1
|
Pawlak P, Lipinska P, Sell-Kubiak E, Kajdasz A, Derebecka N, Warzych E. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism. Dev Biol 2024; 509:51-58. [PMID: 38342400 DOI: 10.1016/j.ydbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Paulina Lipinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
2
|
Kurzella J, Miskel D, Rings F, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Held-Hoelker E, Große-Brinkhaus C, Hoelker M. The mitochondrial respiration signature of the bovine blastocyst reflects both environmental conditions of development as well as embryo quality. Sci Rep 2023; 13:19408. [PMID: 37938581 PMCID: PMC10632430 DOI: 10.1038/s41598-023-45691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
The major limitation of the widespread use of IVP derived embryos is their consistent deficiencies in vitality when compared with their ex vivo derived counterparts. Although embryo metabolism is considered a useful metric of embryo quality, research connecting mitochondrial function with the developmental capacity of embryos is still lacking. Therefore, the aim of the present study was to analyse bovine embryo respiration signatures in relation to developmental capacity. This was achieved by taking advantage of two generally accepted metrics for developmental capacity: (I) environmental conditions during development (vivo vs. vitro) and (II) developmental kinetics (day 7 vs. day 8 blastocysts). Our study showed that the developmental environment affected total embryo oxygen consumption while different morphokinetics illustrating the embryo qualities correlate with maximal mitochondrial respiration, mitochondrial spare capacity, ATP-linked respiration as well as efficiency of ATP generation. This respiration fingerprint for high embryo quality is reflected by relatively lower lipid contents and relatively higher ROS contents. In summary, the results of the present study extend the existing knowledge on the relationship between bovine embryo quality and the signature of mitochondrial respiration by considering contrasting developmental environments as well as different embryo morphokinetics.
Collapse
Affiliation(s)
- Jessica Kurzella
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Annes K, Ferreira CR, Valente RS, Marsico TV, Tannura JH, da Silveira JC, Silva FH, Landim-Alvarenga FDC, Mesquista FS, Sudano MJ. Contribution of lipids to the organelle differential profile of in vitro-produced bovine embryos. Theriogenology 2023; 208:109-118. [PMID: 37311262 DOI: 10.1016/j.theriogenology.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Each living organism is unique because of the lipid identity of its organelles. The diverse distribution of these molecules also contributes to the role of each organelle in cellular activity. The lipid profiles of whole embryos are well documented in the literature. However, this approach can often lead to the loss of relevant information at the subcellular and consequently, metabolic levels, hindering a deeper understanding of key physiological processes during preimplantation development. Therefore, we aimed to characterize four organelles in vitro-produced bovine embryos: lipid droplets (LD), endoplasmic reticulum (ER), mitochondria (MIT), and nuclear membrane (NUC), and evaluate the contribution of the lipid species to each organelle evaluated. Expanded blastocysts were subjected to cell organelle isolation. Thereafter, lipid extraction from cell organelles and lipid analysis using the Multiple Reaction Monitoring (MRM) profiling method were performed. The LD and ER displayed a greater number of lipids (Phosphatidylcholine - PC, Ceramide - Cer, and Sphingomielin - SM) with high signal-to-noise intensities. This result is due to the high rate of biosynthesis, lipid distribution, and ability to store and recycle lipid species of these organelles. The NUC had a more distinct lipid profile than the other three organelles, with high relative intensities of PC, SM, and triacylglycerols (TG), which is consistent with its high nuclear activity. MIT had an intermediate profile that was close to that of LD and ER, which aligns with its autonomous metabolism for some classes of phospholipids (PL). Our study revealed the lipid composition of each organelle studied, and the roles of these lipids could be associated with the characteristic organellar activity. Our findings highlight the lipid species and classes that are relevant for the homeostasis and function of each associated organelle and provide tentative biomarkers for the determination of in vitro embryonic development and quality.
