1
|
Gabriel V, Bousiges O, Mondino M, Cretin B, Philippi N, Muller C, Anthony P, Demuynck C, de Sousa PL, Botzung A, Sanna L, Chabran E, Blanc F. Aβ42 biomarker linked to insula, striatum, thalamus and claustrum in dementia with Lewy bodies. GeroScience 2025:10.1007/s11357-025-01513-z. [PMID: 39821801 DOI: 10.1007/s11357-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The differential mechanisms between proteinopathies and neurodegeneration in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remain unclear. To address this issue, we conducted a voxel-based morphometry and cerebrospinal fluid biomarker (α-synuclein, Aβ42, t-Tau and p-Tau181) level correlation study in patients with DLB, AD and mixed cases (AD + DLB). Cerebrospinal fluid samples obtained by lumbar puncture and whole-brain T1-weighted images were collected in the AlphaLewyMA cohort. Within the cohort, 65 DLB patients, 18 AD patients, 24 AD + DLB patients and 16 neurological control subjects (NC) were clinically diagnosed. Correlation analyses were performed between cerebrospinal fluid biomarker levels and gray matter volumes using a voxel-based morphometry approach. A mediation analysis was performed to explore the role of gray matter volumes in the relationship between Aβ42 levels and clinical severity (MMSE scores). We observed a significant positive correlation between gray matter volumes and cerebrospinal fluid Aβ42 levels in the insula, the striatal regions, the right thalamus, and the claustrum in DLB patients (pFDR < 0.05). Mediation analysis revealed that gray matter volumes significantly mediated the relationship between Aβ42 levels and MMSE scores in DLB patients. We found no significant correlation with gray matter volumes for α-synuclein, p-Tau181 or t-Tau in DLB patients (pFDR < 0.05). We found no significant correlations in the AD, AD + DLB and NC groups for any of the biomarkers (pFDR < 0.05). The specific correlation between a reduced cerebrospinal fluid Aβ42 level and lower gray matter volumes in insula, striatum, thalamus, and claustrum in DLB patients suggests a prominent role for amyloidopathy in promoting brain atrophy in key regions of the disease.
Collapse
Affiliation(s)
- Vincent Gabriel
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France.
| | - Olivier Bousiges
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
- CM2R, Geriatric Day Hospital, Geriatrics Division, Civil Hospitals of Colmar, Colmar, France
| | - Catherine Demuynck
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Léa Sanna
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Eléna Chabran
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Thompson R, Tong X, Shen X, Ran J, Sun S, Yao XI, Shen C. Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank. ENVIRONMENT INTERNATIONAL 2025; 195:109219. [PMID: 39732110 DOI: 10.1016/j.envint.2024.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Although there is increasing evidence that environmental exposures are associated with the risk of neurodegenerative conditions, there is still limited mechanistic evidence evaluating potential mediators in human populations. METHODS UK Biobank is a large long-term study of 500,000 adults enrolled from 2006 to 2010 age 40-69 years. ICD-10 classified reports of dementia cases up to 2022 (Alzheimer's disease, vascular dementia, dementia in other classified diseases, and unspecified dementia) were identified from health record linkage. Estimates of residential air pollution, traffic noise, and greenspace exposure have been modelled. Structural brain MRI was conducted from 2014 to 2022, with brain volumes relevant to dementia identified a priori. Associations between environmental exposures, brain volumes, and dementia cases (diagnosed post-MRI) were tested using linear and logistic regression and adjusted for age, sex, household income, ethnicity, education, smoking, and area-level deprivation. Mediation of exposure-outcome associations by plausible brain volumes (those associated with both environmental exposure and dementia outcomes) were modelled using the quasi-Bayesian Monte Carlo method (N = 34,817-39,772). RESULTS Small but significant mediating effects (2%-8% of relationships mediated) were observed between PM2.5abs exposure and dementia risk by reduced total brain volume, NOx and Alzheimer's disease risk by reduced peripheral cortical grey matter, PM2.5abs and vascular dementia risk by reduced peripheral cortical grey matter, PM2.5abs and other dementia risk by reduced total grey matter, and PM10 and other dementia risk by reduced total grey matter. Greenspace and noise were not associated with dementia outcomes in the subset of the cohort providing brain imaging data. CONCLUSIONS This study adds to existing evidence of associations between environmental exposures and dementia outcomes. Our findings provide novel evidence that differences in brain volume may mediate these relationships. Future research is required to prove this mechanism and establish the other mechanisms through which exposure to air pollution might increase dementia risk.
Collapse
Affiliation(s)
- Rhiannon Thompson
- National Institute for Health Research (NIHR) School for Public Health Research (NIHR SPHR), UK; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Xinning Tong
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, China
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoxin Iris Yao
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, China.
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK.
| |
Collapse
|
3
|
Ramnauth AD, Tippani M, Divecha HR, Papariello AR, Miller RA, Nelson ED, Pattie EA, Kleinman JE, Maynard KR, Collado-Torres L, Hyde TM, Martinowich K, Hicks SC, Page SC. Spatiotemporal analysis of gene expression in the human dentate gyrus reveals age-associated changes in cellular maturation and neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567883. [PMID: 38045413 PMCID: PMC10690172 DOI: 10.1101/2023.11.20.567883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The dentate gyrus of the hippocampus is important for many cognitive functions, including learning, memory, and mood. Here, we investigated age-associated changes in transcriptome-wide spatial gene expression in the human dentate gyrus across the lifespan. Genes associated with neurogenesis and the extracellular matrix were enriched in infants, while gene markers of inhibitory neurons and cell proliferation showed increases and decreases in post-infancy, respectively. While we did not find evidence for neural proliferation post-infancy, we did identify molecular signatures supporting protracted maturation of granule cells. We also identified a wide-spread hippocampal aging signature and an age-associated increase in genes related to neuroinflammation. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.
Collapse
|
4
|
De Francesco S, Crema C, Archetti D, Muscio C, Reid RI, Nigri A, Bruzzone MG, Tagliavini F, Lodi R, D'Angelo E, Boeve B, Kantarci K, Firbank M, Taylor JP, Tiraboschi P, Redolfi A. Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA. Sci Rep 2023; 13:17355. [PMID: 37833302 PMCID: PMC10575864 DOI: 10.1038/s41598-023-43706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.
