendoza
- Department of Cell Biology and Phisiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228 Ciudad de México04510, Mexico
| |
Collapse
|
2
|
Finch CE. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. FRONTIERS IN AGING 2023; 4:1273303. [PMID: 38034419 PMCID: PMC10683094 DOI: 10.3389/fragi.2023.1273303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023]
Abstract
Air pollution (AirPoll) accelerates human aging, as assessed by increased adult mortality and earlier onset of cardiovascular diseases, and dementia. Socio-economic strata (SES) of wealth and education have parallel differences of mortality and these diseases. Children from impoverished homes differ in brain development at birth and in risk of early fat excess and hypertension. To further enhance the healthspan, biogerontologists may consider a wider range of environmental exposures from gestation through later life morbidity that comprise the Gero-Exposome. Experimental studies with rodents and nematodes document shared transcriptional responses to AirPoll. In rodents, AirPoll exposure activates gene systems for body-wide detoxification through Nrf2 and NFkB transcription factors that mediate multiple aging processes. Gestational environmental factors include maternal diet and exposure to AirPoll and cigarette smoke. Correspondingly, gestational exposure of mice to AirPoll increased adult body fat, impaired glucose clearance, and decreased adult neurogenesis in the hippocampus, a brain region damaged in dementia. Nematode larvae also respond to AirPoll with Alzheimer relevant responses. These experimental approaches could identify to interventions for expanded human health and longevity across SES gradients.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Role of Stem Cells in the Ovarian Tissue Cryopreservation and Transplantation for Fertility Preservation. Int J Mol Sci 2021; 22:ijms222212482. [PMID: 34830363 PMCID: PMC8620430 DOI: 10.3390/ijms222212482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although the cancer survival rate has increased, cancer treatments, including chemotherapy and radiotherapy, can cause ovarian failure and infertility in women of reproductive age. Preserving fertility throughout cancer treatment is critical for maintaining quality of life. Fertility experts should propose individualized fertility preservation methods based on the patient’s marital status, pubertal status, partner status, and the urgency of treatment. Widely practiced fertility preservation methods, including ovarian transposition and embryo and oocyte cryopreservation, are inappropriate for prepubertal girls or those needing urgent initiation of cancer treatment. Ovarian tissue cryopreservation and transplantation, an emerging new technology, may be a solution for these cancer patients. The use of stem cells in ovarian tissue cryopreservation and transplantation increases oxygenation, angiogenesis, and follicle survival rates. This review discusses the recent advances in ovarian tissue cryopreservation and transplantation with special focus on the use of stem cells to improve fertilization techniques.
Collapse
|
4
|
Liu X, Wang H, Liu B, Qi Z, Li J, Xu B, Liu W, Xu Z, Deng Y. The Latest Research Progress of m 6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Front Cell Dev Biol 2021; 9:681238. [PMID: 34568313 PMCID: PMC8461070 DOI: 10.3389/fcell.2021.681238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic messenger mRNAs contain many RNA methyl chemical modifications, in which N6-methyladenosine (m6A) plays a very important role. The modification process of RNA methylation is a dynamic reversible regulatory process that is mainly catalyzed by "Writer" m6A methyltransferase, removed by "Eraser" m6A demethylase, and recognized by the m6A binding protein, thereby, linking m6A modification with other mRNA pathways. At various stages of the life cycle, m6A modification plays an extremely important role in regulating mRNA splicing, processing, translation, as well as degradation, and is associated with gametogenesis and fertility for both sexes. Normal gametogenesis is a basic guarantee of fertility. Infertility leads to trauma, affects harmony in the family and seriously affects the quality of life. We review the roles and mechanisms of RNA m6A methylation modification in infertility and provide a potential target for infertility treatment, which can be used for drug development.
Collapse
Affiliation(s)
- Xuda Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Haiying Wang
- Department of Public Health, China Medical University, Shenyang, China
| | - Bingchen Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- Department of Public Health, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhaofa Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Porras-Gómez TJ, Villagrán-SantaCruz M, Moreno-Mendoza N. Biology of primordial germ cells in vertebrates with emphasis in urodeles amphibians. Mol Reprod Dev 2021; 88:773-792. [PMID: 34532913 DOI: 10.1002/mrd.23533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022]
Abstract
Primordial germ cells (PGCs) are highly specialized cells that play a relevant role in the maintenance and evolution of the species, since they create new combinations of genetic information between the organisms. Amphibians are a class of amniote vertebrates that are divided into three subclasses, the anurans (frogs and toads), the urodeles (salamanders and newts), and the gymnophiones (caecilians). The study of PGCs in amphibians has been addressed in more detail in anurans while little is known about the biology of this cell lineage in urodeles. Studies in some urodeles species have suggested that PGCs are of mesodermal origin, specifying in the lateral plate mesoderm at the late gastrula stage. With classical experiments it shown that, there is an induction of mesoderm, therefore most likely urodeles PGCs develop from unspecialized mesodermal tissue that responds to extracellular signals. However, some fundamental biological processes of PGCs such as the analysis of their specification, arrival, and colonization to the gonads, and their maintenance and differentiation into mature and fertile gametes remain to be elucidated. Therefore, knowledge about the biology of PGCs is of great importance to ensure the perpetuation of urodeles amphibians, as some species are in danger of becoming extinct.