Collapse
Affiliation(s)
- Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil; Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Christina Ramires Ferreira
- Bindley Bioscience Center, and Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil.
| | - Flávio Henrique Silva
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Fernanda da Cruz Landim-Alvarenga
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, SP, Brazil.
| | - Fernando Silveira Mesquista
- School of Veterinary Medicine, Federal University of Pampa, BR 472 - KM 592, PO Box 118, 97501-970, Uruguaiana, RS, Brazil.
| | - Mateus José Sudano
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil; Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
4
|
Berteli TS, Vireque AA, Borges ED, Da Luz CM, Navarro PA. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification. Reprod Biomed Online 2023; 46:887-902. [PMID: 37095039 DOI: 10.1016/j.rbmo.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
RESEARCH QUESTION Is the membrane lipid profile of mice blastocysts affected by ovarian stimulation, IVF and oocyte vitrification? Could supplementation of vitrification media with L-carnitine and fatty acids prevent membrane phospholipid changes in blastocysts from vitrified oocytes? DESIGN Experimental study comparing the lipid profile of murine blastocysts produced from natural mating, superovulated cycles or after IVF submitted or not to vitrification. For in-vitro experiments, 562 oocytes from superovulated females were randomly divided into four groups: fresh oocytes fertilized in vitro and vitrified groups: Irvine Scientific (IRV); Tvitri-4 (T4) or T4 supplemented with L-carnitine and fatty acids (T4-LC/FA). Fresh or vitrified-warmed oocytes were inseminated and cultured for 96 h or 120 h. The lipid profile of nine of the best quality blastocysts from each experimental group was assessed by multiple reaction monitoring profiling method. Significantly different lipids or transitions between groups were found using univariate statistics (P < 0.05; fold change = 1.5) and multivariate statistical methods. RESULTS A total of 125 lipids in blastocysts were profiled. Statistical analysis revealed several classes of phospholipids affected in the blastocysts by ovarian stimulation, IVF, oocyte vitrification, or all. L-carnitine and fatty acid supplements prevented, to a certain extent, changes in phospholipid and sphingolipid contents in the blastocysts. CONCLUSION Ovarian stimulation alone, or in association with IVF, promoted changes in phospholipid profile and abundance of blastocysts. A short exposure time to the lipid-based solutions during oocyte vitrification was sufficient to induce changes in the lipid profile that were sustained until the blastocyst stage.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil..
| | - Alessandra A Vireque
- Invitra - Assisted Reproductive Technologies Ltd - Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo D Borges
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Caroline M Da Luz
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Paula A Navarro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
5
|
Gitta S, Márk L, Szentpéteri JL, Szabó É. Lipid Changes in the Peri-Implantation Period with Mass Spectrometry Imaging: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010169. [PMID: 36676119 PMCID: PMC9866151 DOI: 10.3390/life13010169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mass spectrometry imaging is a sensitive method for detecting molecules in tissues in their native form. Lipids mainly act as energy stores and membrane constituents, but they also play a role in lipid signaling. Previous studies have suggested an important role of lipids in implantation; therefore, our aim was to investigate the lipid changes during this period based on the available literature. The systematic literature search was performed on Ovid MEDLINE, Cochrane Library, Embase, and LILACS. We included studies about lipid changes in the early embryonal stage of healthy mammalian development published as mass spectrometry imaging. The search retrieved 917 articles without duplicates, and five articles were included in the narrative synthesis of the results. Two articles found a different spatial distribution of lipids in the early bovine embryo and receptive uterus. Three articles investigated lipids in mice in the peri-implantation period and found a different spatial distribution of several glycerophospholipids in both embryonic and maternal tissues. Although only five studies from three different research groups were included in this systematic review, it is clear that the spatial distribution of lipids is diverse in different tissues and their distribution varies from day to day. This may be a key factor in successful implantation, but further studies are needed to elucidate the exact mechanism.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Human Reproduction Laboratory, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Research Group, University of Pécs, 7624 Pécs, Hungary
