1
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
2
|
Wu J, Niu S, Tan M, Huang C, Li M, Song Y, Wang Q, Chen J, Shi S, Lan P, Lei M. Cryo-EM Structure of the Human Ribonuclease P Holoenzyme. Cell 2018; 175:1393-1404.e11. [PMID: 30454648 DOI: 10.1016/j.cell.2018.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Ribonuclease (RNase) P is a ubiquitous ribozyme that cleaves the 5' leader from precursor tRNAs. Here, we report cryo-electron microscopy structures of the human nuclear RNase P alone and in complex with tRNAVal. Human RNase P is a large ribonucleoprotein complex that contains 10 protein components and one catalytic RNA. The protein components form an interlocked clamp that stabilizes the RNA in a conformation optimal for substrate binding. Human RNase P recognizes the tRNA using a double-anchor mechanism through both protein-RNA and RNA-RNA interactions. Structural comparison of the apo and tRNA-bound human RNase P reveals that binding of tRNA induces a local conformational change in the catalytic center, transforming the ribozyme into an active state. Our results also provide an evolutionary model depicting how auxiliary RNA elements in bacterial RNase P, essential for substrate binding, and catalysis, were replaced by the much more complex and multifunctional protein components in higher organisms.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuangshuang Niu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming Tan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenhui Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mingyue Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Song
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qianmin Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
3
|
Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G, Cheng H, Wu J, Li G, Lei M. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 2018; 362:science.aat6678. [PMID: 30262633 DOI: 10.1126/science.aat6678] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/18/2018] [Indexed: 11/02/2022]
Abstract
Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.
Collapse
Affiliation(s)
- Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Shuangshuang Niu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuwan Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiangda Peng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China.,Shanghai Science Research Center, CAS, Shanghai, 201204, China
| |
Collapse
|
4
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
6
|
Liu Y, Wilson TJ, Lilley DM. The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Nat Chem Biol 2017; 13:508-513. [PMID: 28263963 PMCID: PMC5392355 DOI: 10.1038/nchembio.2333] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
Abstract
The TS ribozyme (originally called "twister sister") is a catalytic RNA. We present a crystal structure of the ribozyme in a pre-reactive conformation. Two co-axial helical stacks are organized by a three-way junction and two tertiary contacts. Five divalent metal ions are directly coordinated to RNA ligands, making important contributions to the RNA architecture. The scissile phosphate lies in a quasihelical loop region that is organized by a network of hydrogen bonding. A divalent metal ion is directly bound to the nucleobase 5' to the scissile phosphate, with an inner-sphere water molecule positioned to interact with the O2' nucleophile. The rate of ribozyme cleavage correlated in a log-linear manner with divalent metal ion pKa, consistent with proton transfer in the transition state, and we propose that the bound metal ion is a likely general base for the cleavage reaction. Our data indicate that the TS ribozyme functions predominantly as a metalloenzyme.
Collapse
Affiliation(s)
- Yijin Liu
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Timothy J. Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David M.J. Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
7
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
8
|
Chemical synthesis of RNA with site-specific methylphosphonate modifications. Methods 2016; 107:79-88. [PMID: 27037236 PMCID: PMC5405801 DOI: 10.1016/j.ymeth.2016.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/21/2022] Open
Abstract
Methylphosphonate(mP)-modified RNA serves as valuable probe to evaluate biomolecular interactions between the nucleic acid backbone and binding partners, such as proteins or small molecules. Here, we describe an efficient workflow for the synthesis of RNA with a single mP modification in diastereomerically pure form. While the automated assembly of mP-modified RNA is straightforward, its deprotection under basic conditions is challenging; a carefully optimized step-by-step procedure is provided. In addition, we demonstrate purification and separation strategies for the RP and SP-configurated RNA diastereomers using a combination of anion-exchange and reversed-phase HPLC, and comment on troubleshooting if their separation appears difficult. Furthermore, we demonstrate the stereochemical assignment of short RP and SP mP-modified RNA diastereomers based on 2D ROESY NMR spectroscopy and we report on the impact of the mP modification on thermal and thermodynamic stabilities of RNA-DNA hybrid and RNA-RNA duplexes.
