1
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
2
|
Conijn M, Krings GJ. Understanding stenotic pulmonary arteries: Can computational fluid dynamics help us out? PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2021.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Computational Analysis of the Pulmonary Arteries in Congenital Heart Disease: A Review of the Methods and Results. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2618625. [PMID: 33868449 PMCID: PMC8035004 DOI: 10.1155/2021/2618625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
With the help of computational fluid dynamics (CFD), hemodynamics of the pulmonary arteries (PA's) can be studied in detail and varying physiological circumstances and treatment options can be simulated. This offers the opportunity to improve the diagnostics and treatment of PA stenosis in biventricular congenital heart disease (CHD). The aim of this review was to evaluate the methods of computational studies for PA's in biventricular CHD and the level of validation of the numerical outcomes. A total of 34 original research papers were selected. The literature showed a great variety in the used methods for (re) construction of the geometry as well as definition of the boundary conditions and numerical setup. There were 10 different methods identified to define inlet boundary conditions and 17 for outlet boundary conditions. A total of nine papers verified their CFD outcomes by comparing results to clinical data or by an experimental mock loop. The diversity in used methods and the low level of validation of the outcomes result in uncertainties regarding the reliability of numerical studies. This limits the current clinical utility of CFD for the study of PA flow in CHD. Standardization and validation of the methods are therefore recommended.
Collapse
|
4
|
Gerrah R, Haller SJ. Computational fluid dynamics: a primer for congenital heart disease clinicians. Asian Cardiovasc Thorac Ann 2020; 28:520-532. [PMID: 32878458 DOI: 10.1177/0218492320957163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Computational fluid dynamics has become an important tool for studying blood flow dynamics. As an in-silico collection of methods, computational fluid dynamics is noninvasive and provides numerical values for the most important parameters of blood flow, such as velocity and pressure that are crucial in hemodynamic studies. In this primer, we briefly explain the basic theory and workflow of the two most commonly applied computational fluid dynamics techniques used in the congenital heart disease literature: the finite element method and the finite volume method. We define important terminology and include specific examples of how using these methods can answer important clinical questions in congenital cardiac surgery planning and perioperative patient management.
Collapse
Affiliation(s)
- Rabin Gerrah
- Stanford University, Samaritan Cardiovascular Surgery, Corvallis, OR, USA
| | | |
Collapse
|
5
|
Personalized Interventions: A Reality in the Next 20 Years or Pie in the Sky. Pediatr Cardiol 2020; 41:486-502. [PMID: 32198592 DOI: 10.1007/s00246-020-02303-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
There is no better representation of the need for personalization of care than the breadth and complexity of congenital heart disease. Advanced imaging modalities are now standard of care in the field, and the advancements being made to three-dimensional visualization technologies are growing as a means of pre-procedural preparation. Incorporating emerging modeling approaches, such as computational fluid dynamics, will push the limits of our ability to predict outcomes, and this information may be both obtained and utilized during a single procedure in the future. Artificial intelligence and customized devices may soon surface as realistic tools for the care of patients with congenital heart disease, as they are showing growing evidence of feasibility within other fields. This review illustrates the great strides that have been made and the persistent challenges that exist within the field of congenital interventional cardiology, a field which must continue to innovate and push the limits to achieve personalization of the interventions it provides.
Collapse
|
6
|
Driesen BW, Warmerdam EG, Sieswerda GJ, Meijboom FJ, Molenschot MMC, Doevendans PA, Krings GJ, van Dijk APJ, Voskuil M. Percutaneous Pulmonary Valve Implantation: Current Status and Future Perspectives. Curr Cardiol Rev 2019; 15:262-273. [PMID: 30582483 PMCID: PMC8142351 DOI: 10.2174/1573403x15666181224113855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with congenital heart disease (CHD) with right ventricle outflow tract (RVOT) dysfunction need sequential pulmonary valve replacements throughout their life in the majority of cases. Since their introduction in 2000, the number of percutaneous pulmonary valve implantations (PPVI) has grown and reached over 10,000 procedures worldwide. Overall, PPVI has been proven safe and effective, but some anatomical variations can limit procedural success. This review discusses the current status and future perspectives of the procedure.
