1
|
Rai SN, Dutta T. Role of Yrn2 under oxidative stress in Deinococcus radiodurans. Biochem Biophys Res Commun 2024; 723:150169. [PMID: 38815487 DOI: 10.1016/j.bbrc.2024.150169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Among the two Y RNAs in Deinococcus radiodurans, the functional properties of Yrn2 are still not known. Yrn2 although consists of a long stem-loop for Rsr binding, differs from Yrn1 in the effector binding site. An initial study on Yrn2 delineated it to be a UV-induced noncoding RNA. Apart from that Yrn2 has scarcely been investigated. In the current study, we identified Yrn2 as an γ-radiation induced Y RNA, which is also induced upon H2O2 and mitomycin treatment. Ectopically expressed Yrn2 appeared to be nontoxic to the cell growth. An overabundance of Yrn2 was found to ameliorate cell survival under oxidative stress through the detoxification of intracellular reactive oxygen species with a subsequent decrease in total protein carbonylation. A significant accumulation of intracellular Mn(II) with unaltered Fe(II) and Zn(II) with detected while Yrn2 is overabundant in the cells. This study identified the role of a novel Yrn2 under oxidative stress in D. radiodurans.
Collapse
Affiliation(s)
- Shiv Narayan Rai
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Mahla RS, Jones EL, Dustin LB. Ro60-Roles in RNA Processing, Inflammation, and Rheumatic Autoimmune Diseases. Int J Mol Sci 2024; 25:7705. [PMID: 39062948 PMCID: PMC11277228 DOI: 10.3390/ijms25147705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The Ro60/SSA2 autoantigen is an RNA-binding protein and a core component of nucleocytoplasmic ribonucleoprotein (RNP) complexes. Ro60 is essential in RNA metabolism, cell stress response pathways, and cellular homeostasis. It stabilises and mediates the quality control and cellular distribution of small RNAs, including YRNAs (for the 'y' in 'cytoplasmic'), retroelement transcripts, and misfolded RNAs. Ro60 transcriptional dysregulation or loss of function can result in the generation and release of RNA fragments from YRNAs and other small RNAs. Small RNA fragments can instigate an inflammatory cascade through endosomal toll-like receptors (TLRs) and cytoplasmic RNA sensors, which typically sense pathogen-associated molecular patterns, and mount the first line of defence against invading pathogens. However, the recognition of host-originating RNA moieties from Ro60 RNP complexes can activate inflammatory response pathways and compromise self-tolerance. Autoreactive B cells may produce antibodies targeting extracellular Ro60 RNP complexes. Ro60 autoantibodies serve as diagnostic markers for various autoimmune diseases, including Sjögren's disease (SjD) and systemic lupus erythematosus (SLE), and they may also act as predictive markers for anti-drug antibody responses among rheumatic patients. Understanding Ro60's structure, function, and role in self-tolerance can enhance our understanding of the underlying molecular mechanisms of autoimmune conditions.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | | | - Lynn B. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
3
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
4
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Billmeier M, Green D, Hall AE, Turnbull C, Singh A, Xu P, Moxon S, Dalmay T. Mechanistic insights into non-coding Y RNA processing. RNA Biol 2022; 19:468-480. [PMID: 35354369 PMCID: PMC8973356 DOI: 10.1080/15476286.2022.2057725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Y RNAs (84–112 nt) are non-coding RNAs transcribed by RNA polymerase III and are characterized by a distinctive secondary structure. Human Y RNAs interact with the autoimmune proteins SSB and RO60 that together form a ribonucleoprotein (RNP) complex termed RoRNP and Y RNAs also perform regulatory roles in DNA and RNA replication and stability, which has major implications for diseases including cancer. During cellular stress and apoptosis, Y RNAs are cleaved into 3’ and 5’ end fragments termed Y RNA-derived small RNAs (ysRNAs). Although some ysRNA functions in stress, apoptosis and cancer have been reported, their fundamental biogenesis has not been described. Here we report that 3’ end RNY5 cleavage is structure dependent. In high throughput mutagenesis experiments, cleavage occurred between the 2nd and 3rd nt above a double stranded stem comprising high GC content. We demonstrate that an internal loop above stem S3 is critical for producing 3’ end ysRNAs (31 nt) with mutants resulting in longer or no ysRNAs. We show a UGGGU sequence motif at position 22 of RNY5 is critical for producing 5’ end ysRNAs (22–25 nt). We show that intact RO60 is critical for ysRNA biogenesis. We conclude that ribonuclease L (RNASEL) contributes to Y RNA cleavage in mouse embryonic fibroblasts but is not the only endoribonuclease important in human cells.
Collapse
Affiliation(s)
- Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adam E Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Horizon Discovery, Cambridge Research Park, Waterbeach, UK
| | - Carly Turnbull
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
Identification of a short form of a Caenorhabditis elegans Y RNA homolog Cel7 RNA. Biochem Biophys Res Commun 2021; 557:104-109. [PMID: 33862452 DOI: 10.1016/j.bbrc.2021.03.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022]
Abstract
Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.
Collapse
|
7
|
Leng Y, Sim S, Magidson V, Wolin SL. Noncoding Y RNAs regulate the levels, subcellular distribution and protein interactions of their Ro60 autoantigen partner. Nucleic Acids Res 2020; 48:6919-6930. [PMID: 32469055 DOI: 10.1093/nar/gkaa414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Noncoding Y RNAs are abundant in animal cells and present in many bacteria. These RNAs are bound and stabilized by Ro60, a ring-shaped protein that is a target of autoantibodies in patients with systemic lupus erythematosus. Studies in bacteria revealed that Y RNA tethers Ro60 to a ring-shaped exoribonuclease, forming a double-ringed RNP machine specialized for structured RNA degradation. In addition to functioning as a tether, the bacterial RNA gates access of substrates to the Ro60 cavity. To identify roles for Y RNAs in mammals, we used CRISPR to generate mouse embryonic stem cells lacking one or both of the two murine Y RNAs. Despite reports that animal cell Y RNAs are essential for DNA replication, cells lacking these RNAs divide normally. However, Ro60 levels are reduced, revealing that Y RNA binding is required for Ro60 to accumulate to wild-type levels. Y RNAs regulate the subcellular location of Ro60, since Ro60 is reduced in the cytoplasm and increased in nucleoli when Y RNAs are absent. Last, we show that Y RNAs tether Ro60 to diverse effector proteins to generate specialized RNPs. Together, our data demonstrate that the roles of Y RNAs are intimately connected to that of their Ro60 partner.