Collapse
Affiliation(s)
- Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Claudio Crema
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Damiano Archetti
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Muscio
- ASST Bergamo Ovest, Bergamo, Italy
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Firbank
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Pietro Tiraboschi
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
5
|
Ferreira D, Przybelski SA, Lesnick TG, Schwarz CG, Diaz-Galvan P, Graff-Radford J, Senjem ML, Fields JA, Knopman DS, Jones DT, Savica R, Ferman TJ, Graff-Radford N, Lowe VJ, Jack CR, Petersen RC, Westman E, Boeve BF, Kantarci K. Cross-sectional Associations of β-Amyloid, Tau, and Cerebrovascular Biomarkers With Neurodegeneration in Probable Dementia With Lewy Bodies. Neurology 2023; 100:e846-e859. [PMID: 36443011 PMCID: PMC9984215 DOI: 10.1212/wnl.0000000000201579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although alpha-synuclein-related pathology is the hallmark of dementia with Lewy bodies (DLB), cerebrovascular and Alzheimer disease pathologies are common in patients with DLB. Little is known about the contribution of these pathologies to neurodegeneration in DLB. We investigated associations of cerebrovascular, β-amyloid, and tau biomarkers with gray matter (GM) volume in patients with probable DLB. METHODS We assessed patients with probable DLB and cognitively unimpaired (CU) controls with 11C-Pittsburgh compound B (PiB) and 18F-flortaucipir PET as markers of β-amyloid and tau, respectively. MRI was used to assess white matter hyperintensity (WMH) volume (a marker of cerebrovascular lesion load) and regional GM volume (a marker of neurodegeneration). We used correlations and analysis of covariance (ANCOVA) in the entire cohort and structural equation models (SEMs) in patients with DLB to investigate associations of WMH volume and regional β-amyloid and tau PET standardized uptake value ratios (SUVrs) with regional GM volume. RESULTS We included 30 patients with DLB (69.3 ± 10.2 years, 87% men) and 100 CU controls balanced on age and sex. Compared with CU controls, patients with DLB showed a lower GM volume across all cortical and subcortical regions except for the cuneus, putamen, and pallidum. A larger WMH volume was associated with a lower volume in the medial and orbital frontal cortices, insula, fusiform cortex, and thalamus in patients with DLB. A higher PiB SUVr was associated with a lower volume in the inferior temporal cortex, while flortaucipir SUVr did not correlate with GM volume. SEMs showed that a higher age and absence of the APOE ε4 allele were significant predictors of higher WMH volume, and WMH volume in turn was a significant predictor of GM volume in medial and orbital frontal cortices, insula, and inferior temporal cortex. By contrast, we observed 2 distinct paths for the fusiform cortex, with age having an effect through PiB and flortaucipir SUVr on one path and through WMH volume on the other path. DISCUSSION Patients with probable DLB have widespread cortical atrophy, most of which is likely influenced by alpha-synuclein-related pathology. Although cerebrovascular, β-amyloid, and tau pathologies often coexist in probable DLB, their contributions to neurodegeneration seem to be region specific.
Collapse
Affiliation(s)
- Daniel Ferreira
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Scott A Przybelski
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Timothy G Lesnick
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Christopher G Schwarz
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Patricia Diaz-Galvan
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jonathan Graff-Radford
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Matthew L Senjem
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Julie A Fields
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David S Knopman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David T Jones
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Rodolfo Savica
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tanis J Ferman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Neill Graff-Radford
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Val J Lowe
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Clifford R Jack
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Ronald C Petersen
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Eric Westman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Brad F Boeve
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Kejal Kantarci
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
6
|
Inguanzo A, Poulakis K, Mohanty R, Schwarz CG, Przybelski SA, Diaz-Galvan P, Lowe VJ, Boeve BF, Lemstra AW, van de Beek M, van der Flier W, Barkhof F, Blanc F, Loureiro de Sousa P, Philippi N, Cretin B, Demuynck C, Nedelska Z, Hort J, Segura B, Junque C, Oppedal K, Aarsland D, Westman E, Kantarci K, Ferreira D. MRI data-driven clustering reveals different subtypes of Dementia with Lewy bodies. NPJ Parkinsons Dis 2023; 9:5. [PMID: 36670121 PMCID: PMC9859778 DOI: 10.1038/s41531-023-00448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative disorder with a wide heterogeneity of symptoms, which suggests the existence of different subtypes. We used data-driven analysis of magnetic resonance imaging (MRI) data to investigate DLB subtypes. We included 165 DLB from the Mayo Clinic and 3 centers from the European DLB consortium and performed a hierarchical cluster analysis to identify subtypes based on gray matter (GM) volumes. To characterize the subtypes, we used demographic and clinical data, as well as β-amyloid, tau, and cerebrovascular biomarkers at baseline, and cognitive decline over three years. We identified 3 subtypes: an older subtype with reduced cortical GM volumes, worse cognition, and faster cognitive decline (n = 49, 30%); a subtype with low GM volumes in fronto-occipital regions (n = 76, 46%); and a subtype of younger patients with the highest cortical GM volumes, proportionally lower GM volumes in basal ganglia and the highest frequency of cognitive fluctuations (n = 40, 24%). This study shows the existence of MRI subtypes in DLB, which may have implications for clinical workout, research, and therapeutic decisions.
Collapse
Grants
- R01 AG041851 NIA NIH HHS
- C06 RR018898 NCRR NIH HHS
- P50 AG016574 NIA NIH HHS
- R01 AG040042 NIA NIH HHS
- R01 NS080820 NINDS NIH HHS
- R37 AG011378 NIA NIH HHS
- U01 NS100620 NINDS NIH HHS
- U01 AG006786 NIA NIH HHS
- Alzheimerfonden
- Center for Innovative Medicine (CIMED) Swedish Brain funding (Hjärnfonden) ALF Medicine Swedish Dementia funding (Demensförbundet) Foundation for Geriatric Diseases at Karolinska Institutet Karolinska Institutet travel grants
- Little Family Foundation
- National Institutes of Health (U01-NS100620, P50-AG016574, U01-AG006786, R37-AG011378, R01-AG041851, R01-AG040042, C06-RR018898 and R01-NS080820), Foundation Dr. Corinne Schuler, the Mangurian Foundation for Lewy Body Research, the Elsie and Marvin Dekelboum Family Foundation, the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer’s Disease Research Program
- Projet Hospitalier de Recherche Clinique (PHRC, IDCRB 2012-A00992-41) and Fondation Université de Strasbourg
- The Grant Agency of Charles University (grant PRIMUS 22/MED/011).
