1
|
Ramos-Galarza C, Obregón J. Neuropsychological Rehabilitation for Traumatic Brain Injury: A Systematic Review. J Clin Med 2025; 14:1287. [PMID: 40004817 PMCID: PMC11856157 DOI: 10.3390/jcm14041287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: A traumatic brain injury (TBI) is a brain lesion caused by external or internal factors, resulting in cognitive, behavioral, physical, relational, and sensory sequelae, depending on the affected brain area and the severity of the injury. Within neuropsychological rehabilitation (NR), multiple methods have been developed that are aimed at restoring, compensating, and substituting deteriorated cognitive functions resulting from a TBI. This systematic review aimed to identify the state of the scientific literature regarding the efficacy of NR methods in individuals with a TBI. Methods: Articles were analyzed in the SCOPUS and PUBMED databases. Initially, 5347 studies were found. After applying inclusion and exclusion criteria, 17 articles remained and were included in the data extraction process. Results: Of the seventeen included articles, eleven employed randomized or semi-randomized controlled trials, five were clinical studies, and one was a comparative study, in which the percentage of computerized NR methods was 58.82% in the experimental and clinical groups. In contrast, traditional methods constituted 35.3%, and the remaining 5.88% conducted holistic NR. Ninety percent of the methods employed in these investigations showed efficacy. Conclusions: While most of the evaluated NR methods demonstrated efficacy, the analysis of these findings should not be isolated from variables such as the etiology and phase of the TBI, the intervention duration, and the symptoms treated. Furthermore, the NR implementation must be adapted to the specific context of each patient.
Collapse
Affiliation(s)
- Carlos Ramos-Galarza
- Facultad de Psicología, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador;
| | | |
Collapse
|
2
|
de Geus EQJ, Milders MV, van Horn JE, Jonker FA, Fassaert T, Hutten JC, Kuipers F, Grimbergen C, Noordermeer SDS. A literature review of outcome and treatment options after acquired brain injury: Suggestions for adult offenders using knowledge from the general population. CRIMINAL BEHAVIOUR AND MENTAL HEALTH : CBMH 2024; 34:311-338. [PMID: 38527155 DOI: 10.1002/cbm.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Acquired brain injury (ABI) is a major health problem, often with negative effects on behaviour and mental health as well as cognition. Prevalence of ABI is exceptionally high among offenders and increases their re-offending risk. Information on risk factors for ABI and its outcomes among offenders that could guide effective treatment for them is, nevertheless, scarce and dispersed. However, there is a more substantial literature about the general population that could inform work with brain-injured offenders, especially when selecting for samples or subgroups with similar relevant characteristics, such as lower socio-economic status (SES), pre-injury lower tested intelligence score (<85) and pre-injury mental health problems. AIMS To explore brain injury data from non-offender samples of otherwise similar socio-economic and mental health and ability characteristics to offenders then, first, to describe their untreated outcomes and, secondly, outcomes after frequently used interventions in these circumstances, noting factors associated with their effectiveness. METHOD Three databases were systematically searched for the years 2010-2022; first, using terms for brain injury or damage and cognitive (dys)function, mental health or quality of life. Second, in a separate search, we used these terms and terms for interventions and rehabilitation. In the second review, studies were selected for clear, distinguishable data on age, sex, SES and lifestyle factors to facilitate inferences for offenders. A narrative analytical approach was adopted for both reviews. RESULTS Samples with characteristics that are typical in offender groups, including lower SES, lower pre-injury intelligence quotient (<85), prior cognitive impairments and prior mental health problems, had poorer cognitive and behavioural outcomes following ABI than those without such additional problems, together with lower treatment adherence. With respect to treatment, adequate motivation and self-awareness were associated with better cognitive and behavioural outcomes than when these were low or absent, regardless of the outcome measured. CONCLUSIONS More complex pre-injury mental health problems and social disadvantages typical of offenders are associated with poorer post-brain injury recovery. This paper adds to practical knowledge by bringing together work that follows specific outcome trajectories. Overall, succesful ABI-interventions in the general population that aim at pre-injury difficulties comparable to those seen among offenders, show that personalising injury-specific treatments and taking account of these difficulties, maximised positive outcomes.