Collapse
Affiliation(s)
- Yuanyuan Leng
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
9
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O'Reilly D, Pierce AJ, Stadler PF, Ulitsky I, Wolin SL, Bruford EA. A guide to naming human non-coding RNA genes. EMBO J 2020; 39:e103777. [PMID: 32090359 PMCID: PMC7073466 DOI: 10.15252/embj.2019103777] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.
Collapse
Affiliation(s)
- Ruth L Seal
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dawn O'Reilly
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, Santa Fe, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra L Wolin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| |
Collapse
|
11
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
12
|
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 2019; 54:133-152. [PMID: 31084369 DOI: 10.1080/10409238.2019.1608902] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Marco Boccitto
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| | - Sandra L Wolin
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
13
|
Abstract
Y RNAs are noncoding RNAs (ncRNAs) that are present in most animal cells and also in many bacteria. These RNAs were discovered because they are bound by the Ro60 protein, a major target of autoantibodies in patients with some systemic autoimmune rheumatic diseases. Studies of Ro60 and Y RNAs in Deinococcus radiodurans, the first sequenced bacterium with a Ro60 ortholog, revealed that they function with 3'-to-5' exoribonucleases to alter the composition of RNA populations during some forms of environmental stress. In the best-characterized example, Y RNA tethers the Ro60 protein to the exoribonuclease polynucleotide phosphorylase, allowing this exoribonuclease to degrade structured RNAs more effectively. Y RNAs can also function as gates to regulate access of other RNAs to the Ro60 central cavity. Recent studies in the enteric bacterium Salmonella enterica serovar Typhimurium resulted in the discovery that Y RNAs are widely present in bacteria. Remarkably, the most-conserved subclass of bacterial Y RNAs contains a domain that mimics tRNA. In this review, we discuss the structure, conservation, and known functions of bacterial Y RNAs as well as the certainty that more bacterial Y RNAs and additional roles for these ncRNAs remain to be uncovered.
Collapse
|
14
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Structural Basis for tRNA Mimicry by a Bacterial Y RNA. Structure 2018; 26:1635-1644.e3. [PMID: 30318468 DOI: 10.1016/j.str.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Noncoding Y RNAs are present in both animal cells and many bacteria. In all species examined, Y RNAs tether the Ro60 protein to an effector protein to perform various cellular functions. Recently, a new Y RNA subfamily was identified in bacteria. Bioinformatic analyses of these YrlA (Y RNA-like A) RNAs predict that the effector-binding domain resembles tRNA. We present the structure of this domain, the overall folding of which is strikingly similar to canonical tRNAs. The tertiary interactions that are responsible for stabilizing tRNA are present in YrlA, making it a close tRNA mimic. However, YrlA lacks a free CCA end and contains a kink in the stem corresponding to the anticodon stem. Since nucleotides in the D and T stems are conserved among YrlAs, they may be an interaction site for an unknown factor. Our experiments identify YrlA RNAs as a new class of tRNA mimics.
Collapse
|
16
|
Junge A, Refsgaard JC, Garde C, Pan X, Santos A, Alkan F, Anthon C, von Mering C, Workman CT, Jensen LJ, Gorodkin J. RAIN: RNA-protein Association and Interaction Networks. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:baw167. [PMID: 28077569 PMCID: PMC5225963 DOI: 10.1093/database/baw167] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks is challenging due to data heterogeneity. Here, we present a database of ncRNA-RNA and ncRNA-protein interactions and its integration with the STRING database of protein-protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data, interaction predictions and automatic literature mining. RAIN uses an integrative scoring scheme to assign a confidence score to each interaction. We demonstrate that RAIN outperforms the underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be operated through an easily accessible web interface and all interaction data can be downloaded.Database URL: http://rth.dk/resources/rain.
