1
|
Laurell AAS, Mak E, O'Brien JT. A systematic review of diffusion tensor imaging and tractography in dementia with Lewy bodies and Parkinson's disease dementia. Neurosci Biobehav Rev 2025; 169:106007. [PMID: 39793681 DOI: 10.1016/j.neubiorev.2025.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
We reviewed studies using diffusion tensor imaging (DTI) and tractography to characterise white matter changes in Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD). The search included MEDLINE and EMBASE, and we used a narrative strategy to synthesise the evidence. Data was extracted from 57 studies, of which the majority were considered 'good quality'. Subjects with DLB and PDD had widespread white matter changes compared to healthy controls and Parkinson's disease without cognitive impairment, with a relative sparing of the hippocampus. Compared to subjects with Alzheimer's disease (AD), DLB had greater changes in thalamic connectivity and in the nigroputaminal tract, while AD had greater changes in the parahippocampal white matter and fornix. Cognition was associated with widespread white matter changes, visual hallucinations with thalamic and cholinergic connectivity, and parkinsonism with changes in structures involved in motor control. DTI and tractography may therefore be well suited for discriminating DLB and PDD from other types of dementia, and for studying the aetiology of common symptoms.
Collapse
Affiliation(s)
- Axel A S Laurell
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom.
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
2
|
He Y, Liu X, Liu F, Che P, Zhang Y, Fan R, Li Y, Qin W, Zhang N. Associations of plasma biomarkers with cerebral perfusion and structure in Alzheimer's disease. Transl Psychiatry 2025; 15:2. [PMID: 39762217 PMCID: PMC11704010 DOI: 10.1038/s41398-024-03220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity. Forty-eight AD patients whose diagnosis was supported by amyloid-β (Aβ) PET received measurement of plasma biomarkers with a single molecular array, including Aβ42, phosphorylated tau 181 (P-tau181), neurofilament light (NfL), total tau (T-tau), and glial fibrillary acidic protein (GFAP), and both baseline and one-year follow-up magnetic resonance imaging, including pseudo-continuous arterial spin labeling, T1-weighted imaging, and diffusion tensor imaging. Correlations were found between regional CBF and several plasma biomarkers, with Aβ42 showing the strongest correlation with CBF in the left inferior temporal gyrus (r = 0.507, p = 0.001). Plasma P-tau181 and GFAP levels were correlated with GM volume in the posterior cingulate gyrus and the bilateral hippocampus and right middle temporal gyrus, respectively. Decreased CBF and GM volume in regions vulnerable to AD, such as the posterior cingulate gyrus, inferior parietal lobule and hippocampus, could be predicted by the levels of specific plasma biomarkers. Most biomarkers, except Aβ42, showed extensive correlations with longitudinal WM disruption. Plasma biomarkers exhibited varied correlations with brain perfusion, GM volume, and WM integrity and predicted their longitudinal changes in AD patients, suggesting their potential to reflect functional and structural changes and to monitor pathophysiological progression in the brain.
Collapse
Affiliation(s)
- Yong He
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojiao Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Che
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruxue Fan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
Chen Y, Wang Y, Song Z, Fan Y, Gao T, Tang X. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review. Ageing Res Rev 2023; 87:101911. [PMID: 36931328 DOI: 10.1016/j.arr.2023.101911] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease in elderly individuals. Subjective cognitive decline (SCD), mild cognitive impairment (MCI) and further development to dementia (d-AD) are considered to be major stages of the progressive pathological development of AD. Diffusion tensor imaging (DTI), one of the most important modalities of MRI, can describe the microstructure of white matter through its tensor model. It is widely used in understanding the central nervous system mechanism and finding appropriate potential biomarkers for the early stages of AD. Based on the multilevel analysis methods of DTI (voxelwise, fiberwise and networkwise), we summarized that AD patients mainly showed extensive microstructural damage, structural disconnection and topological abnormalities in the corpus callosum, fornix, and medial temporal lobe, including the hippocampus and cingulum. The diffusion features and structural connectomics of specific regions can provide information for the early assisted recognition of AD. The classification accuracy of SCD and normal controls can reach 92.68% at present. And due to the further changes of brain structure and function, the classification accuracy of MCI, d-AD and normal controls can reach more than 97%. Finally, we summarized the limitations of current DTI-based AD research and propose possible future research directions.