Collapse
|
9
|
Esquiaqui JM, Sherman EM, Ye JD, Fanucci GE. Site-directed spin-labeling strategies and electron paramagnetic resonance spectroscopy for large riboswitches. Methods Enzymol 2014; 549:287-311. [PMID: 25432754 DOI: 10.1016/b978-0-12-801122-5.00013-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic regulation effected by RNA riboswitches is governed by ligand-induced structural reorganization with modulation of RNA conformation and dynamics. Characterization of the conformational states of riboswitches in the presence or absence of salts and ligands is important for understanding how interconversion of riboswitch RNA folding states influences function. The methodology of site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is suitable for such studies, wherein site-specific incorporation of a nitroxide radical spin probe allows for local dynamics and conformational changes to be investigated. This chapter reviews a strategy for SDSL-EPR studies of large riboswitches and uses the full length 232 nucleotide (nt) kink-turn motif-containing Vibrio cholerae (VC) glycine riboswitch as an example. Spin-labeling strategies and the challenges of incorporating spin labels into large riboswitches are reviewed and the approach to overcome these challenges is described. Results are subsequently presented illustrating changes in dynamics within the labeled region of the VC glycine riboswitch as observed using SDSL-EPR.
Collapse
Affiliation(s)
- Jackie M Esquiaqui
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Eileen M Sherman
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
Abstract
Ribonuclease P (RNase P) is one of the first ribozymes discovered and it is found in all phylogenetic groups. It is responsible for processing the 5' end of pre-tRNAs as well as other RNA molecules. RNase P is formed by an RNA molecule responsible for catalysis and one or more proteins. Structural studies of the proteins from different organisms, the bacterial RNA component, and a bacterial RNase P holoenzyme/tRNA complex provide insights into the mechanism of this universal ribozyme. Together with the existing wealth of biochemical information, these studies provide atomic-level information on the mechanism of RNase P and continue to expand our understanding of the structure and architecture of large RNA molecules and ribonucleoprotein complexes, the nature of catalysis by ribozymes, the structural basis of recognition of RNA by RNA molecules, and the evolution of enzymes from the prebiotic, RNA-based world to the modern world.
Collapse
Affiliation(s)
- Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
11
|
Reiter NJ, Osterman AK, Mondragón A. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Nucleic Acids Res 2012; 40:10384-93. [PMID: 22904083 PMCID: PMC3488217 DOI: 10.1093/nar/gks744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N−4 and N−5 nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr., Evanston, IL 60208, USA.
| | | | | |
Collapse
|
12
|
Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 2011; 40:4591-602. [PMID: 21666919 DOI: 10.1039/c1cs15020k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
X-ray crystallography has proven to be an essential tool for structural studies of bio-macromolecules at the atomic level. There are two major bottle-neck problems in the macromolecular crystal structure determination: phasing and crystallization. Although the selenium derivatization is routinely used for solving novel protein structures through the MAD phasing technique, the phase problem is still a critical issue in nucleic acid crystallography. The background and current progress of using direct selenium-derivatization of nucleic acids (SeNA) to solve the phase problem and to facilitate nucleic acid crystallization for X-ray crystallography are summarized in this tutorial review.
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | | | |
Collapse
|
13
|
Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. J Mol Biol 2011; 411:368-83. [PMID: 21683084 DOI: 10.1016/j.jmb.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 12/31/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that utilizes a Mg(2+)-dependent RNA catalyst to cleave the 5' leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg(2+) coordination and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5·RPP30 and RPP21·RPP29). Here, we employed a previously characterized substrate-enzyme conjugate [pre-tRNA(Tyr)-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNA(Tyr)-MjaΔU RPR compared to the wild type, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P toward its functional conformation.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
14
|
Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragón A. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 2010; 468:784-9. [PMID: 21076397 PMCID: PMC3058908 DOI: 10.1038/nature09516] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/17/2010] [Indexed: 01/22/2023]
Abstract
Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154 kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hsieh J, Koutmou KS, Rueda D, Koutmos M, Walter NG, Fierke CA. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P. J Mol Biol 2010; 400:38-51. [PMID: 20434461 PMCID: PMC2939038 DOI: 10.1016/j.jmb.2010.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 01/25/2023]
Abstract
Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5'-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P x pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES* conformer) before the cleavage step. Here, we show that the ES* conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5' leader. These data demonstrate that the 5' leader of pre-tRNA moves 4 to 6 A closer to the PRNA x P protein interface during the ES-to-ES* transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES* complex.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - David Rueda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Markos Koutmos
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Koutmou KS, Zahler NH, Kurz JC, Campbell FE, Harris ME, Fierke CA. Protein-precursor tRNA contact leads to sequence-specific recognition of 5' leaders by bacterial ribonuclease P. J Mol Biol 2010; 396:195-208. [PMID: 19932118 PMCID: PMC2829246 DOI: 10.1016/j.jmb.2009.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/15/2022]
Abstract
Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5' leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5' side of the cleavage site (N(-4)) and the RNase P protein (P protein) subunit. B. subtilis RNase P has a higher affinity for pre-tRNA with adenosine at N(-4), and this binding preference is amplified at physiological divalent ion concentrations. Measurements of pre-tRNA-containing adenosine analogs at N(-4) indicate that specificity arises from a combination of hydrogen bonding to the N6 exocyclic amine of adenosine and steric exclusion of the N2 amine of guanosine. Mutagenesis of B. subtilis P protein indicates that F20 and Y34 contribute to selectivity at N(-4). The hydroxyl group of Y34 enhances selectivity, likely by forming a hydrogen bond with the N(-4) nucleotide. The sequence preference of E. coli RNase P is diminished, showing a weak preference for adenosine and cytosine at N(-4), consistent with the substitution of Leu for Y34 in the E. coli P protein. This is the first identification of a sequence-specific contact between P protein and pre-tRNA that contributes to molecular recognition of RNase P. Additionally, sequence analyses reveal that a greater-than-expected fraction of pre-tRNAs from both E. coli and B. subtilis contains a nucleotide at N(-4) that enhances RNase P affinity. This observation suggests that specificity at N(-4) contributes to substrate recognition in vivo. Furthermore, bioinformatic analyses suggest that sequence-specific contacts between the protein subunit and the leader sequences of pre-tRNAs may be common in bacterial RNase P and may lead to species-specific substrate recognition.
Collapse
Affiliation(s)
- Kristin S. Koutmou
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Nathan H. Zahler
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeffrey C. Kurz
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Frank E. Campbell
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Michael E. Harris
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Carol A. Fierke
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Koutmou KS, Casiano-Negroni A, Getz MM, Pazicni S, Andrews AJ, Penner-Hahn JE, Al-Hashimi HM, Fierke CA. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P. Proc Natl Acad Sci U S A 2010; 107:2479-84. [PMID: 20133747 PMCID: PMC2823894 DOI: 10.1073/pnas.0906319107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5' end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn(2+) bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 A. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn(2+) paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new "metal cocktail" chemical shift perturbation strategy involving titrations with , Zn(2+), and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution.
Collapse
|
19
|
Frederiksen JK, Piccirilli JA. Separation of RNA phosphorothioate oligonucleotides by HPLC. Methods Enzymol 2009; 468:289-309. [PMID: 20946775 DOI: 10.1016/s0076-6879(09)68014-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorothioate oligonucleotides are indispensable tools for probing nucleic acid structure and function and for the design of antisense therapeutics. Many applications involving phosphorothioates require site- and stereospecific substitution of individual pro-R(P) or pro-S(P) nonbridging oxygens. However, the traditional approach to phosphorothioate synthesis produces a mixture of R(P) and S(P) diastereomers that must be separated prior to use. High-performance liquid chromatography (HPLC) has proven to be a versatile method for effecting this separation, with both reversed phase (RP) and strong anion exchange (SAX) protocols yielding favorable results. In this chapter, we present several examples of successful separations of RNA phosphorothioate diastereomers by HPLC. We also report the use of complementary DNA oligonucleotides for the separation of poorly resolved phosphorothioate RNAs.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
20
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
22
|
|
23
|
Kazantsev AV, Krivenko AA, Pace NR. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA (NEW YORK, N.Y.) 2009; 15:266-76. [PMID: 19095619 PMCID: PMC2648716 DOI: 10.1261/rna.1331809] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that contains a universally conserved, catalytically active RNA component. RNase P RNA requires divalent metal ions for folding, substrate binding, and catalysis. Despite recent advances in understanding the structure of RNase P RNA, no comprehensive analysis of metal-binding sites has been reported, in part due to the poor crystallization properties of this large RNA. We have developed an abbreviated yet still catalytic construct, Bst P7Delta RNA, which contains the catalytic domain of the bacterial RNase P RNA and has improved crystallization properties. We use this mutant RNA as well as the native RNA to map metal-binding sites in the catalytic core of the bacterial RNase P RNA, by anomalous scattering in diffraction analysis. The results provide insight into the interplay between RNA structure and focalization of metal ions, and a structural basis for some previous biochemical observations with RNase P. We use electrostatic calculations to extract the potential functional significance of these metal-binding sites with respect to binding Mg(2+). The results suggest that with at least one important exception of specific binding, these sites mainly map areas of diffuse association of magnesium ions.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | |
