1
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Hăşmăşanu MG, Procopciuc LM, Matyas M, Zonda GI, Zaharie GC. Genetic Polymorphisms of Vascular Endothelial Growth Factor in Neonatal Pathologies: A Systematic Search and Narrative Synthesis of the Literature. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040744. [PMID: 37189993 DOI: 10.3390/children10040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
(1) Background: Vascular endothelial growth factor (VEGF) is essential in vasculo- and angiogenesis due to its role in endothelial cell proliferation and migration. As a vascular proliferative factor, VEGF is one of the hallmarks of cancer and, in adult populations, the relationship between genetic polymorphism and neoplasm was widely investigated. For the neonatal population, only a few studies attempted to uncover the link between the genetic polymorphism of VEGF and neonatal pathology, especially related to late-onset complications. Our objective is to evaluate the literature surrounding VEGF genetic polymorphisms and the morbidity of the neonatal period. (2) Methods: A systematic search was initially conducted in December 2022. The PubMed platform was used to explore MEDLINE (1946 to 2022) and PubMed Central (2000 to 2022) by applying the search string ((VEGF polymorphism*) and newborn*). (3) Results: The PubMed search yielded 62 documents. A narrative synthesis of the findings was undertaken considering our predetermined subheadings (infants with low birth weight or preterm birth, heart pathologies, lung diseases, eye conditions, cerebral pathologies, and digestive pathologies). (4) Conclusion: The VEGF polymorphisms seem to be associated with neonatal pathology. The involvement of VEGF and VEGF polymorphism has been demonstrated for retinopathy of prematurity.
Collapse
Affiliation(s)
- Monica G Hăşmăşanu
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Lucia M Procopciuc
- Department of Medical Biochemistry, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Melinda Matyas
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Gabriela I Zonda
- Department of Mother and Child Care, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115 Iași, Romania
| | - Gabriela C Zaharie
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
The Polymorphism in ADORA3 Decreases Transcriptional Activity and Influences the Chronic Heart Failure Risk in the Chinese. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4969385. [PMID: 29955603 PMCID: PMC6000890 DOI: 10.1155/2018/4969385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
Aim To investigate the genetic contribution of adenosine A3 receptor (ADORA3) gene polymorphisms in the pathogenesis of chronic heart failure (CHF). Methods Firstly, a case-control study was performed to investigate the association of ADORA3 polymorphisms with CHF risk. Three hundred northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls were included. Four polymorphisms were genotyped. This case-control study was also replicated in 304 CHF patients and 402 controls from southern China. Finally, the functional variability of positive polymorphism was analyzed using luciferase reporter assay and real-time PCR. Results Overall, the rs1544223 was significantly associated with CHF risk under the dominant model (P = 0.046, OR = 1.662, 95% CI = 1.009-2.738). But it did not affect disease severity. These results were also consistent in replicated population. In addition, the transcriptional activity for promoter with the A allele was lower than that with the G allele (n = 3, 4.501 ± 0.308 versus 0.571 ± 0.114, P < 0.01) and ADORA3 mRNA levels were significantly higher in GG homozygotes than subjects carrying GA (n = 6, 0.058 ± 0.01 versus 0.143 ± 0.068, P = 0.004) or AA genotypes (n = 6, 0.065 ± 0.01 versus 0.143 ± 0.068, P = 0.008). Conclusions Should the findings be validated by further studies with larger patient samples and in different ethnicities, they may provide novel insight into the pathogenesis of CHF.
Collapse
|
4
|
Zhang Q, Xu M, Zhou W, Fan X. α +-Thalassemia Caused by an 811 bp Deletion in Individuals from Nanning, Guangxi: A Report of Two Cases. Hemoglobin 2017; 41:185-188. [PMID: 28840763 DOI: 10.1080/03630269.2017.1371035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel 811 bp deletion was first identified in two families of Nanning City, Guangxi Zhuang Autonomous Region, People's Republic of China (PRC). The molecular basis of this anomaly is a deletion from NG_000006.1: g.32945_33755, and is 20 bp upstream of the translation initiation codon of HBA2. From analyses of the blood indices of the two probands, the 811 bp deletion is an α+-thalassemia (α+-thal). This is the first report of this deletional thalassemia anywhere in the world.