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
6
|
Ghanem N, Fakruzzaman M, Batawi AH, Kong IK. Post-thaw viability, developmental and molecular deviations in in vitro produced bovine embryos cultured with l-carnitine at different levels of fetal calf serum. Theriogenology 2022; 191:54-66. [DOI: 10.1016/j.theriogenology.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
7
|
Effect of DHA on the quality of In vitro produced bovine embryos. Theriogenology 2022; 187:102-111. [DOI: 10.1016/j.theriogenology.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
|
8
|
Ispada J, Milazzotto MP. Silencing mark H3K27me3 is differently reprogrammed in bovine embryos with distinct kinetics of development. Reprod Domest Anim 2021; 57:333-336. [PMID: 34854135 DOI: 10.1111/rda.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
The kinetics of the first cleavages is a predictor of blastocyst development and implantation. For bovine embryos, this attribute was previously related to distinct metabolic, molecular and epigenetic profiles, including DNA and histone modifications. In the present work, we described the dynamics of trimethylation of lysine 27 on histone H3 (H3K27me3) in fast and slow developing embryos and verified if this epigenetic mark was also influenced by the speed of the first cleavages. In vitro-produced bovine embryos were classified as fast (4 or more cells) or slow (2 cells) at 40 hr post fertilization (hpf) and either collected or cultured until 96 hpf or 186 hpf. Immunofluorescence analysis was performed in these three time points and showed that although both groups presented the same levels of H3K27me3 at 40 hpf, slow embryos presented a pronounced increase in this mark at 186 hpf when compared to fast embryos, resulting in blastocysts with remarkable differences in H3K27me3 levels. In conclusion, the increased levels of this repressive histone post-translation modification (PTM) might be an attempt of slow embryos to promote gene expression control and chromatin integrity, since it was already reported that these embryos present reduced levels of other epigenetic repressive marks as DNA methylation and trimethylation of lysine 9 on histone H3 (H3K9me3).
Collapse
Affiliation(s)
- Jessica Ispada
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| | - Marcella Pecora Milazzotto
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| |
Collapse
|
9
|
Rosa CO, Costa CB, de Lima CB, da Silva CB, Zangirolamo AF, Ferreira CR, Seneda MM. Lipid profile of in vitro embryos produced from Bos indicus cows with low and high antral follicle counts. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions. Int J Mol Sci 2021; 22:ijms22073421. [PMID: 33810351 PMCID: PMC8038040 DOI: 10.3390/ijms22073421] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which likely affects lipid metabolism. Increased lipid accumulation in in vitro produced embryos is a consequence of the stress during in vitro embryonic development process. There are several open questions concerning embryo lipid metabolism and developmental potential. Oocyte maturation and embryo development in vivo and in vitro may vary if the donors are subjected to any type of stress before follicle puncture because crucial changes in oocyte/embryonic metabolism occur in response to stress. However, little is known about lipid metabolism under additional stress (such as heat stress). Therefore, in this review, we aimed to update the information regarding the energy metabolism of oocytes and early bovine embryos exhibiting developmental competence, focusing on lipid metabolic pathways observed under in vivo, in vitro, and stress conditions.
Collapse
|
11
|
Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct Fluid Extracellular Vesicles Change the Phospholipid Composition of Bovine Embryos Developed In Vitro. Int J Mol Sci 2020; 21:ijms21155326. [PMID: 32727074 PMCID: PMC7432015 DOI: 10.3390/ijms21155326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization—Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- Union Evolution, F-35530 Noyal-Sur-Vilaine, France;
| | | | - Ophélie Bernardi
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
| | - Daniel Tomas
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, F-37380 Nouzilly, France
| | - Valérie Labas
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, F-37380 Nouzilly, France
| | | | | | - Pascal Mermillod
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- Department Agrosciences, Faculty of Sciences and Techniques, University of Tours, F-37200 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|