Collapse
|
24
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
25
|
Cuzic S, Hartmann RK. A 2'-methyl or 2'-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P. Biol Chem 2007; 388:717-26. [PMID: 17570824 DOI: 10.1515/bc.2007.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analyzed processing of precursor tRNAs carrying a single 2'-deoxy, 2'-OCH(3), or locked nucleic acid (LNA) modification at G+1 by Escherichia coli RNase P RNA in the absence and presence of its protein cofactor. The extra methyl or methylene group caused a substrate binding defect, which was rescued at higher divalent metal ion (M(2+)) concentrations (more efficiently with Mn(2+) than Mg(2+)), and had a minor effect on cleavage chemistry at saturating M(2+) concentrations. The 2'-OCH(3) and LNA modification at G+1 resulted in higher metal ion cooperativity for substrate binding to RNase P RNA without affecting cleavage site selection. This indicates disruption of an M(2+) binding site in enzyme-substrate complexes, which is compensated for by occupation of alternative M(2+) binding sites of lower affinity. The 2'-deoxy modification at G+1 caused at most a two-fold decrease in the cleavage rate; this mild defect relative to 2'-OCH(3) and LNA at G+1 indicates that the defect caused by the latter two is steric in nature. We propose that the 2'-hydroxyl at G+1 in the substrate is in the immediate vicinity of the M(2+) cluster at the phosphates of A67 to U69 in helix P4 of E. coli RNase P RNA.
Collapse
Affiliation(s)
- Simona Cuzic
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
26
|
Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA (NEW YORK, N.Y.) 2007; 13:521-35. [PMID: 17299131 PMCID: PMC1831860 DOI: 10.1261/rna.308707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/21/2006] [Indexed: 05/03/2023]
Abstract
Bacterial ribonuclease P (RNase P) is a ribonucleoprotein complex composed of one catalytic RNA (PRNA) and one protein subunit (P protein) that together catalyze the 5' maturation of precursor tRNA. High-resolution X-ray crystal structures of the individual P protein and PRNA components from several species have been determined, and structural models of the RNase P holoenzyme have been proposed. However, holoenzyme models have been limited by a lack of distance constraints between P protein and PRNA in the holoenzyme-substrate complex. Here, we report the results of extensive cross-linking and affinity cleavage experiments using single-cysteine P protein variants derivatized with either azidophenacyl bromide or 5-iodoacetamido-1,10-o-phenanthroline to determine distance constraints and to model the Bacillus subtilis holoenzyme-substrate complex. These data indicate that the evolutionarily conserved RNR motif of P protein is located near (<15 Angstroms) the pre-tRNA cleavage site, the base of the pre-tRNA acceptor stem and helix P4 of PRNA, the putative active site of the enzyme. In addition, the metal binding loop and N-terminal region of the P protein are proximal to the P3 stem-loop of PRNA. Studies using heterologous holoenzymes composed of covalently modified B. subtilis P protein and Escherichia coli M1 RNA indicate that P protein binds similarly to both RNAs. Together, these data indicate that P protein is positioned close to the RNase P active site and may play a role in organizing the RNase P active site.
Collapse
|
27
|
Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA (NEW YORK, N.Y.) 2007; 13:251-66. [PMID: 17194721 PMCID: PMC1781369 DOI: 10.1261/rna.264207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring "motionally decoupled" relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the absence of divalent ions, the two P4 helical domains undergo small amplitude (approximately 13 degrees) collective motions about an average interhelical angle of 10 degrees. The highly conserved U7 bulge and helical residue C8, which are proposed to be important for substrate recognition and metal binding, are locally mobile at pico- to nanosecond timescales and together form the pivot point for the collective domain motions. Chemical shift mapping reveals significant association of Mg2+ ions at the P4 major groove near the flexible pivot point at residues (A5, G22, G23) previously identified to bind catalytically important metals. The Mg2+ ions do not, however, significantly alter the structure or dynamics of P4. Analysis of results in the context of available X-ray structures of the RNA component of RNase P and structural models that include the pre-tRNA substrate suggest that the internal motions observed in P4 likely facilitate adaptive changes in conformation that take place during folding and substrate recognition, possibly aided by interactions with Mg2+ ions. Our results add to a growing view supporting the existence of functionally important internal motions in RNA occurring at nanosecond timescales.