Collapse
Affiliation(s)
- Yu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifei Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zeyu Song
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Moonis G, Subramaniam RM, Trofimova A, Burns J, Bykowski J, Chakraborty S, Holloway K, Ledbetter LN, Lee RK, Pannell JS, Pollock JM, Powers WJ, Roca RP, Rosenow JM, Shih RY, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Dementia. J Am Coll Radiol 2020; 17:S100-S112. [PMID: 32370954 DOI: 10.1016/j.jacr.2020.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Degenerative disease of the central nervous system is a growing public health concern. The primary role of neuroimaging in the workup of patients with probable or possible Alzheimer disease has typically been to exclude other significant intracranial abnormalities. In general, the imaging findings in structural studies, such as MRI, are nonspecific and have limited potential in differentiating different types of dementia. Advanced imaging methods are not routinely used in community or general practices for the diagnosis or differentiation of forms of dementia. Nonetheless, in patients who have been evaluated by a dementia expert, FDG-PET helps to distinguish Alzheimer disease from frontotemporal dementia. In patients with suspected dementia with Lewy bodies, functional imaging of the dopamine transporter (ioflupane) using SPECT may be helpful. In patients with suspected normal-pressure hydrocephalus, DTPA cisternography and HMPAO SPECT/CT brain may provide assessment. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Gul Moonis
- Columbia University Medical Center, New York, New York.
| | | | | | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | - Kathryn Holloway
- MCVH-Virginia Commonwealth University, Richmond, Virginia; Neurosurgery Expert
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology
| | - Robert P Roca
- Sheppard Pratt Health System, Towson, Maryland; American Psychiatric Association
| | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery Expert
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Nicastro N, Mak E, Williams GB, Surendranathan A, Bevan-Jones WR, Passamonti L, Vàzquez Rodrìguez P, Su L, Arnold R, Fryer TD, Hong YT, Aigbirhio FI, Rowe JB, O'Brien JT. Correlation of microglial activation with white matter changes in dementia with Lewy bodies. Neuroimage Clin 2020; 25:102200. [PMID: 32032816 PMCID: PMC7005463 DOI: 10.1016/j.nicl.2020.102200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023]
Abstract
Dementia with Lewy bodies (DLB) is characterized by alpha-synuclein protein deposition with variable degree of concurrent Alzheimer's pathology. Neuroinflammation is also increasingly recognized as a significant contributor to degeneration. We aimed to examine the relationship between microglial activation as measured with [11C]-PK11195 brain PET, MR diffusion tensor imaging (DTI) and grey matter atrophy in DLB. Nineteen clinically probable DLB and 20 similarly aged controls underwent 3T structural MRI (T1-weighted) and diffusion-weighted imaging. Eighteen DLB subjects also underwent [11C]-PK11195 PET imaging and 15 had [11C]-Pittsburgh compound B amyloid PET, resulting in 9/15 being amyloid-positive. We used Computational Anatomy Toolbox (CAT12) for volume-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) for DTI to assess group comparisons between DLB and controls and to identify associations of [11C]-PK11195 binding with grey/white matter changes and cognitive score in DLB patients. VBM analyses showed that DLB had extensive reduction of grey matter volume in superior frontal, temporal, parietal and occipital cortices (family-wise error (FWE)-corrected p < 0.05). TBSS showed widespread changes in DLB for all DTI parameters (reduced fractional anisotropy, increased diffusivity), involving the corpus callosum, corona radiata and superior longitudinal fasciculus (FWE-corrected p < 0.05). Higher [11C]-PK11195 binding in parietal cortices correlated with widespread lower mean and radial diffusivity in DLB patients (FWE-corrected p < 0.05). Furthermore, preserved cognition in DLB (higher Addenbrookes Cognitive Evaluation revised score) also correlated with higher [11C]-PK11195 binding in frontal, temporal, and occipital lobes. However, microglial activation was not significantly associated with grey matter changes. Our study suggests that increased microglial activation is associated with a relative preservation of white matter and cognition in DLB, positioning neuroinflammation as a potential early marker of DLB etio-pathogenesis.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, UK,Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, UK
| | | | | | | | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Consiglio Nazionale delle Ricerche (CNR), Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milano, Italy
| | | | - Li Su
- Department of Psychiatry, University of Cambridge, UK,China-UK Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Robert Arnold
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D. Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T. Hong
- Wolfson Brain Imaging Centre, University of Cambridge, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - John T. O'Brien
- Department of Psychiatry, University of Cambridge, UK,Corresponding author at: Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge CB2 0SP, United Kingdom.