- Western Norway Regional Health Authority, the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR)Center for Innovative Medicine (CIMED), the Swedish Brain funding (Hjärnfonden), ALF Medicine.
Collapse
Affiliation(s)
- Anna Inguanzo
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Medical Psychology Unit, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Patricia Diaz-Galvan
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Marleen van de Beek
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Wiesje van der Flier
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
- UCL institutes of neurology and center for medical image computing, London, UK
| | - Frederic Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Center (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and French National Center for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Paulo Loureiro de Sousa
- Day Hospital of Geriatrics, Memory Resource and Research Center (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and French National Center for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Nathalie Philippi
- Day Hospital of Geriatrics, Memory Resource and Research Center (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and French National Center for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Benjamin Cretin
- Day Hospital of Geriatrics, Memory Resource and Research Center (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and French National Center for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Catherine Demuynck
- Day Hospital of Geriatrics, Memory Resource and Research Center (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and French National Center for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Zuzana Nedelska
- Department of Radiology, Mayo Clinic, Rochester, MN, US
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Annes University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Annes University Hospital Brno, Brno, Czech Republic
| | - Barbara Segura
- Medical Psychology Unit, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carme Junque
- Medical Psychology Unit, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ketil Oppedal
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Stavanger Medical Imaging Laboratory (SMIL), Department of Radiology, Stavanger University Hospital, Stavanger, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Dag Aarsland
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | | | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiology, Mayo Clinic, Rochester, MN, US.
| |
Collapse
|
7
|
Constant AB, Basavaraju R, France J, Honig LS, Marder KS, Provenzano FA. Longitudinal Patterns of Cortical Atrophy on MRI in Patients With Alzheimer Disease With and Without Lewy Body Pathology. Neurology 2022; 99:e1843-e1852. [PMID: 36123123 PMCID: PMC9620811 DOI: 10.1212/wnl.0000000000200947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although Alzheimer disease (AD) and dementia with Lewy bodies (DLBs) represent 2 different pathologies, they have clinical overlap, and there is a significant degree of co-occurrence of their neuropathologic findings. Many studies have examined imaging characteristics in clinically diagnosed patients; however, there is a relative lack of longitudinal studies that have studied patients with pathologic confirmation. We examined whether there were differences in longitudinal patterns of cortical atrophy between patients with both AD and DLB (AD/DLB) vs those with AD alone. METHODS We collected and analyzed clinical and neuroimaging data from the AD Neuroimaging Initiative (ADNI) database for patients who underwent autopsy. The rates of change in various neuropsychological assessments were not significantly different between patients with AD/DLB and AD, and each group had neuropsychological outcomes consistent with disease progression. For our neuroimaging analysis, we used a linear mixed-effects model to examine whether there were longitudinal differences in cortical rates of atrophy between patients with AD/DLB and AD. RESULTS Autopsies and serial neuroimaging were available on 48 patients (24 AD and 24 AD/DLB). Patients with AD alone had significantly higher atrophy rates in the left cuneus, lateral occipital, and parahippocampal regions over time when compared with patients with concomitant DLB, after covarying for interval from imaging to autopsy, sex, and total estimated intracranial volume. Site ID was included as a random effect to account for site differences. For these regions, the rate of decline over time in the AD/DLB group was less steep by a difference of 0.1887, 0.395, and 0.0989, respectively (p = 0.022, 0.006, and 0.006). The lattermost left cuneus volume measurement and Braak Lewy score had a Pearson product-moment correlation of 0.37, p = 0.009, while the lattermost left parahippocampal volume measurement and Braak neurofibrillary tangle score had a Pearson product-moment correlation of -0.327, p = 0.02. DISCUSSION Patients with AD had more significant atrophy in the left cuneus, lateral occipital, and parahippocampal regions when compared with patients with AD/DLB. These regions are known to distinguish DLB and AD pathology cross-sectionally but here are shown to distinguish longitudinal disease progression.
Collapse
Affiliation(s)
- Allison Beers Constant
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Rakshathi Basavaraju
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Jeanelle France
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Lawrence S Honig
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Karen S Marder
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Frank Anthony Provenzano
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY.
| |
Collapse
|
8
|
Reorganization of rich clubs in functional brain networks of dementia with Lewy bodies and Alzheimer's disease. Neuroimage Clin 2021; 33:102930. [PMID: 34959050 PMCID: PMC8856913 DOI: 10.1016/j.nicl.2021.102930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
DLB and AD had the different functional reorganization patterns. Rich club nodes increased in frontal-parietal network in patients with DLB. The rich club nodes in temporal lobe decreased and those in cerebellum increased for AD. Compared with HC, rich club connectivity was enhanced in the DLB and AD groups.
The purpose of this study was to reveal the patterns of reorganization of rich club organization in brain functional networks in dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD). The study found that the rich club node shifts from sensory/somatomotor network to fronto-parietal network in DLB. For AD, the rich club nodes switch between the temporal lobe with obvious structural atrophy and the frontal lobe, parietal lobe and cerebellum with relatively preserved structure and function. In addition, compared with healthy controls, rich club connectivity was enhanced in the DLB and AD groups. The connection strength of DLB patients was related to cognitive assessment. In conclusion, we revealed the different functional reorganization patterns of DLB and AD. The conversion and redistribution of rich club members may play a causal role in disease-specific outcomes. It may be used as a potential biomarker to provide more accurate prevention and treatment strategies.
