3
|
Daneshvar DH, Nair ES, Baucom ZH, Rasch A, Abdolmohammadi B, Uretsky M, Saltiel N, Shah A, Jarnagin J, Baugh CM, Martin BM, Palmisano JN, Cherry JD, Alvarez VE, Huber BR, Weuve J, Nowinski CJ, Cantu RC, Zafonte RD, Dwyer B, Crary JF, Goldstein LE, Kowall NW, Katz DI, Stern RA, Tripodis Y, Stein TD, McClean MD, Alosco ML, McKee AC, Mez J. Leveraging football accelerometer data to quantify associations between repetitive head impacts and chronic traumatic encephalopathy in males. Nat Commun 2023; 14:3470. [PMID: 37340004 PMCID: PMC10281995 DOI: 10.1038/s41467-023-39183-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI), but the components of RHI exposure underlying this relationship are unclear. We create a position exposure matrix (PEM), composed of American football helmet sensor data, summarized from literature review by player position and level of play. Using this PEM, we estimate measures of lifetime RHI exposure for a separate cohort of 631 football playing brain donors. Separate models examine the relationship between CTE pathology and players' concussion count, athletic positions, years of football, and PEM-derived measures, including estimated cumulative head impacts, linear accelerations, and rotational accelerations. Only duration of play and PEM-derived measures are significantly associated with CTE pathology. Models incorporating cumulative linear or rotational acceleration have better model fit and are better predictors of CTE pathology than duration of play or cumulative head impacts alone. These findings implicate cumulative head impact intensity in CTE pathogenesis.
Collapse
Affiliation(s)
- Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA.
| | - Evan S Nair
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zachary H Baucom
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Abigail Rasch
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Arsal Shah
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Johnny Jarnagin
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Christine M Baugh
- Center for Bioethics and Humanities, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Boston, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Douglas I Katz
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael D McClean
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Fickling SD, Poel DN, Dorman JC, D’Arcy RCN, Munce TA. Subconcussive changes in youth football players: objective evidence using brain vital signs and instrumented accelerometers. Brain Commun 2021; 4:fcab286. [PMID: 35291689 PMCID: PMC8914875 DOI: 10.1093/braincomms/fcab286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Brain vital signs, measured by EEG, were used for portable, objective,
neurophysiological evaluation of cognitive function in youth tackle football
players. Specifically, we investigated whether previously reported pre- and
post-season subconcussive changes detected in youth ice hockey players were
comparably detected in football. The two objectives were to: (i) replicate
previously published results showing subconcussive cognitive deficits; and (ii)
the relationship between brain vital sign changes and head-impact exposure.
Using a longitudinal design, 15 male football players (age
12.89 ± 0.35 years) were tested pre- and
post-season, with none having a concussion diagnosis during the season. Peak
latencies and amplitudes were quantified for Auditory sensation (N100), Basic
attention (P300) and Cognitive processing (N400). Regression analyses tested the
relationships between these brain vital signs and exposure to head impacts
through both number of impacts sustained, and total sessions (practices and
games) participated. The results demonstrated significant pre/post differences
in N400 latencies, with ∼70 ms delay
(P < 0.01), replicating prior findings.
Regression analysis also showed significant linear relationships between brain
vital signs changes and head impact exposure based on accelerometer data and
games/practices played (highest
R = 0.863, P
< 0.001 for overall sessions). Number of head impacts in youth
football (age 12–14 years) findings corresponded most closely
with prior Junior-A ice hockey (age 16–21 years) findings,
suggesting comparable contact levels at younger ages in football. The predictive
relationship of brain vital signs provided a notable complement to instrumented
accelerometers, with a direct physiological measure of potential individual
exposure to subconcussive impacts.