| |
Collapse
|
7
|
PD and DLB: Brain imaging in Parkinson's disease and dementia with Lewy bodies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:167-185. [DOI: 10.1016/bs.pmbts.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Balážová Z, Nováková M, Minsterová A, Rektorová I. Structural and Functional Magnetic Resonance Imaging of Dementia With Lewy Bodies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 144:95-141. [PMID: 30638458 DOI: 10.1016/bs.irn.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Although diagnosis may be challenging, there is increasing evidence that the use of biomarkers according to 2017 revised criteria for diagnosis and management of dementia with Lewy bodies can increase diagnostic accuracy. Apart from nuclear medicine techniques, various magnetic resonance imaging (MRI) techniques have been utilized in attempt to enhance diagnostic accuracy. This chapter reviews structural, functional and diffusion MRI studies in DLB cohorts being compared to healthy controls, AD or dementia in Parkinson's disease (PDD). We also included relatively new MRI methods that may have potential to identify early DLB subjects and aim at examining brain iron and neuromelanin.
Collapse
Affiliation(s)
- Zuzana Balážová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Brno, Czech Republic
| | - Marie Nováková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Alžběta Minsterová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
9
|
Suri S, Topiwala A, Mackay CE, Ebmeier KP, Filippini N. Using structural and diffusion magnetic resonance imaging to differentiate the dementias. Curr Neurol Neurosci Rep 2015; 14:475. [PMID: 25030502 DOI: 10.1007/s11910-014-0475-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dementia is one of the major causes of personal, societal and financial dependence in older people and in today's ageing society there is a pressing need for early and accurate markers of cognitive decline. There are several subtypes of dementia but the four most common are Alzheimer's disease, Lewy body dementia, vascular dementia and frontotemporal dementia. These disorders can only be diagnosed at autopsy, and ante-mortem assessments of "probable dementia (e.g. of Alzheimer type)" are traditionally driven by clinical symptoms of cognitive or behavioural deficits. However, owing to the overlapping nature of symptoms and age of onset, a significant proportion of dementia cases remain incorrectly diagnosed. Misdiagnosis can have an extensive impact, both at the level of the individual, who may not be offered the appropriate treatment, and on a wider scale, by influencing the entry of patients into relevant clinical trials. Magnetic resonance imaging (MRI) may help to improve diagnosis by providing non-invasive and detailed disease-specific markers of cognitive decline. MRI-derived measurements of grey and white matter structural integrity are potential surrogate markers of disease progression, and may also provide valuable diagnostic information. This review summarises the latest evidence on the use of structural and diffusion MRI in differentiating between the four major dementia subtypes.
Collapse
Affiliation(s)
- Sana Suri
- Department of Psychiatry, Warneford Hospital, Warneford Lane, University of Oxford, Oxford, OX3 7JX, UK
| | | | | | | | | |
Collapse
|