Collapse
|
9
|
Zhang S, Fan W, Hu H, Wen L, Gong M, Liu B, Hu J, Li G, Zhang D. Subcortical Volume Changes in Early Menopausal Women and Correlation With Neuropsychological Tests. Front Aging Neurosci 2021; 13:738679. [PMID: 34955807 PMCID: PMC8692945 DOI: 10.3389/fnagi.2021.738679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background: The aging process and declining estradiol levels are two important factors that cause structural brain alterations. Many prior studies have investigated these two elements and revealed controversial results in menopausal women. Here, a cross-sectional study was designed to individually evaluate estradiol-related structural changes in the brain. Methods: A total of 45 early menopausal women and 54 age-matched premenopausal controls were enrolled and subjected to magnetic resonance imaging (MRI) scans, blood biochemistry tests, and neuropsychological tests. MRI structural images were analyzed using FreeSurfer to detect changes in subcortical and cortical volumes as well as cortical thickness. Finally, structural brain data as well as clinical and neuropsychological data were used for Pearson's correlation analyses to individually determine estradiol-related structural and functional changes in the brains of early menopausal women. Results: Compared with the premenopausal controls, the early menopausal women showed significant subcortical volumetric loss in the left amygdala and right amygdala, higher serum follicle-stimulating hormone (FSH) levels, more recognizable climacteric and depressive symptoms, decreased quality of sleep, and decreased working memory and executive functions. Simultaneously, FSH levels were related to lower working memory accuracy and longer working memory reaction time. Decreased subcortical volume in the bilateral amygdala was also related to lower working memory accuracy and longer executive reaction time in early menopausal women. Conclusion: The data suggest that estradiol deficiency in early menopausal women can lead to subcortical volume and functional brain changes, which may contribute to further understanding the neurobiological role of declined estradiol levels in early menopausal women.
Collapse
Affiliation(s)
- Si Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Weijie Fan
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Hao Hu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Li Wen
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Mingfu Gong
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Bo Liu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Junhao Hu
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Guanghui Li
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| | - Dong Zhang
- Department of Radiology, XinQiao Hosptial, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Chabran E, Mondino M, Noblet V, Degiorgis L, Loureiro de Sousa P, Blanc F. Microstructural changes in prodromal dementia with Lewy bodies compared to normal aging: multiparametric quantitative MRI evidences. Eur J Neurosci 2021; 55:611-623. [PMID: 34888964 DOI: 10.1111/ejn.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
Dementia with Lewy bodies (DLB) patients show few significant macroscopic structural changes, especially at the early stages of the disease, making quantitative MRI especially interesting to explore more subtle changes that are not detectable by conventional volumetric techniques. Microstructural alterations have been reported in DLB at the dementia stage, but no study to date was conducted in prodromal patients. Here, quantitative MRI data were collected from 46 DLB prodromal patients and 20 healthy elderly subjects, who also underwent a detailed clinical examination including the Mayo Clinic Fluctuation Scale. We conducted voxel-wise between-group comparisons in diffusion tensor imaging (DTI) metrics and in R2* mapping, along with a multivariate analysis combining the two modalities. We highlighted multiple grey matter and white matter microstructural changes in DLB patients at the prodromal stage, compared to control subjects. Our multivariate analysis identified three distinct regional patterns of DTI and R2* changes (anterior, anteromedial, posterior) in DLB patients, that could reflect different neuropathological processes across brain regions. We also observed an association between R2* alterations in the thalamus, and the severity of fluctuations, in the DLB group. These preliminary findings are promising and require future investigations to better understand the biological underpinnings of microstructural alterations.
Collapse
Affiliation(s)
- Eléna Chabran
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Vincent Noblet
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Laetitia Degiorgis
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France.,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Ma WY, Tian MJ, Yao Q, Li Q, Tang FY, Xiao CY, Shi JP, Chen J. Neuroimaging alterations in dementia with Lewy bodies and neuroimaging differences between dementia with Lewy bodies and Alzheimer's disease: An activation likelihood estimation meta-analysis. CNS Neurosci Ther 2021; 28:183-205. [PMID: 34873859 PMCID: PMC8739049 DOI: 10.1111/cns.13775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of this study was to identify brain regions with local, structural, and functional abnormalities in dementia with Lewy bodies (DLB) and uncover the differences between DLB and Alzheimer's disease (AD). The neural networks involved in the identified abnormal brain regions were further described. Methods PubMed, Web of Science, OVID, Science Direct, and Cochrane Library databases were used to identify neuroimaging studies that included DLB versus healthy controls (HCs) or DLB versus AD. The coordinate‐based meta‐analysis and functional meta‐analytic connectivity modeling were performed using the activation likelihood estimation algorithm. Results Eleven structural studies and fourteen functional studies were included in this quantitative meta‐analysis. DLB patients showed a dysfunction in the bilateral inferior parietal lobule and right lingual gyrus compared with HC patients. DLB patients showed a relative preservation of the medial temporal lobe and a tendency of lower metabolism in the right lingual gyrus compared with AD. The frontal‐parietal, salience, and visual networks were all abnormally co‐activated in DLB, but the default mode network remained normally co‐activated compared with AD. Conclusions The convergence of local brain regions and co‐activation neural networks might be potential specific imaging markers in the diagnosis of DLB. This might provide a pathway for the neural regulation in DLB patients, and it might contribute to the development of specific interventions for DLB and AD.
Collapse
Affiliation(s)
- Wen-Ying Ma
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min-Jie Tian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Yao
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Li
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan-Yu Tang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Yong Xiao
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Institute of Neuropsychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Caso F, Agosta F, Scamarcia PG, Basaia S, Canu E, Magnani G, Volontè MA, Filippi M. A multiparametric MRI study of structural brain damage in dementia with lewy bodies: A comparison with Alzheimer's disease. Parkinsonism Relat Disord 2021; 91:154-161. [PMID: 34628194 DOI: 10.1016/j.parkreldis.2021.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Differential diagnosis between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is crucial for an adequate patients' management but might be challenging. We investigated with advanced MRI techniques gray (GM) and white matter (WM) damage in DLB patients compared to those with AD. METHODS 24 DLB patients, 26 age- and disease severity-matched AD patients, and 20 age and sex-matched controls performed clinical and neuropsychological assessment, and brain structural and diffusion-tensor MRI. We measured GM atrophy using voxel-based morphometry, WM hyperintensities (WMH) using a local thresholding segmentation technique, and normal-appearing WM (NAWM) damage using tract-based spatial statistic. RESULTS DLB and AD patients exhibited mild-to-moderate-stage dementia. Compared to controls, GM damage was diffuse in AD, while limited to bilateral thalamus and temporal regions in DLB. Compared to DLB, AD patients exhibited GM atrophy in bilateral fronto-temporal and occipital regions. DLB and AD patients showed higher WMH load than controls, with no differences among each other. WMH in DLB were diffuse with relative prevalence in posterior parietal-occipital regions. Compared to controls, both DLB and AD patients showed reduced microstructural integrity of the main supratentorial and infratentorial NAWM tracts. AD patients exhibited greater posterior NAWM damage than DLB. CONCLUSIONS DLB showed prominent WM degeneration compared to the limited GM atrophy, while in AD both tissue compartments were severely involved. In DLB, NAWM microstructural degeneration was independent of WMH, thus revealing two possible underlying processes. Different pathophysiological mechanisms are likely to drive GM and WM damage distribution in DLB and AD.