Collapse
Affiliation(s)
- Qiang Zhang
- a Department of Genetic Metabolism , Prenatal Diagnostic Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China.,b Department of Medical Genetics , School of Basic Medical Sciences, Southern Medical University , Guangzhou , Guangdong Province , People's Republic of China
| | - Mingli Xu
- b Department of Medical Genetics , School of Basic Medical Sciences, Southern Medical University , Guangzhou , Guangdong Province , People's Republic of China
| | - Wanjun Zhou
- b Department of Medical Genetics , School of Basic Medical Sciences, Southern Medical University , Guangzhou , Guangdong Province , People's Republic of China
| | - Xin Fan
- a Department of Genetic Metabolism , Prenatal Diagnostic Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| |
Collapse
|
5
|
Yan L, Ge Q, Xi C, Zhang X, Guo Y. Genetic variations of VEGF gene were associated with tetralogy of fallot risk in a Chinese Han population. Genet Test Mol Biomarkers 2015; 19:264-71. [PMID: 25894981 DOI: 10.1089/gtmb.2014.0303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Tetralogy of Fallot (TOF) is one of the most common forms of congenital heart disease. In this study, we aimed at investigating the associations between genetic variations of vascular endothelial growth factor (VEGF) gene and the risk of TOF in a Chinese Han population. Our findings may contribute to a deeper understanding of TOF pathogenesis and better diagnostic and therapeutic suggestions. METHODS A total of 165 TOF patients and 240 controls from a Chinese Han population in Shenyang and Harbin were recruited in the current study. Nine single-nucleotide polymorphisms (SNPs) (-2578C/A, -460T/C, -1154G/A, -634G/C, 534C/T, +398G/A, +963C/T, 752C/T, 913G/A) were genotyped by the MALDI-TOF MassARRAY system. Individual SNPs as well as their haplotypes were analyzed for their associations with TOF risk, using odds ratios and the 95% confidence interval under codominant and dominant models. RESULTS In the single SNP analyses, the mutant homozygous genotypes of -2578C/A (rs699947) and +963C/T (rs3025039) were related with an increased risk of TOF. In addition, carriers with the mutant A allele of -1154G/A (rs1570360) were supposed to have a significantly elevated TOF risk. Similarly, compared with the wild homozygote GG carriers, the GC carrier of -634G/C (rs2010963) revealed a significant relationship with susceptibility of TOF, but not for the mutant homozygote CC carriers. However, no significant association was found for the other five SNPs. Meanwhile, haplotype analysis revealed that CCA and ATA in block 1 (-2578C/A, -460T/C, and -1154G/A) and TTG and TCA in block 3 (+963C/T, 752C/T, and 913G/A) were significantly related with an increased TOF risk compared with the most common haplotypes. CONCLUSION In summary, our results suggested that VEGF variants (-2578C/A, -1154G/A, -634G/C, +963G/A) were involved in the susceptibility of TOF. However, validation of our study needs further study in various ethnics to reveal the functional relationship between VEGF polymorphisms and TOF risk, which may contribute to diagnosis and therapy of TOF.
Collapse
Affiliation(s)
- Liru Yan
- 1 Department of Developmental Pediatrics, Shengjing Hospital, China Medical University , Shenyang, Liaoning Province, China
| | | | | | | | | |
Collapse
|
6
|
Specht EA, Mayfield SP. Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synth Biol 2013; 2:34-46. [PMID: 23656324 DOI: 10.1021/sb300069k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene expression in chloroplasts is highly regulated during translation by sequence and secondary-structure elements in the 5' untranslated region (UTR) of mRNAs. These chloroplast mRNA 5' UTRs interact with nuclear-encoded factors to regulate mRNA processing, stability, and translation initiation. Although several UTR elements in chloroplast mRNAs have been identified by site-directed mutagenesis, the complete set of elements required for expression of plastid mRNAs remains undefined. Here we present a synthetic biology approach using an arrayed oligonucleotide library to examine in vivo hundreds of designed variants of endogenous UTRs from Chlamydomonas reinhardtii and quantitatively identify essential regions through next-generation sequencing of thousands of mutants. We validate this strategy by characterizing the relatively well-studied 5' UTR of the psbD mRNA encoding the D2 protein in photosystem II and find that our analysis generally agrees with previous work identifying regions of importance but significantly expands and clarifies the boundaries of these regulatory regions. We then use this strategy to characterize the previously unstudied psaA 5' UTR and obtain a detailed map of regions essential for both positive and negative regulation. This analysis can be performed in a high-throughput manner relative to previous site-directed mutagenesis methods, enabling compilation of a large unbiased data set of regulatory elements of chloroplast gene expression. Finally, we create a novel synthetic UTR based on aggregate sequence analysis from the libraries and demonstrate that it significantly increases accumulation of an exogenous protein, attesting to the utility of this strategy for enhancing protein production in algal chloroplasts.