Collapse
Affiliation(s)
- Melissa M Getz
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
29
|
Christian EL, Smith KMJ, Perera N, Harris ME. The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA (NEW YORK, N.Y.) 2006; 12:1463-7. [PMID: 16822954 PMCID: PMC1524898 DOI: 10.1261/rna.158606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although helix P4 in the catalytic domain of the RNase P ribozyme is known to coordinate magnesium ions important for activity, distinguishing between direct and indirect roles in catalysis has been difficult. Here, we provide evidence for an indirect role in catalysis by showing that while the universally conserved bulge of helix P4 is positioned 5 nt downstream of the cleavage site, changes in its structure can still purturb active site metal binding. Because changes in helix P4 also appear to alter its position relative to the pre-tRNA cleavage site, these data suggest that P4 contributes to catalytic metal ion binding through substrate positioning.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
30
|
Terada A, Honda T, Fukuhara H, Hada K, Kimura M. Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3. J Biochem 2006; 140:293-8. [PMID: 16829535 DOI: 10.1093/jb/mvj144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 >> PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.
Collapse
Affiliation(s)
- Atsushi Terada
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581
| | | | | | | | | |
Collapse
|
31
|
Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T, Numata T, Kakuta Y, Kimura M. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2006; 343:956-64. [PMID: 16574071 DOI: 10.1016/j.bbrc.2006.02.192] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/30/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5' leader sequence of precursor tRNA. We previously found that the reconstituted particle (RP) composed of RNase P RNA and four proteins (Ph1481p, Ph1601p, Ph1771p, and Ph1877p) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 exhibited the RNase P activity, but had a lower optimal temperature (around at 55 degrees C), as compared with 70 degrees C of the authentic RNase P from P. horikoshii [Kouzuma et al., Biochem. Biophys. Res. Commun. 306 (2003) 666-673]. In the present study, we found that addition of a fifth protein Ph1496p, a putative ribosomal protein L7Ae, to RP specifically elevated the optimum temperature to about 70 degrees C comparable to that of the authentic RNase P. Characterization using gel shift assay and chemical probing localized Ph1496p binding sites on two stem-loop structures encompassing nucleotides A116-G201 and G229-C276 in P. horikoshii RNase P RNA. Moreover, the crystal structure of Ph1496p was determined at 2.0 A resolution by the molecular replacement method using ribosomal protein L7Ae from Haloarcula marismortui as a search model. Ph1496p comprises five alpha-helices and a four stranded beta-sheet. The beta-sheet is sandwiched by three helices (alpha1, alpha4, and alpha5) at one side and two helices (alpha2 and alpha3) at other side. The archaeal ribosomal protein L7Ae is known to be a triple functional protein, serving as a protein component in ribosome and ribonucleoprotein complexes, box C/D, and box H/ACA. Although we have at present no direct evidence that Ph1496p is a real protein component in the P. horikoshii RNase P, the present result may assign an RNase P protein to L7Ae as a fourth function.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Buck AH, Kazantsev AV, Dalby AB, Pace NR. Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 2005; 12:958-64. [PMID: 16228004 DOI: 10.1038/nsmb1004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/13/2005] [Indexed: 11/09/2022]
Abstract
Ribonucleoprotein particles are central to numerous cellular pathways, but their study in vitro is often complicated by heterogeneity and aggregation. We describe a new technique to characterize these complexes trapped as homogeneous species in a nondenaturing gel. Using this technique, in conjunction with phosphorothioate footprinting analysis, we identify the protein-binding site and RNA folding states of ribonuclease P (RNase P), an RNA-based enzyme that, in vivo, requires a protein cofactor to catalyze the 5' maturation of precursor transfer RNA (pre-tRNA). Our results show that the protein binds to a patch of conserved RNA structure adjacent to the active site and influences the conformation of the RNA near the tRNA-binding site. The data are consistent with a role of the protein in substrate recognition and support a new model of the holoenzyme that is based on a recently solved crystal structure of RNase P RNA.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
33
|
Hougland JL, Kravchuk AV, Herschlag D, Piccirilli JA. Functional identification of catalytic metal ion binding sites within RNA. PLoS Biol 2005; 3:e277. [PMID: 16092891 PMCID: PMC1184590 DOI: 10.1371/journal.pbio.0030277] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/09/2005] [Indexed: 12/03/2022] Open
Abstract
The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC) that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis. A combination of substrate atomic mutagenesis with site-specific substitutions in the ribozyme backbone allow the ligands of catalytic metal ions to be identified.