Collapse
Affiliation(s)
- Shaun D Fickling
- Faculty of Sciences and Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- BrainNET, Health and Technology District, Surrey, BC V3V 0C6, Canada
- Center for Neurology Studies, HealthTech Connex, Surrey, BC V3V 0C6, Canada
| | - Daniel N Poel
- Sanford Sports Science Institute, Sanford Health, Sioux Falls, SD 57107, USA
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason C Dorman
- Sanford Sports Science Institute, Sanford Health, Sioux Falls, SD 57107, USA
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ryan C N D’Arcy
- Faculty of Sciences and Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- BrainNET, Health and Technology District, Surrey, BC V3V 0C6, Canada
- Center for Neurology Studies, HealthTech Connex, Surrey, BC V3V 0C6, Canada
| | - Thayne A Munce
- Sanford Sports Science Institute, Sanford Health, Sioux Falls, SD 57107, USA
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| |
Collapse
|
7
|
Narad ME, Epstein J, Peugh J, Barber Foss KD, Diekfuss JA, Bonnette S, Orban S, Yuan W, Dudley J, DiCesare CA, Reddington DL, Zhong W, Nissen KS, Shafer J, Avedesian JM, Slutsky-Ganesh AB, Lloyd RS, Howell D, Myer GD. The effect of subconcussive head impact exposure and jugular vein compression on behavioral and cognitive outcomes after a single season of high-school football: A prospective longitudinal trial. J Neurotrauma 2021; 39:49-57. [PMID: 34779241 DOI: 10.1089/neu.2021.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This prospective longitudinal trial aimed to 1) determine the role of head impact exposure on behavioral/cognitive outcomes, and 2) assess the protective effect(s) of a jugular vein compression (JVC) collar on behavioral/cognitive outcomes following one season of high-school football. Participants included 284 male high-school football players aged 13-18 years enrolled from seven midwestern high-schools. Schools were allocated to the JVC collar intervention(four teams, 140 players) or non-collar/no intervention control (three teams, 144 players) condition. Head impact exposure was measured throughout the season using CSx accelerometers. Outcome measures included post season parent and adolescent report on Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Scale (SWAN) and Post-Concussion Symptom Inventory (PCSI), as well as adolescent performance on Attention Network Task (ANT), digital Trail Making Task (dTMT), and Cued Switching task. No significant effect of head impact exposure or JVC collar use on post-season SWAN or PCSI scores or performance on dTMT and Cued Switching task were noted. There was no effect of head impact exposure on ANT performance; however, the JVC collar group had greater post-season Alerting network scores than the non-collar group (p=.026, d=.22). Findings provide preliminary evidence that the JVC collar may provide some protection to the alerting attention system. These findings should be interpreted cautiously as a greater understanding of the long-term sequalae of head impact exposure and the role of cumulative head impact exposure behavioral/cognitive outcomes is required.
Collapse
Affiliation(s)
- Megan E Narad
- Cincinnati Children's Hospital Medical Center, Division of Behavioral Medicine & Clinical Psychology, 3333 Burnet Ave, mlc 10006, Cincinnati, Ohio, United States, 45229;
| | - Jeffery Epstein
- Cincinnati Children's Hospital Medical Center, Division of Behavioral Medicine and Clinical Psychology, Cincinnati, Ohio, United States;
| | - James Peugh
- Cincinnati Children's Hospital Medical Center, 2518, Behavioral Medicine & Clinical Psychology, Cincinnati, Ohio, United States;
| | - Kim D Barber Foss
- Emory University, 1371, Emory Sport Performance and Research Center, Atlanta, Georgia, United States;
| | - Jed A Diekfuss
- Emory University, 1371, Emory Sport Performance and Research Center, Atlanta, Georgia, United States;
| | - Scott Bonnette
- Cincinnati Children's Hospital Medical Center, 2518, The SPORT Center, Division of Sports Medicine, Cincinnati, Ohio, United States;
| | - Sarah Orban
- University of Tampa, Department of psychology, Tampa, FL, United States;
| | - Weihong Yuan
- Cincinnati Children's Hospital Medical Center, 2518, 3333 Burnew Ave, Cincinnati, Ohio, United States, 45229-3026;
| | - Jonathan Dudley
- Cincinnati Children's Hospital Medical Center, 2518, 3333 Burnet Ave, Cincinnati, Ohio, United States, 45229-3026;
| | - Christopher A DiCesare
- University of Michigan, 1259, Department of Mechanical engineering, Ann Arbor, Michigan, United States;
| | - Danielle L Reddington
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States;
| | - Wen Zhong
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States;
| | | | - Jessica Shafer
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States;
| | | | - Alexis B Slutsky-Ganesh
- The University of North Carolina at Greensboro, Department of Kinesiology, Greensboro, North Carolina, United States;
| | - Rhodri S Lloyd
- Cardiff Metropolitan University, 11352, Cardiff, Cardiff, United Kingdom of Great Britain and Northern Ireland.,AUT University, Auckland, New Zealand.,Waikato Institute of Technology, 3715, Hamilton, New Zealand;
| | - David Howell
- University of Colorado Denver School of Medicine, 12225, Department of Orthopedics , Aurora, Colorado, United States;
| | - Greg D Myer
- Emory University School of Medicine, 12239, Atlanta, Georgia, United States.,the Micheli Center for Sports Injury Prevention, Waltham, Ma, United States;
| |
Collapse
|