Collapse
Affiliation(s)
- Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro G Scamarcia
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
13
|
Soni N, Ora M, Bathla G, Nagaraj C, Boles Ponto LL, Graham MM, Saini J, Menda Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol J 2021; 34:263-288. [PMID: 33666110 PMCID: PMC8447818 DOI: 10.1177/1971400921998968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.
Collapse
Affiliation(s)
- Neetu Soni
- University of Iowa Hospitals and Clinics, USA
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, India
| | - Girish Bathla
- Neuroradiology Department, University of Iowa Hospitals and
Clinics, USA
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | | | - Michael M Graham
- Division of Nuclear Medicine, University of Iowa Hospitals and
Clinics, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | - Yusuf Menda
- University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
14
|
Bernstein AS, Rapcsak SZ, Hornberger M, Saranathan M. Structural Changes in Thalamic Nuclei Across Prodromal and Clinical Alzheimer's Disease. J Alzheimers Dis 2021; 82:361-371. [PMID: 34024824 DOI: 10.3233/jad-201583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increasing evidence suggests that thalamic nuclei may atrophy in Alzheimer's disease (AD). We hypothesized that there will be significant atrophy of limbic thalamic nuclei associated with declining memory and cognition across the AD continuum. OBJECTIVE The objective of this work was to characterize volume differences in thalamic nuclei in subjects with early and late mild cognitive impairment (MCI) as well as AD when compared to healthy control (HC) subjects using a novel MRI-based thalamic segmentation technique (THOMAS). METHODS MPRAGE data from the ADNI database were used in this study (n = 540). Healthy control (n = 125), early MCI (n = 212), late MCI (n = 114), and AD subjects (n = 89) were selected, and their MRI data were parcellated to determine the volumes of 11 thalamic nuclei for each subject. Volumes across the different clinical subgroups were compared using ANCOVA. RESULTS There were significant differences in thalamic nuclei volumes between HC, late MCI, and AD subjects. The anteroventral, mediodorsal, pulvinar, medial geniculate, and centromedian nuclei were significantly smaller in subjects with late MCI and AD when compared to HC subjects. Furthermore, the mediodorsal, pulvinar, and medial geniculate nuclei were significantly smaller in early MCI when compared to HC subjects. CONCLUSION This work highlights nucleus specific atrophy within the thalamus in subjects with early and late MCI and AD. This is consistent with the hypothesis that memory and cognitive changes in AD are mediated by damage to a large-scale integrated neural network that extends beyond the medial temporal lobes.
Collapse
Affiliation(s)
- Adam S Bernstein
- Department of Medical Imaging, University of Arizona, Tuscon, AZ, USA
| | | | | | | | | |
Collapse
|
15
|
Orad RI, Shiner T. Differentiating dementia with Lewy bodies from Alzheimer's disease and Parkinson's disease dementia: an update on imaging modalities. J Neurol 2021; 269:639-653. [PMID: 33511432 DOI: 10.1007/s00415-021-10402-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Dementia with Lewy bodies is the second most common cause of neurodegenerative dementia after Alzheimer's disease. Dementia with Lewy bodies can provide a diagnostic challenge due to the frequent overlap of clinical signs with other neurodegenerative conditions, namely Parkinson's disease dementia, and Alzheimer's disease. Part of this clinical overlap is due to the neuropathological overlap. Dementia with Lewy bodies is characterized by the accumulation of aggregated α-synuclein protein in Lewy bodies, similar to Parkinson's disease and Parkinson's disease dementia. However, it is also frequently accompanied by aggregation of amyloid-beta and tau, the pathological hallmarks of Alzheimer's disease. Neuroimaging is central to the diagnostic process. This review is an overview of both established and evolving imaging methods that can improve diagnostic accuracy and improve management of this disorder.
Collapse
Affiliation(s)
- Rotem Iris Orad
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, 6, Weismann St, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, 6, Weismann St, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Ferreira D. Structural imaging in dementia with Lewy bodies: the potential of multivariate data analysis. Psychiatry Res Neuroimaging 2020; 306:111180. [PMID: 32948404 DOI: 10.1016/j.pscychresns.2020.111180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/22/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Structural imaging has a limited role in current diagnostic criteria for dementia with Lewy bodies (DLB), possibly since overt brain atrophy is uncommon in this disorder. Multivariate data analysis is promising in this context due to its superiority to detect subtle brain changes. This systematic review reports multivariate studies of structural imaging data in DLB. Preliminary evidence shows the capacity of structural imaging in discriminating DLB patients from Alzheimer's disease patients and healthy controls. Ongoing global initiatives will change statistical possibilities in DLB. Multivariate data analysis in DLB is an emerging field, and its use is encouraged.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO Floor 7th, Blickagången 16, 14152 Stockholm, Sweden.
| |
Collapse
|
17
|
Noroozi A, Rezghi M. A Tensor-Based Framework for rs-fMRI Classification and Functional Connectivity Construction. Front Neuroinform 2020; 14:581897. [PMID: 33328948 PMCID: PMC7734298 DOI: 10.3389/fninf.2020.581897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Recently, machine learning methods have gained lots of attention from researchers seeking to analyze brain images such as Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to obtain a deeper understanding of the brain and such related diseases, for example, Alzheimer's disease. Finding the common patterns caused by a brain disorder through analysis of the functional connectivity (FC) network along with discriminating brain diseases from normal controls have long been the two principal goals in studying rs-fMRI data. The majority of FC extraction methods calculate the FC matrix for each subject and then use simple techniques to combine them and obtain a general FC matrix. In addition, the state-of-the-art classification techniques for finding subjects with brain disorders also rely on calculating an FC for each subject, vectorizing, and feeding them to the classifier. Considering these problems and based on multi-dimensional nature of the data, we have come up with a novel tensor framework in which a general FC matrix is obtained without the need to construct an FC matrix for each sample. This framework also allows us to reduce the dimensionality and create a novel discriminant function that rather than using FCs works directly with each sample, avoids vectorization in any step, and uses the test data in the training process without forcing any prior knowledge of its label into the classifier. Extensive experiments using the ADNI dataset demonstrate that our proposed framework effectively boosts the fMRI classification performance and reveals novel connectivity patterns in Alzheimer's disease at its early stages.