Collapse
Affiliation(s)
- James L Hougland
- 1Department of Chemistry, University of Chicago, Illinois, United States of America
| | - Alexander V Kravchuk
- 2Department of Biochemistry, Stanford University, California, United States of America
| | - Daniel Herschlag
- 2Department of Biochemistry, Stanford University, California, United States of America
| | - Joseph A Piccirilli
- 1Department of Chemistry, University of Chicago, Illinois, United States of America
- 3Department of Biochemistry and Molecular Biology, University of Chicago, Illinois, United States of America
- 4Howard Hughes Medical Institute, University of Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Xiao S, Day-Storms JJ, Srisawat C, Fierke CA, Engelke DR. Characterization of conserved sequence elements in eukaryotic RNase P RNA reveals roles in holoenzyme assembly and tRNA processing. RNA (NEW YORK, N.Y.) 2005; 11:885-96. [PMID: 15872187 PMCID: PMC1370773 DOI: 10.1261/rna.7282205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/02/2005] [Indexed: 05/02/2023]
Abstract
RNase P is a ubiquitous endoribonuclease responsible for cleavage of the 5' leader of precursor tRNAs (pre-tRNAs). Although the protein composition of RNase P holoenzymes varies significantly among Bacteria, Archaea, and Eukarya, the holoenzymes have essential RNA subunits with several sequences and structural features that are common to all three kingdoms of life. Additional structural elements of the RNA subunits have been found that are conserved in eukaryotes, but not in bacteria, and might have functions specifically required by the more complex eukaryotic holoenzymes. In this study, we have mutated four eukaryotic-specific conserved regions in Saccharomyces cerevisiae nuclear RNase P RNA and characterized the effects of the mutations on cell growth, enzyme function, and biogenesis of RNase P. RNase P with mutations in each of the four regions tested is sufficiently functional to support life although growth of the resulting yeast strains was compromised to varying extents. Further analysis revealed that mutations in three different regions cause differential defects in holoenzyme assembly, localization, and pre-tRNA processing in vivo and in vitro. These data suggest that most, but not all, eukaryotic-specific conserved regions of RNase P RNA are important for the maturation and function of the holoenzyme.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA
| | | | | | | | | |
Collapse
|
35
|
Day-Storms JJ, Niranjanakumari S, Fierke CA. Ionic interactions between PRNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA (NEW YORK, N.Y.) 2004; 10:1595-608. [PMID: 15337847 PMCID: PMC1370646 DOI: 10.1261/rna.7550104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the cleavage of the 5' end of precursor tRNA. To characterize the interface between the Bacillus subtilis RNA (PRNA) and protein (P protein) components, the intraholoenzyme KD is determined as a function of ionic strength using a magnetocapture-based assay. Three distinct phases are evident. At low ionic strength, the affinity of PRNA for P protein is enhanced as the ionic strength increases mainly due to stabilization of the PRNA structure by cations. Lithium substitution in lieu of potassium enhances the affinity at low ionic strength, whereas the addition of ATP, known to stabilize the structure of P protein, does not affect the affinity. At high ionic strength, the observed affinity decreases as the ionic strength increases, consistent with disruption of ionic interactions. These data indicate that three to four ions are released on formation of holoenzyme, reflecting the number of ion pairs that occur between the P protein and PRNA. At moderate ionic strength, the two effects balance so that the apparent KD is not dependent on the ionic strength. The KD between the catalytic domain (C domain) and P protein has a similar triphasic dependence on ionic strength. Furthermore, the intraholoenzyme KD is identical to or tighter than that of full-length PRNA, demonstrating that the P protein binds solely to the C domain. Finally, pre-tRNAasp (but not tRNAasp) stabilizes the PRNA*P protein complex, as predicted by the direct interaction between the P protein and pre-tRNA leader.