Collapse
Affiliation(s)
- Elizabeth A. Specht
- The San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Stephen P. Mayfield
- The San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Kanoria S, Burma PK. A 28 nt long synthetic 5'UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 2012; 12:85. [PMID: 23140609 PMCID: PMC3536603 DOI: 10.1186/1472-6750-12-85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/04/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A high level of transgene expression is required, in several applications of transgenic technology. While use of strong promoters has been the main focus in such instances, 5'UTRs have also been shown to enhance transgene expression. Here, we present a 28 nt long synthetic 5'UTR (synJ), which enhances gene expression in tobacco and cotton. RESULTS The influence of synJ on transgene expression was studied in callus cultures of cotton and different tissues of transgenic tobacco plants. The study was based on comparing the expression of reporter gene gus and gfp, with and without synJ as its 5'UTR. Mutations in synJ were also analyzed to identify the region important for enhancement. synJ, enhances gene expression by 10 to 50 fold in tobacco and cotton depending upon the tissue studied. This finding is based on the experiments comparing the expression of gus gene, encoding the synJ as 5'UTR under the control of 35S promoter with expression cassettes based on vectors like pBI121 or pRT100. Further, the enhancement was in most cases equivalent to that observed with the viral leader sequences known to enhance translation like Ω and AMV. In case of transformed cotton callus as well as in the roots of tobacco transgenic plants, the up-regulation mediated by synJ was much higher than that observed in the presence of both Ω as well as AMV. The enhancement mediated by synJ was found to be at the post-transcriptional level. The study also demonstrates the importance of a 5'UTR in realizing the full potential of the promoter strength. synJ has been utilized to design four cloning vectors: pGEN01, pBGEN02, pBGEN02-hpt and pBGEN02-ALSdm each of which can be used for cloning the desired transgene and achieving high level of expression in the resulting transgenic plants. CONCLUSIONS synJ, a synthetic 5'UTR, can enhance transgene expression under a strong promoter like 35S as well as under a weak promoter like nos in dicotyledonous plants. synJ can be incorporated as the 5'UTR of transgenes, especially in cases where high levels of expression is required. A set of vectors has also been designed to facilitate this process.
Collapse
Affiliation(s)
- Shaveta Kanoria
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Kumar Burma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
8
|
Salvador ML, Suay L, Klein U. Messenger RNA degradation is initiated at the 5' end and follows sequence- and condition-dependent modes in chloroplasts. Nucleic Acids Res 2011; 39:6213-22. [PMID: 21507888 PMCID: PMC3152361 DOI: 10.1093/nar/gkr226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using reporter gene constructs, consisting of the bacterial uidA (GUS) coding region flanked by the 5′ and 3′ regions of the Chlamydomonas rbcL and psaB genes, respectively, we studied the degradation of mRNAs in the chloroplast of Chlamydomonas reinhardtii in vivo. Extending the 5′ terminus of transcripts of the reporter gene by more than 6 nucleotides triggered rapid degradation. Placing a poly(G) tract, known to pause exoribonucleases, in various positions downstream of the 5′ terminus blocked rapid degradation of the transcripts. In all these cases the 5′ ends of the accumulating GUS transcripts were found to be trimmed to the 5′ end of the poly(G) tracts indicating that a 5′→3′ exoribonuclease is involved in the degradation process. Several unstable variants of the GUS transcript could not be rescued from rapid degradation by a poly(G) tract showing that sequence/structure-dependent modes of mRNA breakdown exist in the Chlamydomonas chloroplast. Furthermore, degradation of poly(G)-stabilized transcripts that accumulated in cells maintained in the dark could be augmented by illuminating the cells, implying a photo-activated mode of mRNA degradation that is not blocked by a poly(G) tract. These results suggest sequence- and condition-dependent 5′→3′ mRNA-degrading pathways in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Maria L Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, Burjassot, Valencia 46100, Spain
| | | | | |
Collapse
|
9
|
Mehrotra S, Trivedi PK, Sethuraman A, Mehrotra R. The rbcL gene of Populus deltoides has multiple transcripts and is redox-regulated in vitro. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:466-73. [PMID: 20817342 DOI: 10.1016/j.jplph.2010.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/01/2010] [Accepted: 08/01/2010] [Indexed: 05/25/2023]
Abstract
We report the discovery of three types of transcripts for the gene encoding large subunit of Rubisco (rbcL) from chloroplast genome of Populus deltoides, an angiospermic tree. While the larger two transcripts are in confirmation with reported transcripts for other rbcL genes as far as the 5' ends are concerned, the third transcript is unique since it lacks the consensus ribosome-binding site. We also report the molecular weights of several proteins interacting with the 5' untranslated region of the same mRNA and that the RNA-protein interaction in vitro is influenced by redox reagents.