Collapse
Affiliation(s)
- Alexander Junge
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Jan C Refsgaard
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Building: 06-2-26, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Christian Garde
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, DK-2800 Lyngby, Denmark
| | - Xiaoyong Pan
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Building: 06-2-26, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Alberto Santos
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Building: 06-2-26, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Ferhat Alkan
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Christian Anthon
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christopher T Workman
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, DK-2800 Lyngby, Denmark
| | - Lars Juhl Jensen
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Building: 06-2-26, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen,, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark.,Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
17
|
Ødum Nielsen I, Hartwig Trier N, Friis T, Houen G. Characterization of continuous monoclonal antibody epitopes in the N-terminus of Ro60. Biopolymers 2015; 106:62-71. [PMID: 26506479 DOI: 10.1002/bip.22758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/12/2015] [Accepted: 10/17/2015] [Indexed: 11/06/2022]
Abstract
One of the major targets of the autoimmune response in the rheumatic autoimmune diseases, Systemic Lupus Erythematosus and Sjögrens Syndrome, is the protein Ro60. Ro60 is known to associate with small misfolded RNAs, and is involved in RNA quality control and in enhancing cell survival during cellular stress, e.g. after ultaviolet irradiation. In this study, six monoclonal antibodies to Ro60 were analyzed in order to identify antigenic regions and the nature of these. Preliminary analyses revealed that two of the antibodies recognized continuous epitopes, while the remaining antibodies most likely recognized conformational epitopes. The continuous epitopes of Ro60 were characterised by modified immunoassays employing resin-bound peptides and free peptides. Peptide screenings located the epitopes to the N-terminus of Ro60, and further analyses indicated that the epitopes of the monoclonal antibodies TROVE2 and SSI-HYB 358-02 were located to amino acids 8-17 and 34-49, respectively. Moreover, charged amino acids were found to be especially important for antibody reactivity, although antibody reactivity of the monoclonal antibody TROVE2 primarily was found to be epitope backbone-dependent.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Nicole Hartwig Trier
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Tina Friis
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Gunnar Houen
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| |
Collapse
|
18
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
19
|
Spurlock CF, Tossberg JT, Guo Y, Sriram S, Crooke PS, Aune TM. Defective structural RNA processing in relapsing-remitting multiple sclerosis. Genome Biol 2015; 16:58. [PMID: 25885816 PMCID: PMC4403723 DOI: 10.1186/s13059-015-0629-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. RESULTS We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. CONCLUSIONS Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Medical Center North T3113, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|
20
|
Chen X, Sim S, Wurtmann EJ, Feke A, Wolin SL. Bacterial noncoding Y RNAs are widespread and mimic tRNAs. RNA (NEW YORK, N.Y.) 2014; 20:1715-1724. [PMID: 25232022 PMCID: PMC4201824 DOI: 10.1261/rna.047241.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 05/30/2023]
Abstract
Many bacteria encode an ortholog of the Ro60 autoantigen, a ring-shaped protein that is bound in animal cells to noncoding RNAs (ncRNAs) called Y RNAs. Studies in Deinococcus radiodurans revealed that Y RNA tethers Ro60 to polynucleotide phosphorylase, specializing this exoribonuclease for structured RNA degradation. Although Ro60 orthologs are present in a wide range of bacteria, Y RNAs have been detected in only two species, making it unclear whether these ncRNAs are common Ro60 partners in bacteria. In this study, we report that likely Y RNAs are encoded near Ro60 in >250 bacterial and phage species. By comparing conserved features, we discovered that at least one Y RNA in each species contains a domain resembling tRNA. We show that these RNAs contain nucleotide modifications characteristic of tRNA and are substrates for several enzymes that recognize tRNAs. Our studies confirm the importance of Y RNAs in bacterial physiology and identify a new class of ncRNAs that mimic tRNA.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Soyeong Sim
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Elisabeth J Wurtmann
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Ann Feke
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
21
|
Wang I, Kowalski MP, Langley AR, Rodriguez R, Balasubramanian S, Hsu STD, Krude T. Nucleotide contributions to the structural integrity and DNA replication initiation activity of noncoding y RNA. Biochemistry 2014; 53:5848-63. [PMID: 25151917 DOI: 10.1021/bi500470b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Noncoding Y RNAs are small stem-loop RNAs that are involved in different cellular processes, including the regulation of DNA replication. An evolutionarily conserved small domain in the upper stem of vertebrate Y RNAs has an essential function for the initiation of chromosomal DNA replication. Here we provide a structure-function analysis of this essential RNA domain under physiological conditions. Solution state nuclear magnetic resonance and far-ultraviolet circular dichroism spectroscopy show that the upper stem domain of human Y1 RNA adopts a locally destabilized A-form helical structure involving eight Watson-Crick base pairs. Within this helix, two G:C base pairs are highly stable even at elevated temperatures and therefore may serve as clamps to maintain the local structure of the helix. These two stable G:C base pairs frame three unstable base pairs, which are located centrally between them. Systematic substitution mutagenesis results in a disruption of the ordered A-form helical structure and in the loss of DNA replication initiation activity, establishing a positive correlation between folding stability and function. Our data thus provide a structural basis for the evolutionary conservation of key nucleotides in this RNA domain that are essential for the functionality of noncoding Y RNAs during the initiation of DNA replication.
Collapse
Affiliation(s)
- Iren Wang
- Institute of Biological Chemistry, Academia Sinica , 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Wächter K, Köhn M, Stöhr N, Hüttelmaier S. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biol Chem 2014; 394:1077-90. [PMID: 23640942 DOI: 10.1515/hsz-2013-0111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/26/2013] [Indexed: 11/15/2022]
Abstract
The IGF2 mRNA-binding protein family (IGF2BPs) directs the cytoplasmic fate of various target mRNAs and controls essential cellular functions. The three IGF2BP paralogues expressed in mammals comprise two RNA-recognition motifs (RRM) as well as four KH domains. How these domains direct IGF2BP paralogue-dependent protein function remains largely elusive. In this study, we analyze the role of KH domains in IGF2BPs by the mutational GXXG-GEEG conversion of single KH domain loops in the context of full-length polypeptides. These analyses reveal that all four KH domains of IGF2BP1 and IGF2BP2 are essentially involved in RNA-binding in vitro and the cellular association with RNA-binding proteins (RBPs). Moreover the KH domains prevent the nuclear accumulation of these two paralogues and facilitate their recruitment to stress granules. The role of KH domains appears less pronounced in IGF2BP3, because GxxG-GEEG conversion in all four KH domains only modestly affects RNA-binding, subcellular localization and RNA-dependent protein association of this paralogue. These findings indicate paralogue-dependent RNA-binding properties of IGF2BPs which likely direct distinct cellular functions. Our findings suggest that IGF2BPs contact target RNAs via all four KH domains. This implies significant structural constraints, which presumably allow the formation of exceedingly stable protein-RNA complexes.