Collapse
Affiliation(s)
- Jeremy J Day-Storms
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
36
|
Hsieh J, Andrews AJ, Fierke CA. Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 2004; 73:79-89. [PMID: 14691942 DOI: 10.1002/bip.10521] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.
Collapse
Affiliation(s)
- John Hsieh
- Chemistry Department, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
37
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
38
|
Banatao DR, Altman RB, Klein TE. Microenvironment analysis and identification of magnesium binding sites in RNA. Nucleic Acids Res 2003; 31:4450-60. [PMID: 12888505 PMCID: PMC169872 DOI: 10.1093/nar/gkg471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions with magnesium (Mg2+) ions are essential for RNA folding and function. The locations and function of bound Mg2+ ions are difficult to characterize both experimentally and computationally. In particular, the P456 domain of the Tetrahymena thermophila group I intron, and a 58 nt 23s rRNA from Escherichia coli have been important systems for studying the role of Mg2+ binding in RNA, but characteristics of all the binding sites remain unclear. We therefore investigated the Mg2+ binding capabilities of these RNA systems using a computational approach to identify and further characterize their Mg2+ binding sites. The approach is based on the FEATURE algorithm, reported previously for microenvironment analysis of protein functional sites. We have determined novel physicochemical descriptions of site-bound and diffusely bound Mg2+ ions in RNA that are useful for prediction. Electrostatic calculations using the Non-Linear Poisson Boltzmann (NLPB) equation provided further evidence for the locations of site-bound ions. We confirmed the locations of experimentally determined sites and further differentiated between classes of ion binding. We also identified potentially important, high scoring sites in the group I intron that are not currently annotated as Mg2+ binding sites. We note their potential function and believe they deserve experimental follow-up.
Collapse
Affiliation(s)
- D Rey Banatao
- Department of Genetics and Stanford Medical Informatics, 251 Campus Drive, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
39
|
Kouzuma Y, Mizoguchi M, Takagi H, Fukuhara H, Tsukamoto M, Numata T, Kimura M. Reconstitution of archaeal ribonuclease P from RNA and four protein components. Biochem Biophys Res Commun 2003; 306:666-73. [PMID: 12810070 DOI: 10.1016/s0006-291x(03)01034-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is an endonuclease responsible for generating the 5(') end of matured tRNA molecules. A homology search of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 genome database revealed that the four genes, PH1481, PH1601, PH1771, and PH1877, have a significant homology to those encoding RNase P protein subunits, hpop5, Rpp21, Rpp29, and Rpp30, of human, respectively. These genes were expressed in Escherichia coli cells, and the resulting proteins Ph1481p, Ph1601p, Ph1771p, and Ph1877p were purified to apparent homogeneity in a set of column chromatographies. The four proteins were characterized in terms of their capability to bind the cognate RNase P RNA from P. horikoshii. All four proteins exhibited the binding activity to the RNase P RNA. In vitro reconstitution of four putative RNase P proteins with the in vitro transcripted P. horikoshii RNase P RNA revealed that three proteins Ph1481p, Ph1601p, and Ph1771p, and RNase P RNA are minimal components for the RNase P activity. However, addition of the fourth protein Ph1877p strongly stimulated enzymatic activity, indicating that all four proteins and RNase P RNA are essential for optimal RNase P activity. The present data will pave the way for the elucidation of the reaction mechanism for archaeal as well as eukaryotic RNase P.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Base Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli Proteins
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Pyrococcus/enzymology
- Pyrococcus/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease P
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Ribonucleoproteins/metabolism
Collapse
Affiliation(s)
- Yoshiaki Kouzuma
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, 812-8581, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Harris ME, Christian EL. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol 2003; 13:325-33. [PMID: 12831883 DOI: 10.1016/s0959-440x(03)00069-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In bacteria, the tRNA-processing endonuclease ribonuclease P is composed of a large ( approximately 400 nucleotide) catalytic RNA and a smaller ( approximately 100 amino acid) protein subunit that is essential for substrate recognition. Current biochemical and biophysical investigations are providing fresh insights into the modular architecture of the ribozyme, the mechanisms of substrate specificity and the role of essential metal ions in catalysis. Together with recent high-resolution structures of portions of the ribozyme, these findings are beginning to reveal how the functions of RNA and protein are coordinated in this ribonucleoprotein enzyme.
Collapse
Affiliation(s)
- Michael E Harris
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, 44106, Cleveland, OH 44106, USA.
| | | |
Collapse
|