Collapse
Affiliation(s)
- Sandhya Mehrotra
- Chamber No. 3222 Q, Faculty Division III, Biosciences Group, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | | | | | | |
Collapse
|
10
|
Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman FA, Vallon O. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. THE PLANT CELL 2010; 22:234-48. [PMID: 20097872 PMCID: PMC2828700 DOI: 10.1105/tpc.109.066266] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 12/14/2009] [Accepted: 01/12/2010] [Indexed: 05/18/2023]
Abstract
We identify and functionally characterize MRL1, a conserved nuclear-encoded regulator of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. The nonphotosynthetic mrl1 mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase/oxygenase, and the resulting block in electron transfer is partially compensated by redirecting electrons toward molecular oxygen via the Mehler reaction. This allows continued electron flow and constitutive nonphotochemical quenching, enhancing cell survival during illumination in spite of photosystem II and photosystem I photoinhibition. The mrl1 mutant transcribes rbcL normally, but the mRNA is unstable. The molecular target of MRL1 is the 5 ' untranslated region of rbcL. MRL1 is located in the chloroplast stroma, in a high molecular mass complex. Treatment with RNase or deletion of the rbcL gene induces a shift of the complex toward lower molecular mass fractions. MRL1 is well conserved throughout the green lineage, much more so than the 10 other pentatricopeptide repeat proteins found in Chlamydomonas. Depending upon the organism, MRL1 contains 11 to 14 pentatricopeptide repeats followed by a novel MRL1-C domain. In Arabidopsis thaliana, MRL1 also acts on rbcL and is necessary for the production/stabilization of the processed transcript, presumably because it acts as a barrier to 5 ' >3 ' degradation. The Arabidopsis mrl1 mutant retains normal levels of the primary transcript and full photosynthetic capacity.
Collapse
Affiliation(s)
- Xenie Johnson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Giovanni Finazzi
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Richard Kuras
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Christian Schwarz
- Biozentrum Ludwig-Maximilian Universität München, D-82152 Planegg-Martinsried, Germany
| | - Sandrine Bujaldon
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Joerg Nickelsen
- Biozentrum Ludwig-Maximilian Universität München, D-82152 Planegg-Martinsried, Germany
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Francis-André Wollman
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Olivier Vallon
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris 75005, France
- Address correspondence to
| |
Collapse
|
11
|
del Campo EM. Post-transcriptional control of chloroplast gene expression. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:31-47. [PMID: 19838333 PMCID: PMC2758277 DOI: 10.4137/grsb.s2080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts.