Collapse
Affiliation(s)
- Kristin Wächter
- Institute of Molecular Medicine , Section for Molecular Cell Biology, Martin-Luther-University Halle, 06120 Halle, Germany
| | | | | | | |
Collapse
|
23
|
Wolin SL, Belair C, Boccitto M, Chen X, Sim S, Taylor DW, Wang HW. Non-coding Y RNAs as tethers and gates: Insights from bacteria. RNA Biol 2013; 10:1602-8. [PMID: 24036917 DOI: 10.4161/rna.26166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA; Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Cedric Belair
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Marco Boccitto
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Xinguo Chen
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Soyeong Sim
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - David W Taylor
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Hong-Wei Wang
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA; Tsinghua-Peking Center for Life Sciences; School of Life Sciences; Tsinghua University; Beijing, P.R. China
| |
Collapse
|
24
|
Perez P, Jang SI, Alevizos I. Emerging landscape of non-coding RNAs in oral health and disease. Oral Dis 2013; 20:226-35. [PMID: 23781896 DOI: 10.1111/odi.12142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022]
Abstract
The world of non-coding RNAs has only recently started being discovered. For the past 40 years, coding genes, mRNA, and proteins have been the center of cellular and molecular biology, and pathologic alterations were attributed to either the aberration of gene sequence or altered promoter activity. It was only after the completion of the human genome sequence that the scientific community started seriously wondering why only a very small portion of the genome corresponded to protein-coding genes. New technologies such as the whole-genome and whole-transcriptome sequencing demonstrated that at least 90% of the genome is actively transcribed. The identification and cataloguing of multiple kinds of non-coding RNA (ncRNA) have exponentially increased, and it is now widely accepted that ncRNAs play major biological roles in cellular physiology, development, metabolism, and are also implicated in a variety of diseases. The aim of this review is to describe the two major classes (long and short forms) of non-coding RNAs and describe their subclasses in terms of function and their relevance and potential in oral diseases.
Collapse
Affiliation(s)
- P Perez
- Sjögren's Clinic, Molecular Physiology & Therapeutics, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | | |
Collapse
|
25
|
Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 2013; 153:166-77. [PMID: 23540697 DOI: 10.1016/j.cell.2013.02.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 01/10/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
Abstract
Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
26
|
Köhn M, Pazaitis N, Hüttelmaier S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013; 3:143-56. [PMID: 24970161 PMCID: PMC4030889 DOI: 10.3390/biom3010143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 11/20/2022] Open
Abstract
Y RNAs constitute a family of highly conserved small noncoding RNAs (in humans: 83-112 nt; Y1, Y3, Y4 and Y5). They are transcribed from individual genes by RNA-polymerase III and fold into conserved stem-loop-structures. Although discovered 30 years ago, insights into the cellular and physiological role of Y RNAs remains incomplete. In this review, we will discuss knowledge on the structural properties, associated proteins and discuss proposed functions of Y RNAs. We suggest Y RNAs to be an integral part of ribonucleoprotein networks within cells and could therefore have substantial influence on many different cellular processes. Putative functions of Y RNAs include small RNA quality control, DNA replication, regulation of the cellular stress response and proliferation. This suggests Y RNAs as essential regulators of cell fate and indicates future avenues of research, which will provide novel insights into the role of small noncoding RNAs in gene expression.
Collapse
Affiliation(s)
- Marcel Köhn
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Nikolaos Pazaitis
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Stefan Hüttelmaier
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| |
Collapse
|
27
|
Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012; 2012:606195. [PMID: 23304190 PMCID: PMC3523155 DOI: 10.1155/2012/606195] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
Abstract
Anti-Ro/SSA antibodies are among the most frequently detected autoantibodies against extractable nuclear antigens and have been associated with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). Although the presence of these autoantibodies is one of the criteria for the diagnosis and classification of SS, they are also sometimes seen in other systemic autoimmune diseases. In the last few decades, the knowledge of the prevalence of anti-Ro/SSA antibodies in various autoimmune diseases and symptoms has been expanded, and the clinical importance of these antibodies is increasing. Nonetheless, the pathological role of the antibodies is still poorly understood. In this paper, we summarize the milestones of the anti-Ro/SSA autoantibody system and provide new insights into the association between the autoantibodies and the pathogenesis of autoimmune diseases.
Collapse
|
28
|
Sim S, Yao J, Weinberg DE, Niessen S, Yates JR, Wolin SL. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA (NEW YORK, N.Y.) 2012; 18:100-10. [PMID: 22114317 PMCID: PMC3261732 DOI: 10.1261/rna.029207.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
The Ro 60-kDa autoantigen, a ring-shaped RNA-binding protein, traffics between the nucleus and cytoplasm in vertebrate cells. In some vertebrate nuclei, Ro binds misfolded noncoding RNAs and may function in quality control. In the cytoplasm, Ro binds noncoding RNAs called Y RNAs. Y RNA binding blocks a nuclear accumulation signal, retaining Ro in the cytoplasm. Following UV irradiation, this signal becomes accessible, allowing Ro to accumulate in nuclei. To investigate how other cellular components influence the function and subcellular location of Ro, we identified several proteins that copurify with the mouse Ro protein. Here, we report that the zipcode-binding protein ZBP1 influences the subcellular localization of both Ro and the Y3 RNA. Binding of ZBP1 to the Ro/Y3 complex increases after UV irradiation and requires the Y3 RNA. Despite the lack of an identifiable CRM1-dependent export signal, nuclear export of Ro is sensitive to the CRM1 inhibitor leptomycin B. In agreement with a previous report, we find that ZBP1 export is partly dependent on CRM1. Both Ro and Y3 RNA accumulate in nuclei when ZBP1 is depleted. Our data indicate that ZBP1 may function as an adapter to export the Ro/Y3 RNA complex from nuclei.