Collapse
Affiliation(s)
- Tania J Porras-Gómez
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Villagrán-SantaCruz
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Moghadam AR, Taheri Moghadam M, Saki G, Nikbakht R. Utilizing Calcium Alginate for the Assessment of Bone Morphogenetic Protein 15 Induction Effect on the Differentiation of Mesenchymal Stem Cell Derived from Human Follicular Fluid to Oocyte-Like Structure. Adv Biomed Res 2020; 9:80. [PMID: 33912496 PMCID: PMC8059453 DOI: 10.4103/abr.abr_200_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Follicular fluid (FF)-derived mesenchymal stem cells (MSCs) are possible new source of cells in the study of oogenesis and regenerative medicine. Several biomaterials have been used as scaffolds to mimic ovarian tissue stroma. Using good matrix is essential for increasing the cell survival rate, proliferation, and differentiation. However, no study has been performed to investigate the effects of BMP15 and calcium alginate hydrogel on the differentiation potential of FF-derived MSCs to oocyte-like structures (OLSs). Materials and Methods: In this work, FF MSCs, which were collected from women in routine in vitro fertilization procedure, were capsulated with 0.5% calcium alginate, and then the encapsulated cells were cultured in medium containing BMP15 for 2 weeks. Trypan blue staining was carried out to determine cell viability. Real-time polymerase chain reaction (PCR) and immunofluorescence (ICC) staining method were performed to characterize the expression of OCT4, Nanog, ZP2, and ZP3 genes and protein. The encapsulation process did not change the morphology and viability of the encapsulated cells. Results: Reverse-transcription-PCR and ICC showed that MSCs expressed germ line stem cell markers such as OCT4 and Nanog. After 4 days of culture, OLSs formed and expressed zona pellucida markers. OLSs at least reached 180–230 μm in diameter in the control and BMP15-treated groups. Finally, a reduction in the expression pattern of pluripotency and ZP markers was detected in the encapsulated cells cultured in the BMP15-supplemented medium. Conclusion: The three-dimensional alginate culture system seems to be a promising method of getting in vitro differentiation and development of ovarian cells, which could mimic the native ovarian condition.
Collapse
Affiliation(s)
- Ali Reza Moghadam
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Gorgoń S, Świątek P. The apical cell - An enigmatic somatic cell in leech ovaries - Structure and putative functions. Dev Biol 2020; 469:111-124. [PMID: 33141038 DOI: 10.1016/j.ydbio.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Although somatic cells play an integral role in animal gametogenesis, their organization and function are usually poorly characterized, especially in non-model systems. One such example is a peculiar cell found in leech ovaries - the apical cell (AC). A single AC can be found at the apical tip of each ovary cord, the functional unit of leech ovaries, where it is surrounded by other somatic and germline cells. The AC is easily distinguished due to its enormous size and its numerous long cytoplasmic projections that penetrate the space between neighboring cells. It is also characterized by a prominent accumulation of mitochondria, Golgi complexes and electron-dense vesicles. ACs are also enriched in cytoskeleton, mainly in form of intermediate filaments. Additionally, the AC is connected to neighboring cells via junctions that structurally resemble hemidesmosomes. In spite of numerous descriptive data about the AC, its functions remain poorly understood. Its suggested functions include a role in forming skeleton for the germline cells, and a role in defining a niche for germline stem cells. The latter is more speculative, since germline stem cells have not been identified in leech ovaries. Somatic cells with similar morphological properties to those of the AC have been found in gonads of nematodes - the distal tip cell - and in insects - Verson's cell, hub cells and cap cells. In the present article we summarize information about the AC structure and its putative functions. AC is compared with other well-described somatic cells with potentially similar roles in gametogenesis.
Collapse
Affiliation(s)
- Szymon Gorgoń
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-032, Katowice, Poland; Umeå University, Department of Surgical and Perioperative Sciences, Surgery, 901 87, Umeå, Sweden.
| | - Piotr Świątek
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-032, Katowice, Poland
| |
Collapse
|
8
|
Taheri M, Saki G, Nikbakht R, Eftekhari AR. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol Int 2020; 45:127-139. [PMID: 32997425 DOI: 10.1002/cbin.11475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20-30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.
Collapse
Affiliation(s)
- Mahin Taheri
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali R Eftekhari
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Technologies for the Production of Fertilizable Mammalian Oocytes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Women affected by ovarian pathologies or with cancer can usually preserve fertility by egg/embryo freezing. When oocyte retrieval is not feasible, the only option available is ovarian tissue cryopreservation and transplantation. The culture of follicles isolated from fresh or cryopreserved ovaries is considered still experimental, although this procedure is considered safer, because the risk of unintentional spreading of cancer cells eventually present in cryopreserved tissue is avoided. Animal and human small follicles can be cultured in vitro, but standardized protocols able to produce in vitro grown oocytes with the same developmental capacity of in vivo grown oocytes are not available yet. In fact, the different sizes of follicles and oocytes, the hormonal differences existing between mono- (e.g., human, goat, cow, and sheep) and poly-ovulatory (rodents and pig) species, and the incomplete identification of the mechanisms regulating the oocyte–follicle and follicle–ovary interrelationships affect the outcome of in vitro culture. From all these attempts, however, new ideas arise, and the goal of assuring the preservation of female reproductive potential appears a more realistic possibility. This review surveys and discusses advances and challenges of these technologies that, starting from a simple attempt, are now approaching the biosynthesis of a functional engineered ovary.
Collapse
|
11
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Sahu K, Pandey AN, Pandey AK, Chaube SK. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J Cell Physiol 2018; 234:8019-8027. [PMID: 30341907 DOI: 10.1002/jcp.27562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kankshi Sahu
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|