Collapse
Affiliation(s)
- Eva M del Campo
- Department of Plant Biology, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
12
|
Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman FA, Choquet Y. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 2008; 28:5529-42. [PMID: 18573878 PMCID: PMC2519735 DOI: 10.1128/mcb.02056-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/25/2008] [Accepted: 06/13/2008] [Indexed: 11/20/2022] Open
Abstract
In organelles, the posttranscriptional steps of gene expression are tightly controlled by nucleus-encoded factors, most often acting in a gene-specific manner. Despite the molecular identification of a growing number of factors, their mode of action remains largely unknown. In the green alga Chlamydomonas reinhardtii, expression of the chloroplast petA gene, which codes for cytochrome f, depends on two specific nucleus-encoded factors. MCA1 controls the accumulation of the transcript, while TCA1 is required for its translation. We report here the cloning of MCA1, the first pentatricopeptide repeat protein functionally identified in this organism. By chloroplast transformation with modified petA genes, we investigated the function of MCA1 in vivo. We demonstrate that MCA1 acts on the very first 21 nucleotides of the petA 5' untranslated region to protect the whole transcript from 5'-->3' degradation but does not process the 5' end of the petA mRNA. MCA1 and TCA1 recognize adjacent targets and probably interact together for efficient expression of petA mRNA. MCA1, although not strictly required for translation, shows features of a translational enhancer, presumably by assisting the binding of TCA1 to its own target. Conversely, TCA1 participates to the full stabilization of the transcript through its interaction with MCA1.
Collapse
Affiliation(s)
- Christelle Loiselay
- UMR 7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, Lybrand T, McKay J, Ong HC, Sims E, Rocap G. Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains. BMC Genomics 2008; 9:211. [PMID: 18462506 PMCID: PMC2410131 DOI: 10.1186/1471-2164-9-211] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/08/2008] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. RESULTS H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date. CONCLUSION The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture, gene content and evolution within the stramenopile cluster.
Collapse
MESH Headings
- Algal Proteins/genetics
- Amino Acid Sequence
- Atlantic Ocean
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Conserved Sequence
- DNA, Algal/genetics
- DNA, Algal/isolation & purification
- DNA, Chloroplast/genetics
- DNA, Chloroplast/isolation & purification
- Furans
- Genome, Chloroplast
- Molecular Sequence Data
- Pacific Ocean
- Phaeophyceae/classification
- Phaeophyceae/genetics
- Phaeophyceae/isolation & purification
- Polymorphism, Single Nucleotide
- Recombinases/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA/methods
- Sequence Homology, Amino Acid
- Species Specificity
- Thiophenes
Collapse
Affiliation(s)
- Rose Ann Cattolico
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| | - Michael A Jacobs
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Yang Zhou
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Jean Chang
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Melinda Duplessis
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
| | - Terry Lybrand
- Vanderbilt University Center for Structural Biology, 5142 Biosci/MRB III, Nashville, TN 37232-8725, USA
| | - John McKay
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| | - Han Chuan Ong
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
- Division of Science, Lyon College, 2300 Highland Rd, Batesville, AR 72501-3629, USA
| | - Elizabeth Sims
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| |
Collapse
|
14
|
Goldschmidt-Clermont M, Rahire M, Rochaix JD. Redundant cis-acting determinants of 3' processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:566-577. [PMID: 17996019 DOI: 10.1111/j.1365-313x.2007.03365.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have designed a screen for mutants affected in 3' maturation of the chloroplast rbcL mRNA in Chlamydomonas reinhardtii. We inserted a spectinomycin resistance cassette, 5'atpA::aadA::3'rbcL, in a peripheral domain of tscA, the gene for a small non-coding RNA involved in trans-splicing of psaA. Depending on the orientation of the cassette, a polar effect was observed which was due to processing at the 3'rbcL element: the chimeric tscA RNA was truncated and splicing of psaA was blocked. We selected phenotypic revertants of this insertion mutant that restored psaA splicing, which correlated with the presence of chimeric transcripts that regained the 3' part of tscA. We analyzed two nuclear and six chloroplast suppressors. Five chloroplast mutations altered a short element in the center of the second inverted repeat in the 3'rbcL (IR2), and one deleted a larger region including this element. These mutations revealed a cis-acting element in IR2 which is required for 3' processing. When the same mutations were inserted in the 3' untranslated region (UTR) of the native rbcL gene, the rbcL mRNA accumulated to normal levels, but in strong alleles its 3' end was located upstream, near the end of the first inverted repeat (IR1). Deletion of either IR1 or IR2 allowed stable accumulation of rbcL mRNA, but deletion of both resulted in its complete absence. This indicated that the two inverted repeats function as redundant mRNA stability determinants in the 3' UTR of rbcL.