Collapse
Affiliation(s)
- Soyeong Sim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - David E. Weinberg
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Sherry Niessen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
29
|
Sim S, Wolin SL. Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:686-99. [PMID: 21823229 PMCID: PMC3154076 DOI: 10.1002/wrna.85] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
All cells contain an enormous variety of ribonucleoprotein (RNP) complexes that function in diverse processes. Although the mechanisms by which many of these RNPs contribute to cell metabolism are well understood, the roles of others are only now beginning to be revealed. A member of this latter category, the Ro 60-kDa protein and its associated noncoding Y RNAs, was discovered because the protein component is a frequent target of the autoimmune response in patients with the rheumatic diseases systemic lupus erythematosus and Sjögren's syndrome. Recent studies have shown that Ro is ring shaped, binds the single-stranded ends of misfolded noncoding RNAs in its central cavity, and may function in noncoding RNA quality control. Although Ro is not present in yeast, many bacterial genomes contain potential Ro orthologs. In the radiation-resistant eubacterium Deinococcus radiodurans, the Ro ortholog functions with exoribonucleases during stress-induced changes in RNA metabolism. Moreover, in both D. radiodurans and animal cells, Ro is involved in the response to multiple types of environmental stress. Finally, Y RNAs can influence the subcellular location of Ro, inhibit access of the central cavity to other RNAs, and may also act as binding sites for proteins that influence Ro function. WIREs RNA 2011 2 686-699 DOI: 10.1002/wrna.85 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Animals
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Deinococcus/genetics
- Deinococcus/metabolism
- Embryonic Stem Cells/metabolism
- Female
- Humans
- Mice
- Models, Molecular
- Nucleic Acid Conformation
- Oocytes/metabolism
- Phylogeny
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Cytoplasmic/chemistry
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Stress, Physiological
- Xenopus laevis
Collapse
Affiliation(s)
- Soyeong Sim
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
30
|
Ching KH, Burbelo PD, Gonzalez-Begne M, Roberts MEP, Coca A, Sanz I, Iadarola MJ. Salivary anti-Ro60 and anti-Ro52 antibody profiles to diagnose Sjogren's Syndrome. J Dent Res 2011; 90:445-9. [PMID: 21212317 DOI: 10.1177/0022034510390811] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simple and non-invasive saliva-based diagnostics may be useful for the identification, understanding, and monitoring of autoimmune and infectious diseases. Previously, Luciferase Immunoprecipitation Systems (LIPS) were used for sensitive detection of patient serum autoantibodies in Sjögren's Syndrome (SjS), a chronic autoimmune disease affecting the salivary and lacrimal glands. Here we explored the ability of LIPS to diagnose SjS based on IgG autoantibodies in patient saliva. From LIPS testing, anti-Ro60 autoantibodies were detected in the saliva of 70% (19/27) of SjS patients with 96% specificity. Positive anti-Ro60 autoantibodies were also found in 70% of the matched serum samples (96% specificity). LIPS detected Ro52 autoantibodies in the saliva and serum of 67% of SjS patients with 100% specificity. Overall, the autoantibody titers in saliva were approximately 4000-fold lower by volume than serum, but still distinguished seropositive patients from controls. These results suggest that LIPS salivary-based testing for SjS autoantibodies is a practical alternative to serum and compatible with point-of-care testing.
Collapse
Affiliation(s)
- K H Ching
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Building 49, Room 1C20, 49 Convent Drive, Bethesda, MD 20892-4410, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 2010; 5:e13673. [PMID: 21060685 PMCID: PMC2965120 DOI: 10.1371/journal.pone.0013673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.
Collapse
Affiliation(s)
| | - Helen Chambers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Boria I, Gruber AR, Tanzer A, Bernhart SH, Lorenz R, Mueller MM, Hofacker IL, Stadler PF. Nematode sbRNAs: Homologs of Vertebrate Y RNAs. J Mol Evol 2010; 70:346-58. [DOI: 10.1007/s00239-010-9332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 03/01/2010] [Indexed: 01/20/2023]
|
33
|
Abstract
The machinery required for the replication of eukaryotic chromosomal DNA is made up of proteins whose function, structure and main interaction partners are evolutionarily conserved. Several new cases have been reported recently, however, in which non-coding RNAs play additional and specialised roles in the initiation of eukaryotic DNA replication in different classes of organisms. These non-coding RNAs include Y RNAs in vertebrate somatic cells, 26T RNA in somatic macronuclei of the ciliate Tetrahymena, and G-rich RNA in the Epstein-Barr DNA tumour virus and its human host cells. Here, I will give an overview of the experimental evidence in favour of roles for these non-coding RNAs in the regulation of eukaryotic DNA replication, and compare and contrast their biosynthesis and mechanisms of action.
Collapse
|
34
|
Packaging of host mY RNAs by murine leukemia virus may occur early in Y RNA biogenesis. J Virol 2009; 83:12526-34. [PMID: 19776129 DOI: 10.1128/jvi.01219-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moloney murine leukemia virus (MLV) selectively encapsidates host mY1 and mY3 RNAs. These noncoding RNA polymerase III transcripts are normally complexed with the Ro60 and La proteins, which are autoantigens associated with rheumatic disease that function in RNA biogenesis and quality control. Here, MLV replication and mY RNA packaging were analyzed using Ro60 knockout embryonic fibroblasts, which contain only approximately 3% as much mY RNA as wild-type cells. Virus spread at the same rate in wild-type and Ro knockout cells. Surprisingly, MLV virions shed by Ro60 knockout cells continued to package high levels of mY1 and mY3 (about two copies of each) like those from wild-type cells, even though mY RNAs were barely detectable within producer cells. As a result, for MLV produced in Ro60 knockout cells, encapsidation selectivity from among all cell RNAs was even higher for mY RNAs than for the viral genome. Whereas mY RNAs are largely cytoplasmic in wild-type cells, fractionation of knockout cells revealed that the residual mY RNAs were relatively abundant in nuclei, likely reflecting the fact that most mY RNAs were degraded shortly after transcription in the absence of Ro60. Together, these data suggest that these small, labile host RNAs may be recruited at a very early stage of their biogenesis and may indicate an intersection of retroviral assembly and RNA quality control pathways.
Collapse
|
35
|
Gardiner TJ, Christov CP, Langley AR, Krude T. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA (NEW YORK, N.Y.) 2009; 15:1375-85. [PMID: 19474146 PMCID: PMC2704080 DOI: 10.1261/rna.1472009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Noncoding Y RNAs are required for the reconstitution of chromosomal DNA replication in late G1 phase template nuclei in a human cell-free system. Y RNA genes are present in all vertebrates and in some isolated nonvertebrates, but the conservation of Y RNA function and key determinants for its function are unknown. Here, we identify a determinant of Y RNA function in DNA replication, which is conserved throughout vertebrate evolution. Vertebrate Y RNAs are able to reconstitute chromosomal DNA replication in the human cell-free DNA replication system, but nonvertebrate Y RNAs are not. A conserved nucleotide sequence motif in the double-stranded stem of vertebrate Y RNAs correlates with Y RNA function. A functional screen of human Y1 RNA mutants identified this conserved motif as an essential determinant for reconstituting DNA replication in vitro. Double-stranded RNA oligonucleotides comprising this RNA motif are sufficient to reconstitute DNA replication, but corresponding DNA or random sequence RNA oligonucleotides are not. In intact cells, wild-type hY1 or the conserved RNA duplex can rescue an inhibition of DNA replication after RNA interference against hY3 RNA. Therefore, we have identified a new RNA motif that is conserved in vertebrate Y RNA evolution, and essential and sufficient for Y RNA function in human chromosomal DNA replication.