Collapse
Affiliation(s)
| | - Mansoor Rezghi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Moonis G, Subramaniam RM, Trofimova A, Burns J, Bykowski J, Chakraborty S, Holloway K, Ledbetter LN, Lee RK, Pannell JS, Pollock JM, Powers WJ, Roca RP, Rosenow JM, Shih RY, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Dementia. J Am Coll Radiol 2020; 17:S100-S112. [PMID: 32370954 DOI: 10.1016/j.jacr.2020.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Degenerative disease of the central nervous system is a growing public health concern. The primary role of neuroimaging in the workup of patients with probable or possible Alzheimer disease has typically been to exclude other significant intracranial abnormalities. In general, the imaging findings in structural studies, such as MRI, are nonspecific and have limited potential in differentiating different types of dementia. Advanced imaging methods are not routinely used in community or general practices for the diagnosis or differentiation of forms of dementia. Nonetheless, in patients who have been evaluated by a dementia expert, FDG-PET helps to distinguish Alzheimer disease from frontotemporal dementia. In patients with suspected dementia with Lewy bodies, functional imaging of the dopamine transporter (ioflupane) using SPECT may be helpful. In patients with suspected normal-pressure hydrocephalus, DTPA cisternography and HMPAO SPECT/CT brain may provide assessment. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Gul Moonis
- Columbia University Medical Center, New York, New York.
| | | | | | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | - Kathryn Holloway
- MCVH-Virginia Commonwealth University, Richmond, Virginia; Neurosurgery Expert
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology
| | - Robert P Roca
- Sheppard Pratt Health System, Towson, Maryland; American Psychiatric Association
| | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery Expert
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Chabran E, Noblet V, Loureiro de Sousa P, Demuynck C, Philippi N, Mutter C, Anthony P, Martin-Hunyadi C, Cretin B, Blanc F. Changes in gray matter volume and functional connectivity in dementia with Lewy bodies compared to Alzheimer's disease and normal aging: implications for fluctuations. Alzheimers Res Ther 2020; 12:9. [PMID: 31907068 PMCID: PMC6945518 DOI: 10.1186/s13195-019-0575-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/23/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Fluctuations are one of the core clinical features characterizing dementia with Lewy bodies (DLB). They represent a determining factor for its diagnosis and strongly impact the quality of life of patients and their caregivers. However, the neural correlates of this complex symptom remain poorly understood. This study aimed to investigate the structural and functional changes in DLB patients, compared to Alzheimer's disease (AD) patients and healthy elderly subjects, and their potential links with fluctuations. METHODS Structural and resting-state functional MRI data were collected from 92 DLB patients, 70 AD patients, and 22 control subjects, who also underwent a detailed clinical examination including the Mayo Clinic Fluctuation Scale. Gray matter volume changes were analyzed using whole-brain voxel-based morphometry, and resting-state functional connectivity was investigated using a seed-based analysis, with regions of interest corresponding to the main nodes of the salience network (SN), frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN). RESULTS At the structural level, fluctuation scores in DLB patients did not relate to the atrophy of insular, temporal, and frontal regions typically found in this pathology, but instead showed a weak correlation with more subtle volume reductions in different regions of the cholinergic system. At the functional level, the DLB group was characterized by a decreased connectivity within the SN and attentional networks, while the AD group showed decreases within the SN and DMN. In addition, higher fluctuation scores in DLB patients were correlated to a greater connectivity of the SN with the DAN and left thalamus, along with a decreased connectivity between the SN and DMN, and between the right thalamus and both the FPN and DMN. CONCLUSIONS Functional connectivity changes, rather than significant gray matter loss, could play an important role in the emergence of fluctuations in DLB. Notably, fluctuations in DLB patients appeared to be related to a disturbed external functional connectivity of the SN, which may lead to less relevant transitions between different cognitive states in response to internal and environmental stimuli. Our results also suggest that the thalamus could be a key region for the occurrence of this symptom.
Collapse
Affiliation(s)
- Eléna Chabran
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Vincent Noblet
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Catherine Mutter
- INSERM Centre d’Investigation Clinique 1434, University Hospitals of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- General Hospital Centre, Geriatrics Department, CM2R, Geriatric Day Hospital, Colmar, France
| | - Catherine Martin-Hunyadi
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| |
Collapse
|
20
|
Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimers Dement 2020; 16:209-218. [PMID: 31914231 PMCID: PMC6953608 DOI: 10.1002/alz.12009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Reduced hippocampal volume is associated with late-life cognitive decline, but prior studies have not determined whether this association persists after accounting for Alzheimer's disease (AD) and other neuropathologies. METHODS Participants were 531 deceased older adults from community-based cohort studies of aging who had undergone annual cognitive evaluations. At death, brain tissue underwent neuropathologic examination and magnetic resonance imaging (MRI). Linear mixed models examined whether hippocampal volume measured via MRI accounted for variation in decline rate of global cognition and five cognitive domains, above and beyond neuropathologic indices. RESULTS Demographics and indices of AD, cerebrovascular disease, Lewy body disease, hippocampal sclerosis, TDP-43, and atherosclerosis accounted for 42.6% of the variation in global cognitive decline. Hippocampal volume accounted for an additional 5.4% of this variation and made similar contributions in four of the five cognitive domains. DISCUSSION Hippocampal volume is associated with late-life cognitive decline, above and beyond contributions from common neuropathologic indices.
Collapse
Affiliation(s)
- Robert J. Dawe
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Garbarino S, Lorenzi M, Oxtoby NP, Vinke EJ, Marinescu RV, Eshaghi A, Ikram MA, Niessen WJ, Ciccarelli O, Barkhof F, Schott JM, Vernooij MW, Alexander DC. Differences in topological progression profile among neurodegenerative diseases from imaging data. eLife 2019; 8:e49298. [PMID: 31793876 PMCID: PMC6922631 DOI: 10.7554/elife.49298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile - a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease.