Collapse
Affiliation(s)
- Esther Q J de Geus
- Faculty of Behavioural Sciences, Department of Clinical Neuro- and Development Psychology, Section of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maarten V Milders
- Faculty of Behavioural Sciences, Department of Clinical Neuro- and Development Psychology, Section of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Frank A Jonker
- Faculty of Behavioural Sciences, Department of Clinical Neuro- and Development Psychology, Section of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Altrecht, Vesalius, Amsterdam, The Netherlands
| | | | | | | | | | - Siri D S Noordermeer
- Faculty of Behavioural Sciences, Department of Clinical Neuro- and Development Psychology, Section of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part III: Executive Functions. J Head Trauma Rehabil 2023; 38:52-64. [PMID: 36594859 DOI: 10.1097/htr.0000000000000834] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Moderate-to-severe traumatic brain injury (MS-TBI) causes debilitating and enduring impairments of executive functioning and self-awareness, which clinicians often find challenging to address. Here, we provide an update to the INCOG 2014 guidelines for the clinical management of these impairments. METHODS An expert panel of clinicians/researchers (known as INCOG) reviewed evidence published from 2014 and developed updated recommendations for the management of executive functioning and self-awareness post-MS-TBI, as well as a decision-making algorithm, and an audit tool for review of clinical practice. RESULTS A total of 8 recommendations are provided regarding executive functioning and self-awareness. Since INCOG 2014, 4 new recommendations were made and 4 were modified and updated from previous recommendations. Six recommendations are based on level A evidence, and 2 are based on level C. Recommendations retained from the previous guidelines and updated, where new evidence was available, focus on enhancement of self-awareness (eg, feedback to increase self-monitoring; training with video-feedback), meta-cognitive strategy instruction (eg, goal management training), enhancement of reasoning skills, and group-based treatments. New recommendations addressing music therapy, virtual therapy, telerehabilitation-delivered metacognitive strategies, and caution regarding other group-based telerehabilitation (due to a lack of evidence) have been made. CONCLUSIONS Effective management of impairments in executive functioning can increase the success and well-being of individuals with MS-TBI in their day-to-day lives. These guidelines provide management recommendations based on the latest evidence, with support for their implementation, and encourage researchers to explore and validate additional factors such as predictors of treatment response.
Collapse
|
4
|
Annaheim C, Hug K, Stumm C, Messerli M, Simon Y, Hund-Georgiadis M. Neurofeedback in patients with frontal brain lesions: A randomized, controlled double-blind trial. Front Hum Neurosci 2022; 16:979723. [PMID: 36188178 PMCID: PMC9521487 DOI: 10.3389/fnhum.2022.979723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Frontal brain dysfunction is a major challenge in neurorehabilitation. Neurofeedback (NF), as an EEG-based brain training method, is currently applied in a wide spectrum of mental health conditions, including traumatic brain injury. Objective This study aimed to explore the capacity of Infra-Low Frequency Neurofeedback (ILF-NF) to promote the recovery of brain function in patients with frontal brain injury. Materials and methods Twenty patients hospitalized at a neurorehabilitation clinic in Switzerland with recently acquired, frontal and optionally other brain lesions were randomized to either receive NF or sham-NF. Cognitive improvement was assessed using the Frontal Assessment Battery (FAB) and the Test of Attentional Performance (TAP) tasks regarding intrinsic alertness, phasic alertness and impulse control. Results With respect to cognitive improvements, there was no significant difference between the two groups after 20 sessions of either NF or sham-NF. However, in a subgroup of patients with predominantly frontal brain lesions, the improvements measured by the FAB and intrinsic alertness were significantly higher in the NF-group. Conclusion This is the first double-blind controlled study using NF in recovery from brain injury, and thus also the first such study of ILF NF. Although the result of the subgroup has limited significance because of the small number of participants, it accentuates the trend seen in the whole group regarding the FAB and intrinsic alertness (p = 0.068, p = 0.079, respectively). We therefore conclude that NF could be a promising candidate promoting the recoveryfrom frontal brain lesions. Further studies with larger numbers of patients and less lesion heterogeneity are needed to verify the usefulness of NF in the neurorehabilitation of patients with frontal brain injury (NCT02957695 ClinicalTrials.gov).
Collapse
Affiliation(s)
- Christine Annaheim
- REHAB Basel, Klinik für Neurorehabilitation und Paraplegiologie, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Mane R, Wu Z, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol 2022; 7:svn-2022-001506. [PMID: 35853669 PMCID: PMC9811566 DOI: 10.1136/svn-2022-001506] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Brain-computer interface (BCI) technology translates brain activity into meaningful commands to establish a direct connection between the brain and the external world. Neuroscientific research in the past two decades has indicated a tremendous potential of BCI systems for the rehabilitation of patients suffering from poststroke impairments. By promoting the neuronal recovery of the damaged brain networks, BCI systems have achieved promising results for the recovery of poststroke motor, cognitive, and language impairments. Also, several assistive BCI systems that provide alternative means of communication and control to severely paralysed patients have been proposed to enhance patients' quality of life. In this article, we present a perspective review of the recent advances and challenges in the BCI systems used in the poststroke rehabilitation of motor, cognitive, and communication impairments.