Collapse
Affiliation(s)
- Timothy J Gardiner
- Department of Zoology, University of Cambridge, Cambridge CB23EJ, United Kingdom
| | | | | | | |
Collapse
|
36
|
Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev 2009; 8:632-7. [DOI: 10.1016/j.autrev.2009.02.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 02/06/2009] [Indexed: 11/15/2022]
|
37
|
Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell 2008; 20:1555-64. [PMID: 19116308 DOI: 10.1091/mbc.e08-11-1094] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ro autoantigen is a ring-shaped RNA-binding protein that binds misfolded RNAs in nuclei and is proposed to function in quality control. In the cytoplasm, Ro binds noncoding RNAs, called Y RNAs, that inhibit access of Ro to other RNAs. Ro also assists survival of mammalian cells and at least one bacterium after UV irradiation. In mammals, Ro undergoes dramatic localization changes after UV irradiation, changing from mostly cytoplasmic to predominantly nuclear. Here, we report that a second role of Y RNAs is to regulate the subcellular distribution of Ro. A mutant Ro protein that does not bind Y RNAs accumulates in nuclei. Ro also localizes to nuclei when Y RNAs are depleted. By assaying chimeric proteins in which portions of mouse Ro were replaced with bacterial Ro sequences, we show that nuclear accumulation of Ro after irradiation requires sequences that overlap the Y RNA binding site. Ro also accumulates in nuclei after oxidative stress, and similar sequences are required. Together, these data reveal that Ro contains a signal for nuclear accumulation that is masked by a bound Y RNA and suggest that Y RNA binding may be modulated during cell stress.
Collapse
Affiliation(s)
- Soyeong Sim
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2008; 2:2608-23. [PMID: 17948004 DOI: 10.1038/nprot.2007.380] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.
Collapse
Affiliation(s)
- Pilar Tijerina
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
39
|
Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev 2008; 21:3067-72. [PMID: 18056422 DOI: 10.1101/gad.1603907] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Humans express four distinct non-protein-coding Y RNAs (ncRNAs). To investigate Y RNA functional diversification, we exploited an RNA-based affinity purification method to isolate ribonucleoproteins (RNPs) assembled on individual human Y RNAs. Silver staining and mass spectrometry revealed that the Ro and La proteins assemble with all Y RNAs, while additional proteins associate with specific Y RNAs. Unexpectedly, Y5 RNA uniquely copurified ribosomal protein L5 and its binding partner 5S RNA. These findings reveal a contribution of Y5 to 5S surveillance and suggest that interactions between Ro-Y5 and L5-5S RNPs establish 5S RNA as a target of quality control.
Collapse
|
40
|
Perreault J, Perreault JP, Boire G. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol 2007; 24:1678-89. [PMID: 17470436 DOI: 10.1093/molbev/msm084] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Y genes encode small noncoding RNAs whose functions remain elusive, whose numbers vary between species, and whose major property is to be bound by the Ro60 protein (or its ortholog in other species). To better understand the evolution of the Y gene family, we performed a homology search in 27 different genomes along with a structural search using Y RNA specific motifs. These searches confirmed that Y RNAs are well conserved in the animal kingdom and resulted in the detection of several new Y RNA genes, including the first Y RNAs in insects and a second Y RNA detected in Caenorhabditis elegans. Unexpectedly, Y5 genes were retrieved almost as frequently as Y1 and Y3 genes, and, consequently are not the result of a relatively recent apparition as is generally believed. Investigation of the organization of the Y genes demonstrated that the synteny was conserved among species. Interestingly, it revealed the presence of six putative "fossil" Y genes, all of which were Y4 and Y5 related. Sequence analysis led to inference of the ancestral sequences for all Y RNAs. In addition, the evolution of existing Y RNAs was deduced for many families, orders and classes. Moreover, a consensus sequence and secondary structure for each Y species was determined. Further evolutionary insight was obtained from the analysis of several thousand Y retropseudogenes among various species. Taken together, these results confirm the rich and diversified evolution history of Y RNAs.
Collapse
Affiliation(s)
- Jonathan Perreault
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
41
|
Evolution of the vertebrate Y RNA cluster. Theory Biosci 2007; 126:9-14. [PMID: 18087752 DOI: 10.1007/s12064-007-0003-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Relatively little is known about the evolutionary histories of most classes of non-protein coding RNAs. Here we consider Y RNAs, a relatively rarely studied group of related pol-III transcripts. A single cluster of functional genes is preserved throughout tetrapod evolution, which however exhibits clade-specific tandem duplications, gene-losses, and rearrangements.
Collapse
|
42
|
Fuchs G, Stein AJ, Fu C, Reinisch KM, Wolin SL. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat Struct Mol Biol 2006; 13:1002-9. [PMID: 17041599 DOI: 10.1038/nsmb1156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022]
Abstract
The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3' end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins.