Collapse
Affiliation(s)
- Bart W Driesen
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cardiology, Radboudumc, Nijmegen, Netherlands
| | | | - Gert-Jan Sieswerda
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert J Meijboom
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Central Military Hospital, Utre cht, Netherlands
| | - Gregor J Krings
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
7
|
Kang SL, Armstrong A, Krings G, Benson L. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. CONGENIT HEART DIS 2019; 14:1046-1057. [PMID: 31483574 DOI: 10.1111/chd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023]
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| | - Aimee Armstrong
- The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gregor Krings
- Children's Heart Center, Utrecht University, Utrecht, Netherlands
| | - Lee Benson
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
8
|
D'Souza GA, Taylor MD, Banerjee RK. Evaluation of pulmonary artery wall properties in congenital heart disease patients using cardiac magnetic resonance. PROGRESS IN PEDIATRIC CARDIOLOGY 2017. [DOI: 10.1016/j.ppedcard.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Jia Y, Qiao Y, Ricardo Argueta-Morales I, Maung A, Norfleet J, Bai Y, Divo E, Kassab AJ, DeCampli WM. Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts. J Biomech Eng 2017; 139:2646917. [DOI: 10.1115/1.4037400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 11/08/2022]
Abstract
Homografts and synthetic grafts are used in surgery for congenital heart disease (CHD). Determining these materials' mechanical properties will aid in understanding tissue behavior when subjected to abnormal CHD hemodynamics. Homograft tissue samples from anterior/posterior aspects, of ascending/descending aorta (AA, DA), innominate artery (IA), left subclavian artery (LScA), left common carotid artery (LCCA), main/left/right pulmonary artery (MPA, LPA, RPA), and synthetic vascular grafts, were obtained in three orientations: circumferential, diagonal (45 deg relative to circumferential direction), and longitudinal. Samples were subjected to uniaxial tensile testing (UTT). True strain-Cauchy stress curves were individually fitted for each orientation to calibrate Fung model. Then, they were used to calibrate anisotropic Holzapfel–Gasser model (R2 > 0.95). Most samples demonstrated a nonlinear hyperelastic strain–stress response to UTT. Stiffness (measured by tangent modulus at different strains) in all orientations were compared and shown as contour plots. For each vessel segment at all strain levels, stiffness was not significantly different among aspects and orientations. For synthetic grafts, stiffness was significantly different among orientations (p < 0.042). Aorta is significantly stiffer than pulmonary artery at 10% strain, comparing all orientations, aspects, and regions (p = 0.0001). Synthetic grafts are significantly stiffer than aortic and pulmonary homografts at all strain levels (p < 0.046). Aortic, pulmonary artery, and synthetic grafts exhibit hyperelastic biomechanical behavior with anisotropic effect. Differences in mechanical properties among vascular grafts may affect native tissue behavior and ventricular/arterial mechanical coupling, and increase the risk of deformation due to abnormal CHD hemodynamics.
Collapse
Affiliation(s)
- Yueqian Jia
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - Yangyang Qiao
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - I. Ricardo Argueta-Morales
- Cardiothoracic Surgery, The Heart Center at Arnold Palmer Hospital for Children, 92 West Miller Street, Orlando, FL 32806
| | - Aung Maung
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - Jack Norfleet
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - Yuanli Bai
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 e-mail:
| | - Eduardo Divo
- Department of Mechanical Engineering, College of Engineering, Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114
| | - Alain J. Kassab
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - William M. DeCampli
- Cardiothoracic Surgery, The Heart Center at Arnold Palmer Hospital for Children, 92 West Miller Street, Orlando, FL 32806
- Medical Education, College of Medicine, University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827 e-mail:
| |
Collapse
|
10
|
Ostrowski Z, Melka B, Adamczyk W, Rojczyk M, Golda A, Nowak AJ. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/745/3/032112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Prevalence of Bovine Aortic Arch Configuration in Adult Patients with and without Thoracic Aortic Pathology. Ann Vasc Surg 2016; 30:132-7. [DOI: 10.1016/j.avsg.2015.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
|
12
|
Experimental Study of Anisotropic Stress/Strain Relationships of the Piglet Great Vessels and Relevance to Pediatric Congenital Heart Disease. Ann Thorac Surg 2015; 99:1399-407. [DOI: 10.1016/j.athoracsur.2014.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022]
|
13
|
Arbia G, Corsini C, Baker C, Pennati G, Hsia TY, Vignon-Clementel IE. Pulmonary Hemodynamics Simulations Before Stage 2 Single Ventricle Surgery: Patient-Specific Parameter Identification and Clinical Data Assessment. Cardiovasc Eng Technol 2015; 6:268-80. [DOI: 10.1007/s13239-015-0212-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
|
14
|
Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Berger F, Kuehne T. Is MRI-Based CFD Able to Improve Clinical Treatment of Coarctations of Aorta? Ann Biomed Eng 2014; 43:168-76. [DOI: 10.1007/s10439-014-1116-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/06/2014] [Indexed: 01/16/2023]
|
15
|
Yap CH, Liu X, Pekkan K. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse. PLoS One 2014; 9:e86878. [PMID: 24475188 PMCID: PMC3903591 DOI: 10.1371/journal.pone.0086878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Methods Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. Results In normal mouse fetuses between E14.5–18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Conclusion Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels.
Collapse
Affiliation(s)
- Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhang W, Qian Y, Lin J, Lv P, Karunanithi K, Zeng M. Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results. Int J Cardiovasc Imaging 2013; 30:367-75. [DOI: 10.1007/s10554-013-0345-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/01/2013] [Indexed: 12/01/2022]
|