Collapse
Affiliation(s)
- Michel Goldschmidt-Clermont
- Departments of Molecular Biology and of Plant Biology, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
15
|
Rymarquis LA, Higgs DC, Stern DB. Nuclear suppressors define three factors that participate in both 5' and 3' end processing of mRNAs in Chlamydomonas chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:448-61. [PMID: 16623905 DOI: 10.1111/j.1365-313x.2006.02711.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast RNA processing and degradation are orchestrated by nucleus-encoded factors. Although several transcript-specific factors have been identified, those involved in global RNA metabolism have mostly remained elusive. Using Chlamydomonas reinhardtii, we have identified three pleiotropic nuclear mutations, mcd3, mcd4 and mcd5, which cause quantitative variation between polycistronic transcripts and accumulation of transcripts with novel 3' ends. The mcd3, mcd4 and mcd5 mutants were initially isolated as photoautotrophic suppressors of the petD 5' mutants LS2 and LS6, which harbour four nucleotide linker-scanning mutations near the 5' end of the mature transcript. The LS mutants accumulate 1-3% of the wild-type (WT) petD mRNA level and no cytochrome b6/f complex subunit IV, which is the petD gene product and required for photosynthesis. Each suppressor restores approximately 15% of the WT petD mRNA and subunit IV levels. Genetic analysis showed mcd4 to be recessive, and suggested that MCD4 interacts with the petD mRNA stability factor MCD1. To assess the specificity of mcd3, mcd4 and mcd5, transcripts from 32 chloroplast genes were analysed by RNA filter hybridizations. mcd3 and mcd4 displayed aberrant transcript patterns for 17 genes, whereas only three were altered in mcd5. Since the mutations affect multiple RNAs in a variety of ways, our data suggest that MCD3, MCD4 and MCD5 may participate in a series of multiprotein complexes responsible for RNA maturation and degradation in Chlamydomonas chloroplasts.
Collapse
|
16
|
Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 2005; 274:625-36. [PMID: 16231149 DOI: 10.1007/s00438-005-0055-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Expression of chloroplast genes is primarily regulated posttranscriptionally, and a number of RNA elements, found in either the 5'- or 3'-untranslated regions (UTRs) of plastid mRNAs, that impact gene expression have been identified. Complex regulatory and feedback mechanisms influence both translation and protein accumulation, making assignment of roles for specific RNA elements difficult. To identify specific contributions made by various UTRs on translation of plastid mRNAs, we used a heterologous gfp reporter gene that is fused combinatorially to chloroplast 5'- and 3'-UTRs. In general, the 5'-UTR, including the promoter, of the plastid atpA and psbD genes produced the highest levels of chimeric mRNA and protein accumulation, while the 5'-UTR of the rbcL and psbA genes produced less mRNA and protein. Varying the 3'-UTR had little impact on mRNA and protein accumulation, as long as a 3'-UTR was present. Overall, accumulation of chimeric mRNAs was proportional to protein accumulation, with a few notable exceptions. Light-regulated translation continues to operate in chimeric mRNAs containing the 5'-UTR of either the psbA or psbD mRNAs, despite translation of these two chimeric mRNAs at very different efficiencies, suggesting that translational efficiency and light-regulated translation are separate events. Translation of some chimeric mRNAs was much more efficient than others, suggesting that interactions between the untranslated and coding sequences can dramatically impact translational efficiency.
Collapse
Affiliation(s)
- Dwight Barnes
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Suay L, Salvador ML, Abesha E, Klein U. Specific roles of 5' RNA secondary structures in stabilizing transcripts in chloroplasts. Nucleic Acids Res 2005; 33:4754-61. [PMID: 16116040 PMCID: PMC1188514 DOI: 10.1093/nar/gki760] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA secondary structures, e.g. stem–loops that are often found at the 5′ and 3′ ends of mRNAs, are in many cases known to be crucial for transcript stability but their role in prolonging the lifetime of transcripts remains elusive. In this study we show for an essential RNA-stabilizing stem–loop at the 5′ end of rbcL gene transcripts in Chlamydomonas that it neither prevents ribonucleases from binding to the RNA nor impedes their movement along the RNA strand. The stem–loop has a formative function in that it mediates folding of a short sequence around its base into a specific RNA conformation, consisting of a helical and single-stranded region, i.e. the real structure required for longevity of rbcL transcripts in chloroplasts. Disturbing this structure renders transcripts completely unstable, even if the sequence of this element is not altered. The requirement of a specific 5′ sequence and structure for RNA longevity suggests an interaction of this element with a trans-acting factor that protects transcripts from rapid degradation in chloroplasts.