Collapse
Affiliation(s)
| | | | - David Wang
- Neurovascular Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Lin Q, Zhang Y, Zhang Y, Zhuang W, Zhao B, Ke X, Peng T, You T, Jiang Y, Yilifate A, Huang W, Hou L, You Y, Huai Y, Qiu Y, Zheng Y, Ou H. The Frequency Effect of the Motor Imagery Brain Computer Interface Training on Cortical Response in Healthy Subjects: A Randomized Clinical Trial of Functional Near-Infrared Spectroscopy Study. Front Neurosci 2022; 16:810553. [PMID: 35431792 PMCID: PMC9008330 DOI: 10.3389/fnins.2022.810553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The motor imagery brain computer interface (MI-BCI) is now available in a commercial product for clinical rehabilitation. However, MI-BCI is still a relatively new technology for commercial rehabilitation application and there is limited prior work on the frequency effect. The MI-BCI has become a commercial product for clinical neurological rehabilitation, such as rehabilitation for upper limb motor dysfunction after stroke. However, the formulation of clinical rehabilitation programs for MI-BCI is lack of scientific and standardized guidance, especially limited prior work on the frequency effect. Therefore, this study aims at clarifying how frequency effects on MI-BCI training for the plasticity of the central nervous system. Methods Sixteen young healthy subjects (aged 22.94 ± 3.86 years) were enrolled in this randomized clinical trial study. Subjects were randomly assigned to a high frequency group (HF group) and low frequency group (LF group). The HF group performed MI-BCI training once per day while the LF group performed once every other day. All subjects performed 10 sessions of MI-BCI training. functional near-infrared spectroscopy (fNIRS) measurement, Wolf Motor Function Test (WMFT) and brain computer interface (BCI) performance were assessed at baseline, mid-assessment (after completion of five BCI training sessions), and post-assessment (after completion of 10 BCI training sessions). Results The results from the two-way ANOVA of beta values indicated that GROUP, TIME, and GROUP × TIME interaction of the right primary sensorimotor cortex had significant main effects [GROUP: F(1,14) = 7.251, P = 0.010; TIME: F(2,13) = 3.317, P = 0.046; GROUP × TIME: F(2,13) = 5.676, P = 0.007]. The degree of activation was affected by training frequency, evaluation time point and interaction. The activation of left primary sensory motor cortex was also affected by group (frequency) (P = 0.003). Moreover, the TIME variable was only significantly different in the HF group, in which the beta value of the mid-assessment was higher than that of both the baseline assessment (P = 0.027) and post-assessment (P = 0.001), respectively. Nevertheless, there was no significant difference in the results of WMFT between HF group and LF group. Conclusion The major results showed that more cortical activation and better BCI performance were found in the HF group relative to the LF group. Moreover, the within-group results also showed more cortical activation after five sessions of BCI training and better BCI performance after 10 sessions in the HF group, but no similar effects were found in the LF group. This pilot study provided an essential reference for the formulation of clinical programs for MI-BCI training in improvement for upper limb dysfunction.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanni Zhang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yajie Zhang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wanqi Zhuang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Biyi Zhao
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Ke
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Tingting You
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yongchun Jiang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Anniwaer Yilifate
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wei Huang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Lingying Hou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyao You
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaping Huai
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yaxian Qiu
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Yaxian Qiu,
| | - Yuxin Zheng
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Yuxin Zheng,
| | - Haining Ou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Haining Ou,
| |
Collapse
|
7
|
Borisova VA, Isakova EV, Kotov SV. [Possibilities of the brain-computer interface in the correction of post-stroke cognitive impairments]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:60-66. [PMID: 36582163 DOI: 10.17116/jnevro202212212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, brain-computer interfaces have been widely used in neurorehabilitation, and an extensive database of results from clinical studies conducted around the world has been accumulated, demonstrating their effectiveness in restoring motor function after a stroke. Currently, their use in post-stroke cognitive impairment is expanding. This article discusses the potential and prospects for using brain-computer interfaces for the treatment of cognitive disorders, reviews the experience of using it, presents the results of clinical studies in stroke patients, evaluates the possibilities of using this technology, describes the prospects, new directions of work on studying its effects.
Collapse
Affiliation(s)
- V A Borisova
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E V Isakova
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| | - S V Kotov
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
8
|
Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9967348. [PMID: 34239936 PMCID: PMC8235968 DOI: 10.1155/2021/9967348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
With the continuous development of artificial intelligence technology, "brain-computer interfaces" are gradually entering the field of medical rehabilitation. As a result, brain-computer interfaces (BCIs) have been included in many countries' strategic plans for innovating this field, and subsequently, major funding and talent have been invested in this technology. In neurological rehabilitation for stroke patients, the use of BCIs opens up a new chapter in "top-down" rehabilitation. In our study, we first reviewed the latest BCI technologies, then presented recent research advances and landmark findings in BCI-based neurorehabilitation for stroke patients. Neurorehabilitation was focused on the areas of motor, sensory, speech, cognitive, and environmental interactions. Finally, we summarized the shortcomings of BCI use in the field of stroke neurorehabilitation and the prospects for BCI technology development for rehabilitation.
Collapse
|
9
|
|