Collapse
Affiliation(s)
- Sara Garbarino
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Université Côte d’Azur, Inria, Epione Research ProjectSophia AntipolisFrance
| | - Marco Lorenzi
- Université Côte d’Azur, Inria, Epione Research ProjectSophia AntipolisFrance
| | - Neil P Oxtoby
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Elisabeth J Vinke
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
| | - Razvan V Marinescu
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Arman Eshaghi
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUnited Kingdom
| | - M Arfan Ikram
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUnited Kingdom
| | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Department of Radiology and Nuclear medicineVUmcAmsterdamNetherlands
| | - Jonathan M Schott
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Meike W Vernooij
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Yoo HS, Lee EC, Chung SJ, Lee YH, Lee SG, Yun M, Lee PH, Sohn YH, Seong JK, Ye BS. Effects of Alzheimer's disease and Lewy body disease on subcortical atrophy. Eur J Neurol 2019; 27:318-326. [PMID: 31487756 DOI: 10.1111/ene.14080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Subcortical structures are affected by neurodegeneration in Alzheimer's disease (AD) and Lewy body disease (LBD). Although the co-occurrence of AD and LBD pathologies and their possible interaction have been reported, the effect of AD and LBD on subcortical structures remains unknown. The effects of AD and LBD on subcortical atrophy and their relationship with cognitive dysfunction were investigated. METHODS The cross-sectional study recruited 42 patients with pure AD related cognitive impairment (ADCI), 30 patients with pure LBD related cognitive impairment (LBCI), 58 patients with mixed ADCI and LBCI, and 29 normal subjects. A general linear model was used to compare subcortical volume and shape amongst the groups, to investigate the independent and interaction effects of ADCI and LBCI on subcortical shape and volume, and to analyze the relationship between subcortical volume and cognitive dysfunction in each group. RESULTS Alzheimer's disease related cognitive impairment and LBCI were independently associated with subcortical atrophies in the hippocampus and amygdala and in the hippocampus and putamen respectively, but their interaction effect was not significant. Compared to the control group, the pure LBCI group exhibited additional local atrophies in the amygdala, caudate and thalamus. Subcortical atrophies correlated differently with cognitive dysfunction according to the underlying causes of cognitive dysfunction. CONCLUSIONS The patterns of subcortical atrophies and their correlation with cognitive dysfunction differ according to the underlying AD, LBD or concomitant AD and LBD.
Collapse
Affiliation(s)
- H S Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - E C Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, South Korea
| | - S J Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - S G Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - M Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - P H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - J-K Seong
- Department of Bio-convergence Engineering, Korea University, Seoul, South Korea.,School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - B S Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Chin KS, Teodorczuk A, Watson R. Dementia with Lewy bodies: Challenges in the diagnosis and management. Aust N Z J Psychiatry 2019; 53:291-303. [PMID: 30848660 DOI: 10.1177/0004867419835029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Dementia with Lewy bodies is the second most common form of neurodegenerative dementia in older age yet is often under-recognised and misdiagnosed. This review aims to provide an overview of the clinical features of dementia with Lewy bodies, discussing the frequent challenges clinicians experience in diagnosing dementia with Lewy bodies, and outlines a practical approach to the clinical management, particularly in the Australian setting. METHODS This paper is a narrative review and a semi-structured database (PubMed and MEDLINE) search strategy was implemented. Articles were screened and clinically relevant studies were selected for inclusion. RESULTS Dementia with Lewy bodies is clinically characterised by complex visual hallucinations, spontaneous motor parkinsonism, prominent cognitive fluctuations and rapid eye movement sleep behaviour disorder. Neuropsychiatric features and autonomic dysfunction are also common. The new diagnostic criteria and specific diagnostic biomarkers help to improve detection rates and diagnostic accuracy, as well as guide appropriate management. Clinical management of dementia with Lewy bodies is challenging and requires an individualised multidisciplinary approach with specialist input. CONCLUSION Dementia with Lewy bodies is a common form of dementia. It often presents as a diagnostic challenge to clinicians, particularly at early stages of disease, and in patients with mixed neuropathological changes, which occur in over 50% of people with dementia with Lewy bodies. Prompt diagnosis and comprehensive treatment strategies are important in improving patients' care.
Collapse
Affiliation(s)
- Kai Sin Chin
- 1 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,2 Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Teodorczuk
- 3 School of Medicine, Griffith University, Gold Coast, QLD, Australia.,4 Metro North Mental Health, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Rosie Watson
- 1 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,2 Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Boublay N, Fédérico D, Pesce A, Verny M, Blanc F, Paccalin M, Desmidt T, Grosmaître P, Moreaud O, Relland S, Bravant E, Bouet R, Krolak-Salmon P. Study protocol on Alzheimer's disease and related disorders: focus on clinical and imaging predictive markers in co-existing lesions. BMC Geriatr 2018; 18:280. [PMID: 30428832 PMCID: PMC6236893 DOI: 10.1186/s12877-018-0949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/16/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND One of the crucial challenges for the future of therapeutic approaches to Alzheimer's disease (AD) is to target the main pathological processes responsible for disability and dependency. However, a progressive cognitive impairment occurring after the age of 70, the main population affected by dementia, is often related to mixed lesions of neurodegenerative and vascular origins. Whereas young patients are mostly affected by pure lesions, ageing favours the occurrence of co-lesions of AD, cerebrovascular disease (CVD) and Lewy body dementia (LBD). Most of clinical studies report on functional and clinical disabilities in patients with presumed pure pathologies. But, the weight of co-morbid processes involved in the transition from an independent functional status to disability in the elderly with co-lesions still remains to be elucidated. Neuropathological examination often performed at late stages cannot answer this question at mild or moderate stages of cognitive disorders. Brain MRI, Single Photon Emission Computed Tomography (SPECT) with DaTscan®, amyloid Positron Emission Tomography (PET) and CerebroSpinal Fluid (CSF) AD biomarkers routinely help in performing the diagnosis of underlying lesions. The combination of these measures seems to be of incremental value for the diagnosis of mixed profiles of AD, CVD and LBD. The aim is to determine the clinical, neuropsychological, neuroradiological and biological features the most predictive of cognitive, behavioral and functional impairment at 2 years in patients with co-existing lesions. METHODS A multicentre and prospective cohort study with clinical, neuro-imaging and biological markers assessment will recruit 214 patients over 70 years old with a cognitive disorder of AD, cerebrovascular and Lewy body type or with coexisting lesions of two or three of these pathologies and fulfilling the diagnostic criteria for dementia at a mild to moderate stage. Patients will be followed every 6 months (clinical, neuropsychological and imaging examination and collection of cognitive, behavioural and functional impairment) for 24 months. DISCUSSION This study aims at identifying the best combination of markers (clinical, neuropsychological, MRI, SPECT-DaTscan®, PET and CSF) to predict disability progression in elderly patients presenting coexisting patterns. TRIAL REGISTRATION NCT02052947 .