Collapse
Affiliation(s)
| | | | - Emnet Abesha
- Department of Molecular Biosciences, University of OsloPO Box 1041 Blindern, 0316 Oslo, Norway
| | - Uwe Klein
- Department of Molecular Biosciences, University of OsloPO Box 1041 Blindern, 0316 Oslo, Norway
- To whom correspondence should be addressed. Tel: +34 47 22854662; Fax +34 47 22854726;
| |
Collapse
|
18
|
Nishimura Y, Kikis EA, Zimmer SL, Komine Y, Stern DB. Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts. THE PLANT CELL 2004; 16:2849-69. [PMID: 15486097 PMCID: PMC527185 DOI: 10.1105/tpc.104.026203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 08/26/2004] [Indexed: 05/21/2023]
Abstract
In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Delta26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Delta26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3' poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS-, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Delta26, in which atpB mRNA is unstable because of the lack of a 3' stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3'-->5' exonuclease activity, a phenomenon that may occur naturally in the symmetrically transcribed and densely packed chloroplast genome.
Collapse
MESH Headings
- Animals
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Chloroplasts/genetics
- DNA, Complementary/genetics
- Exonucleases/metabolism
- Gene Expression Regulation/genetics
- Genome, Plant
- Photosynthesis/genetics
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- RNA 3' End Processing/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA Processing, Post-Transcriptional/genetics
- RNA Stability/genetics
- RNA, Algal/biosynthesis
- RNA, Algal/genetics
- RNA, Antisense/genetics
- RNA, Double-Stranded/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- Species Specificity
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
19
|
Herrin DL, Nickelsen J. Chloroplast RNA processing and stability. PHOTOSYNTHESIS RESEARCH 2004; 82:301-14. [PMID: 16143842 DOI: 10.1007/s11120-004-2741-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/18/2004] [Indexed: 05/04/2023]
Abstract
Primary chloroplast transcripts are processed in a number of ways, including intron splicing, internal cleavage of polycistronic RNAs, and endonucleolytic or exonucleolytic cleavages at the transcript termini. All chloroplast RNAs are also subject to degradation, although a curious feature of many chloroplast mRNAs is their relative longevity. Some of these processes, e.g., psbA splicing and stability of a number of chloroplast mRNAs, are regulated in response to light-dark cycles or nutrient availability. This review highlights recent advances in our understanding of these processes in the model organism Chlamydomonas reinhardtii, focusing on results since the extensive reviews published in 1998 [Herrin DL et al. 1998 (pp. 183-195), Nickelsen Y 1998 (pp. 151-163), Stern DB and Drager RG 1998 (pp. 164-182), in Rochaix JD et al. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, The Netherlands]. We also allude to studies with other organisms, and to the potential impact of the Chlamydomonas genome project where appropriate.
Collapse
Affiliation(s)
- David L Herrin
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 1 University Station A6700, Austin, TX, 78712, USA,
| | | |
Collapse
|
20
|
Salvador ML, Suay L, Anthonisen IL, Klein U. Changes in the 5'-untranslated region of the rbcL gene accelerate transcript degradation more than 50-fold in the chloroplast of Chlamydomonas reinhardtii. Curr Genet 2003; 45:176-82. [PMID: 14628153 DOI: 10.1007/s00294-003-0470-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 10/25/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022]
Abstract
Using uidA (beta-glucuronidase; GUS) reporter gene constructs, the 5'-untranslated region (UTR) of the Chlamydomonas chloroplast rbcL gene was screened by deletion and mutational analysis for the presence of a promoter element that previous studies implied to reside within the first 63 base pairs of the UTR. Deleting a large segment of the rbcL 5'UTR in a 3'-->5' direction to position +36, changing the remaining 36 base pairs at the 5' end of the UTR, and increasing by five base pairs the distance between the rbcL 5'UTR and the basic promoter element located at position -10 did not abolish transcription from the basic rbcL promoter. It is concluded that the apparent loss of transcriptional activity found in earlier studies after deletion of sequences downstream of the transcription initiation site is due to the synthesis of very unstable transcripts that escape detection by Northern analysis and in vivo transcription assays. Chimeric rbcL:GUS transcripts containing changes in the beginning of the 5'UTR that affect RNA secondary structure are estimated to be at least 50 times less stable than rbcL:GUS transcripts containing the non-modified rbcL 5'UTR sequence.