Collapse
Affiliation(s)
- Gabriele Fuchs
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
43
|
Christov CP, Gardiner TJ, Szüts D, Krude T. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 2006; 26:6993-7004. [PMID: 16943439 PMCID: PMC1592862 DOI: 10.1128/mcb.01060-06] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noncoding RNAs are recognized increasingly as important regulators of fundamental biological processes, such as gene expression and development, in eukaryotes. We report here the identification and functional characterization of the small noncoding human Y RNAs (hY RNAs) as novel factors for chromosomal DNA replication in a human cell-free system. In addition to protein fractions, hY RNAs are essential for the establishment of active chromosomal DNA replication forks in template nuclei isolated from late-G(1)-phase human cells. Specific degradation of hY RNAs leads to the inhibition of semiconservative DNA replication in late-G(1)-phase template nuclei. This inhibition is negated by resupplementation of hY RNAs. All four hY RNAs (hY1, hY3, hY4, and hY5) can functionally substitute for each other in this system. Mutagenesis of hY1 RNA showed that the binding site for Ro60 protein, which is required for Ro RNP assembly, is not essential for DNA replication. Degradation of hY1 RNA in asynchronously proliferating HeLa cells by RNA interference reduced the percentages of cells incorporating bromodeoxyuridine in vivo. These experiments implicate a functional role for hY RNAs in human chromosomal DNA replication.
Collapse
Affiliation(s)
- Christo P Christov
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | | | |
Collapse
|
44
|
Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 2005; 121:529-539. [PMID: 15907467 PMCID: PMC1769319 DOI: 10.1016/j.cell.2005.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 01/07/2023]
Abstract
The Ro 60 kDa autoantigen is a major target of the immune response in patients with systemic lupus erythematosus. In vertebrate cells, Ro binds misfolded small RNAs and likely functions in RNA quality control. In eukaryotes and bacteria, Ro also associates with small RNAs called Y RNAs. We present structures of unliganded Ro and Ro complexed with two RNAs at 1.95 and 2.2 A resolution, respectively. Ro consists of a von Willebrand factor A domain and a doughnut-shaped domain composed of HEAT repeats. In the complex, a fragment of Y RNA binds on the outer surface of the HEAT-repeat ring, and single-stranded RNA binds in the toroid hole. Mutagenesis supports a binding site for misfolded RNAs that encompasses both sites, with a single-stranded end inserted into the toroid cavity. Our experiments suggest that one role of Y RNAs may be to regulate access of other RNAs to Ro.
Collapse
Affiliation(s)
- Adam J Stein
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Gabriele Fuchs
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Chunmei Fu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Karin M Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.
| |
Collapse
|
45
|
Perreault J, Noël JF, Brière F, Cousineau B, Lucier JF, Perreault JP, Boire G. Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res 2005; 33:2032-41. [PMID: 15817567 PMCID: PMC1074747 DOI: 10.1093/nar/gki504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the characterization in the human genome of 966 pseudogenes derived from the four human Y (hY) RNAs, components of the Ro/SS-A autoantigen. About 95% of the Y RNA pseudogenes are found in corresponding locations on the chimpanzee and human chromosomes. On the contrary, Y pseudogenes in mice are both infrequent and found in different genomic regions. In addition to this rodent/primate discrepancy, the conservation of hY pseudogenes relative to hY genes suggests that they occurred after rodent/primate divergence. Flanking regions of hY pseudogenes contain convincing evidence for involvement of the L1 retrotransposition machinery. Although Alu elements are found in close proximity to most hY pseudogenes, these are not chimeric retrogenes. Point mutations in hY RNA transcripts specifically affecting binding of Ro60 protein likely contributed to their selection for direct trans retrotransposition. This represents a novel requirement for the selection of specific RNAs for their genomic integration by the L1 retrotransposition machinery. Over 40% of the hY pseudogenes are found in intronic regions of protein-coding genes. Considering the functions of proteins known to bind subsets of hY RNAs, hY pseudogenes constitute a new class of L1-dependent non-autonomous retroelements, potentially involved in post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Jonathan Perreault
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Biochemistry, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
| | - Jean-François Noël
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Microbiology and Infectiology, Faculty of Medicine, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
| | - Francis Brière
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Biochemistry, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
| | - Benoit Cousineau
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Microbiology and Immunology, McGill University3775 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Jean-François Lucier
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
| | - Jean-Pierre Perreault
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Biochemistry, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
| | - Gilles Boire
- RNA group/Groupe ARN, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- Department of Medicine, Université de SherbrookeSherbrooke, Quebec, J1H 5N4, Canada
- To whom correspondence should be addressed. Tel: +1 819 564 5261; Fax: +1 819 564 5265;
| |
Collapse
|
46
|
Chen X, Wolin SL. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med (Berl) 2004; 82:232-9. [PMID: 15168680 DOI: 10.1007/s00109-004-0529-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An RNA-binding protein, the Ro 60 kDa autoantigen, is a major target of the immune response in patients suffering from two systemic rheumatic diseases, systemic lupus erythematosus and Sjogren's syndrome. In lupus patients, anti-Ro antibodies are associated with photosensitive skin lesions and with neonatal lupus, a syndrome in which mothers with anti-Ro antibodies give birth to children with photosensitive skin lesions and a cardiac conduction defect, third degree heart block. In vertebrate cells, the Ro protein binds small RNAs of unknown function known as Y RNAs. Although the cellular function of Ro has long been mysterious, recent studies have implicated Ro in two distinct processes: small RNA quality control and the enhancement of cell survival following exposure to ultraviolet irradiation. Most interestingly, mice lacking the Ro protein develop an autoimmune syndrome that shares some features with systemic lupus erythematosus in patients, suggesting that the normal function of Ro may be important for the prevention of this autoimmune disease. In this review, we summarize recent progress towards understanding the role of the Ro 60 kDa protein and discuss whether the cellular function of Ro could be related to certain manifestations of lupus in patients.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