Collapse
Affiliation(s)
- Nawele Boublay
- Clinical and Research Memory Centre of Lyon, Hospital of Charpennes, Hospices Civils de Lyon, Lyon, France
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, F-69000 Lyon, France
- University Lyon, F-69000 Lyon, France
- Hospices Civils de Lyon, Pôle Information Médicale Evaluation Recherche, F-69424 Lyon, France
- Hospices civils de Lyon, hôpital des Charpennes, 27 rue Gabriel Péri, 69100 Villeurbanne, France
| | - Denis Fédérico
- Clinical and Research Memory Centre of Lyon, Hospital of Charpennes, Hospices Civils de Lyon, Lyon, France
| | - Alain Pesce
- Département de gérontologie clinique et centre mémoire, Centre Rainier III, Monaco, France
| | - Marc Verny
- Clinical and Research Memory Centre and Geriatrics department of Ile de France Sud, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- University Pierre et Marie Curie et DHU FAST, UMR 8256 (CNRS), Paris, France
| | - Frédéric Blanc
- Geriatrics day hospital. Geriatrics department, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Marc Paccalin
- Clinical and Research Memory Centre of Poitiers, CHU Poitiers, Poitiers, France
- Pôle de Gériatrie CHU Poitiers 86000 Poitiers, 3INSERM, CHU de Poitiers, Université de Poitiers, centre d’investigation clinique CIC1402, Poitiers, France
| | - Thomas Desmidt
- Clinical and Research Memory Centre of Tours, CHRU Tours, Tours, France
| | - Pierre Grosmaître
- Clinical and Research Memory Centre of Lyon, Hospital of Dugoujon, Hospices Civils de Lyon, Lyon, France
| | - Olivier Moreaud
- Clinical and Research Memory Centre of Grenoble Arc Alpin, Pôle de psychiatrie et neurologie, CHU de Grenoble, Laboratoire de psychologie et neurocognition, CNRS UMR 5105, Grenoble, France
| | - Solveig Relland
- Clinical and Research Memory Centre of Lyon, Hospital of Charpennes, Hospices Civils de Lyon, Lyon, France
| | - Estelle Bravant
- Hospices Civils de Lyon, Pôle Information Médicale Evaluation Recherche, F-69424 Lyon, France
| | - Romain Bouet
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, F-69000 Lyon, France
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Centre of Lyon, Hospital of Charpennes, Hospices Civils de Lyon, Lyon, France
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, F-69000 Lyon, France
- Clinical Research Centre (Vieillissement – Cerveau - Fragilité), Hospital of Charpennes, Hospices Civils de Lyon, Lyon, France
- University Lyon, F-69000 Lyon, France
| |
Collapse
|
25
|
van der Zande JJ, Steenwijk MD, ten Kate M, Wattjes MP, Scheltens P, Lemstra AW. Gray matter atrophy in dementia with Lewy bodies with and without concomitant Alzheimer's disease pathology. Neurobiol Aging 2018; 71:171-178. [DOI: 10.1016/j.neurobiolaging.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/19/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
|
26
|
Abstract
Lewy body dementia (DLB) is a common form of cognitive impairment, accounting for 30% of dementia cases in ages over 65 years. Early diagnosis of DLB has been challenging; particularly in the context of differentiation with Parkinson’s disease dementia and other forms of dementias, such as Alzheimer’s disease and rapidly progressive dementias. Current practice involves the use of [123I]FP-CIT-SPECT, [18F]FDG PET and [123I]MIBG molecular imaging to support diagnostic procedures. Structural imaging techniques have an essential role for excluding structural causes, which could lead to a DLB-like phenotype, as well as aiding differential diagnosis through illustrating disease-specific patterns of atrophy. Novel PET molecular imaging modalities, such as amyloid and tau imaging, may provide further insights into DLB pathophysiology and may aid in early diagnosis. A multimodal approach, through combining various established techniques and possibly using novel radioligands, might further aid towards an in-depth understanding of this highly disabling disease. In this review, we will provide an overview of neuroimaging applications in patients with DLB.
Collapse
|
27
|
Watson R, Colloby SJ, Blamire AM, Wesnes KA, Wood J, O'Brien JT. Does attentional dysfunction and thalamic atrophy predict decline in dementia with Lewy bodies? Parkinsonism Relat Disord 2017; 45:69-74. [DOI: 10.1016/j.parkreldis.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
|
28
|
International Psychogeriatrics paper of the year 2016. Int Psychogeriatr 2017; 29:1581-1582. [PMID: 28803564 DOI: 10.1017/s1041610217001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since 2014, the year in which International Psychogeriatrics celebrated 25 years of existence, International Psychogeriatrics has featured a "paper of the month" (POM) category. Chosen by the editorial team which ranks available new International Psychogeriatrics manuscripts from the categories "original research articles" and "reviews," a POM is identified representing high scientific quality and clinical relevance. Each POM is accompanied by a short commentary highlighting its findings and relevance. For the year 2016 this resulted in twelve papers of the month of which nine were original research articles and three were systematic reviews or meta-analyses.
Collapse
|
29
|
Abstract
Dementia with Lewy bodies (DLB) while common in older age can present a diagnostic challenge to clinicians and is often misdiagnosed as Alzheimer disease (AD). Imaging studies have improved our understanding of the neurobiological changes in DLB during life and how they differ from AD. This has led to significant advances in the development of new techniques, such as dopaminergic imaging, which can aid the clinical diagnosis. Other functional imaging methods also show promise in helping to assess the influence of differing pathologies in DLB, most notably, AD-related and vascular pathology during life. This article will provide an overview of the main imaging findings in DLB.
Collapse
Affiliation(s)
- Rosie Watson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sean J Colloby
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, The United Kingdom
| |
Collapse
|