Collapse
Affiliation(s)
- Maria Luisa Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Zou Z, Eibl C, Koop HU. The stem-loop region of the tobacco psbA 5'UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 2003; 269:340-9. [PMID: 12690442 DOI: 10.1007/s00438-003-0842-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 03/12/2003] [Indexed: 11/29/2022]
Abstract
Regulation of chloroplast gene expression involves networked and concerted interactions of nucleus-encoded factors with their target sites on untranslated regions (UTRs) of chloroplast transcripts. So far, only a few cis-acting elements within such 5'UTR sequences have been identified as functional determinants of mRNA stability and efficient translation in Chlamydomonas in vivo. In this study, we have used chloroplast transformation and site-directed mutagenesis to analyse the functions of the 5'UTRs of tobacco psbA and rbcL fused to the coding region of the reporter gene uidA. Various mutant versions of the psbA leader, as well as rbcL/psbA hybrid leader elements, were investigated. Our results showed a 1.5- to 3-fold decrease in uidA mRNA levels and a 1.5- to 6-fold reduction in uidA translation efficiency in all psbA 5'UTR stem-loop mutants generated by sequence deletions and base alterations. This indicates that the correct primary sequence and secondary structure of the psbA 5'UTR stem-loop are required for mRNA stabilisation and translation. The 5'-terminal segment of the rbcL 5'UTR did not enhance the stability or translational activity of chimeric uidA mRNA under the standard light-dark regime of 16 h light and 8 h dark. Stabilising effects were, however, observed when the cells were kept continuously in the dark. Possible reasons for the influence of the 5'UTR of the tobacco psbA on mRNA stability and translation efficiency are discussed.
Collapse
Affiliation(s)
- Z Zou
- Botanisches Institut, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80638 Munich, Germany
| | | | | |
Collapse
|
22
|
Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. THE PLANT CELL 2003; 15:1480-95. [PMID: 12782738 PMCID: PMC156381 DOI: 10.1105/tpc.010397] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Accepted: 04/12/2003] [Indexed: 05/18/2023]
Abstract
The psbB-psbT-psbH-petB-petD operon of higher plant chloroplasts is a heterogeneously composed transcriptional unit that undergoes complex RNA processing events until the mature oligocistronic RNAs are formed. To identify the nucleus-encoded factors required for the processing and expression of psbB-psbT-psbH-petB-petD transcripts, we performed mutational analysis using Arabidopsis. The allelic nuclear mutants hcf152-1 and hcf152-2 were identified that are affected specifically in the accumulation of the plastidial cytochrome b(6)f complex. In both mutants, reduced amounts of spliced petB RNAs (encoding the cytochrome b(6) subunit) were detected, thus explaining the observed protein deficiencies. Additionally, mutant hcf152-1 is affected in the accumulation of transcripts cleaved between the genes psbH and petB. As a result of a close T-DNA insertion, the HCF152 gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF152 encodes a pentatricopeptide repeat (PPR) protein with 12 putative PPR motifs that is located inside the chloroplast. The protein shows a significant structural, but not primary, sequence similarity to the maize protein CRP1, which is involved in the processing and translation of the chloroplast petD and petA RNAs. In addition, we found that HCF152 is an RNA binding protein that binds certain areas of the petB transcript. The protein possibly exists in the chloroplast as a homodimer and is not associated with other proteins to form a high molecular mass complex.
Collapse
Affiliation(s)
- Karin Meierhoff
- Heinrich-Heine-Universität, Institut für Entwicklungs und Molekularbiologie der Pflanzen, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|