47
|
Chen X, Smith JD, Shi H, Yang DD, Flavell RA, Wolin SL. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr Biol 2004; 13:2206-11. [PMID: 14680639 DOI: 10.1016/j.cub.2003.11.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Ro 60 kDa autoantigen, an RNA binding protein, is a major target of the immune response in patients with systemic lupus erythematosus. As mice lacking Ro develop a lupus-like syndrome, Ro may be important for preventing autoimmunity. However, the cellular function of Ro, which binds small cytoplasmic RNAs of unknown function called Y RNAs, has been enigmatic. Ro has been proposed to function in 5S rRNA quality control based on experiments in Xenopus laevis oocytes, and a Ro ortholog enhances survival of the eubacterium Deinococcus radiodurans after ultraviolet irradiation. To test the general importance of these two observations for Ro function, we investigated the role of Ro in mammalian cells. We report that, in mouse embryonic stem (ES) cells, Ro binds variant spliceosomal U2 snRNAs. Expression of mouse U2 snRNAs in Xenopus oocytes reveals that binding occurs in nuclei and appears to involve recognition of misfolded RNA. Moreover, mouse ES cells lacking Ro exhibit decreased survival after ultraviolet irradiation. In irradiated cells, both Ro and a Y RNA accumulate in nuclei. We propose that Ro plays a general role in small RNA quality control and that this function is important for cell survival after ultraviolet irradiation.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
48
|
Asselbergs FAM, Widmer R. Rapid detection of apoptosis through real-time reverse transcriptase polymerase chain reaction measurement of the small cytoplasmic RNA Y1. Anal Biochem 2003; 318:221-9. [PMID: 12814625 DOI: 10.1016/s0003-2697(03)00218-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptosis could be measured in mammalian cells by measuring the degradation of the small cytoplasmic human RNA Y1 (hY1) by real-time quantitative fluorescent reverse transcriptase polymerase chain reaction (RT-PCR). In FAS-antibody-treated Jurkat T cell leukemia cells degradation of hY1 occurred rapidly and was complete at about 6h. As in apoptotic Jurkat cells, protein synthesis is arrested only after about 12h; this implies that protein synthesis can occur without scRNA-Y1. The degradation of hY1 could be blocked with peptide-based inhibitors of caspase 8 and with lower efficacy with caspases 1 and 3 and with ZnSO4. No effects were observed after inhibition of caspases 2, 6, and 9. Degradation of hY1 could also be demonstrated after treatment of A549 lung carcinoma cells treated with Staurosporin, Paclitaxel, or the histone deacetylase inhibitor LAQ824. RT-PCR systems based on SYBR Green, Amplifluor Uniprimer, or 5' nuclease Taqman could be used with increasing sensitivity. This apoptosis assay requires quantities of total cell RNA equivalent to only a few tissue culture cells and is especially suited to measure apoptosis in projects where RNA samples are already available from gene expression studies.
Collapse
Affiliation(s)
- Fred A M Asselbergs
- Department of Functional Genomics, Novartis Pharma AG, WSJ-360.601, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
49
|
Fouraux MA, Bouvet P, Verkaart S, van Venrooij WJ, Pruijn GJM. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J Mol Biol 2002; 320:475-88. [PMID: 12096904 DOI: 10.1016/s0022-2836(02)00518-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ro RNPs are evolutionarily conserved, small cytoplasmic RNA-protein complexes with an unknown function. In human cells, Ro RNPs consist of one of the four hY RNAs and two core proteins: Ro60 and La. Recently, the association of hnRNP I and hnRNP K with particles containing hY1 and hY3 RNAs has been described. The association of three other proteins, namely calreticulin, Ro52 and RoBPI, with (subsets of) the Ro RNPs is still controversial. To gain more insight into the composition and function of the Ro RNPs, we have immunopurified these particles from HeLa cell extracts using monoclonal antibodies against Ro60 and La. Using this approach, we have identified the RNA-binding protein nucleolin as a novel subunit of Ro RNP particles containing hY1 or hY3 RNA, but not hY4 and hY5 RNA. Using an in vitro hY RNA-binding assay we established that the internal pyrimidine-rich loop of hY1 and hY3 RNA is essential for the association of nucleolin. The binding is critically dependent on the presence of all four RNP motifs of nucleolin, but not of the C-terminal RGG-box. Moreover, we demonstrate that, in contrast to nucleolin and hnRNP K, nucleolin and hnRNP I can bind simultaneously to the internal pyrimidine-rich loop of hY1 RNA. We postulate that nucleolin functions in the biogenesis and/or trafficking of hY1 and hY3 RNPs through the nucleolus and subsequent transport to the cytoplasm.
Collapse
Affiliation(s)
- Michael A Fouraux
- University of Nijmegen, Nijmegen Center of Molecular Life Sciences, Department of Biochemistry, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Gendron M, Roberge D, Boire G. Heterogeneity of human Ro ribonucleoproteins (RNPS): nuclear retention of Ro RNPS containing the human hY5 RNA in human and mouse cells. Clin Exp Immunol 2001; 125:162-8. [PMID: 11472440 PMCID: PMC1906090 DOI: 10.1046/j.1365-2249.2001.01566.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ro ribonucleoproteins (RNPs) are autoantigens that result from the association of a 60-kDa protein (Ro60) with a small RNA (hY1, hY3, hY4 or hY5 in humans, mY1 or mY3 in mice). Previous studies localized Ro RNPs to the cytoplasm. Because Ro RNPs containing hY5 RNA (Ro(hY5) RNPs) have unique biochemical and immunological properties, their intracellular localization was reassessed. Subcellular distribution of mouse and human Ro RNPs in intact and hY-RNA transfected cells was assessed by immunoprecipitation and Northern hybridization. Human Ro(hY1--4) RNPs as well as murine Ro(mY1, mY3) RNPs are exclusively cytoplasmic. Ro RNPs containing an intact hY5 RNA, but not those containing a mutated form of hY5 RNA, are found in the nuclear fractions of human and mouse cells. Ro(hY5) RNPs are stably associated with transcriptionally active La protein and are known to associate with RoBPI, a nuclear autoantigen. Our results demonstrate that Ro(hY5) RNPs are specifically present in the nucleus of cultured human and murine cells. The signal for nuclear localization of Ro(hY5) RNPs appears to reside within the hY5 sequence itself. In conclusion, we suggest that the unique localization and interactions of primate-specific Ro(hY5) RNPs reflect functions that are distinct from the predicted cytoplasmic function(s) of more conserved Ro RNPs.
Collapse
Affiliation(s)
- M Gendron
- Division of Rheumatology, Department of Medicine, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|