1
|
Abstract
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.
Collapse
Affiliation(s)
- Chien-Ling Lin
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - Allison J Taggart
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - William G Fairbrother
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA.,b Center for Computational Molecular Biology, Brown University , Providence , RI , USA.,c Hassenfeld Child Health Innovation Institute of Brown University , Providence , RI , USA
| |
Collapse
|
2
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 2013; 33:3125-36. [PMID: 23754748 DOI: 10.1128/mcb.00007-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Collapse
|
4
|
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF. Mol Cell Biol 2010; 31:652-61. [PMID: 21149581 DOI: 10.1128/mcb.01000-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.
Collapse
|
5
|
Chinen M, Morita M, Fukumura K, Tani T. Involvement of the spliceosomal U4 small nuclear RNA in heterochromatic gene silencing at fission yeast centromeres. J Biol Chem 2009; 285:5630-8. [PMID: 20018856 DOI: 10.1074/jbc.m109.074393] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13(+) gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4(+) gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.
Collapse
Affiliation(s)
- Madoka Chinen
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
6
|
Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts. Mol Cell Biol 2007; 27:7334-44. [PMID: 17709389 PMCID: PMC2168890 DOI: 10.1128/mcb.00627-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.
Collapse
Affiliation(s)
- Vinod Sridharan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
7
|
Haraguchi N, Andoh T, Frendewey D, Tani T. Mutations in the SF1-U2AF59-U2AF23 Complex Cause Exon Skipping in Schizosaccharomyces pombe. J Biol Chem 2007; 282:2221-8. [PMID: 17130122 DOI: 10.1074/jbc.m609430200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes involved in the mechanism to ensure ordered 5' to 3' exon joining in constitutively spliced pre-mRNAs, we screened for mutants that cause exon skipping in the fission yeast Schizosaccharomyces pombe using a reporter plasmid, which contains the ura4+ gene with the nda3 intron 1-exon 2-intron 2 sequence. The reporter plasmid was designed to produce the functional ura4+ mRNA, when the central nda3 exon is skipped during the splicing reaction. We mutagenized cells harboring the plasmid by UV irradiation and isolated 34 ura+ mutants that grew on minimal medium. Of those, eight mutants were found to be temperature sensitive (ts) for growth. Complementation analyses revealed that the ts mutants belong to three distinct complementation groups named ods (ordered splicing) 1, 2, and 3. RT-PCR analyses showed that products of exon skipping were actually generated in the ods mutants. We cloned the genes responsible for the ods mutations, and found that ods1+, ods2+, and ods3+ encode splicing factors Prp2p/U2AF59, U2AF23, and SF1, respectively, which form a SF1-U2AF59-U2AF23 complex involved in recognition of the branch-point and 3' splice site sequences in a pre-mRNA. We also showed that mutations in the SF1-U2AF59-U2AF23 binding sequences in the reporter plasmid result in exon skipping in wild-type S. pombe cells. In addition, drugs that decrease the rate of transcription elongation were found to suppress the exon skipping in the ods mutants. These results suggest that co-transcriptional recognition of a nascent pre-mRNA by the SF1-U2AF59-U2AF23 complex is essential for ordered exon joining in constitutive splicing in S. pombe.
Collapse
Affiliation(s)
- Noriko Haraguchi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
8
|
Henscheid KL, Shin DS, Cary SC, Berglund JA. The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. ACTA ACUST UNITED AC 2005; 1727:197-207. [PMID: 15777616 DOI: 10.1016/j.bbaexp.2005.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 01/13/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.
Collapse
Affiliation(s)
- Kristy L Henscheid
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
9
|
Blanchette M, Labourier E, Green RE, Brenner SE, Rio DC. Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Mol Cell 2005; 14:775-86. [PMID: 15200955 DOI: 10.1016/j.molcel.2004.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/28/2022]
Abstract
The protein factor U2AF is an essential component required for pre-mRNA splicing. Mutations identified in the S. pombe large U2AF subunit were used to engineer transgenic Drosophila carrying temperature-sensitive U2AF large subunit alleles. Mutant recombinant U2AF heterodimers showed reduced polypyrimidine tract RNA binding at elevated temperatures. Genome-wide RNA profiling comparing wild-type and mutant strains identified more than 400 genes differentially expressed in the dU2AF50 mutant flies grown at the restrictive temperature. Surprisingly, almost 40% of the downregulated genes lack introns. Microarray analyses revealed that nuclear export of a large number of intronless mRNAs is impaired in Drosophila-cultured cells RNAi knocked down for dU2AF50. Immunopurification of nuclear RNP complexes showed that dU2AF50 associates with intronless mRNAs. These results reveal an unexpected role for the splicing factor dU2AF50 in the nuclear export of intronless mRNAs.
Collapse
Affiliation(s)
- Marco Blanchette
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
10
|
Webb CJ, Romfo CM, van Heeckeren WJ, Wise JA. Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin. Genes Dev 2005; 19:242-54. [PMID: 15625190 PMCID: PMC545887 DOI: 10.1101/gad.1265905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 11/11/2004] [Indexed: 12/17/2022]
Abstract
Discrete sequence elements known as exonic splicing enhancers (ESEs) have been shown to influence both the efficiency of splicing and the profile of mature mRNAs in multicellular eukaryotes. While the existence of ESEs has not been demonstrated previously in unicellular eukaryotes, the factors known to recognize these elements and mediate their communication with the core splicing machinery are conserved and essential in the fission yeast Schizosaccharomyces pombe. Here, we provide evidence that ESE function is conserved through evolution by demonstrating that three exonic splicing enhancers derived from vertebrates (chicken ASLV, mouse IgM, and human cTNT) promote splicing of two distinct S. pombe pre-messenger RNAs (pre-mRNAs). Second, as in extracts from mammalian cells, ESE function in S. pombe is compromised by mutations and increased distance from the 3'-splice site. Third, three-hybrid analyses indicate that the essential SR (serine/arginine-rich) protein Srp2p, but not the dispensable Srp1p, binds specifically to both native and heterologous purine-rich elements; thus, Srp2p is the likely mediator of ESE function in fission yeast. Finally, we have identified five natural purine-rich elements from S. pombe that promote splicing of our reporter pre-mRNAs. Taken together, these results provide strong evidence that the genesis of ESE-mediated splicing occurred early in eukaryotic evolution.
Collapse
Affiliation(s)
- Christopher J Webb
- School of Medicine, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
11
|
Webb CJ, Lakhe-Reddy S, Romfo CM, Wise JA. Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AF in vivo. Mol Biol Cell 2004; 16:584-96. [PMID: 15548596 PMCID: PMC545896 DOI: 10.1091/mbc.e04-09-0768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heterodimeric splicing factor U2AF plays an important role in 3' splice site selection, but the division of labor between the two subunits in vivo remains unclear. In vitro assays led to the proposal that the human large subunit recognizes 3' splice sites with extensive polypyrimidine tracts independently of the small subunit. We report in vivo analysis demonstrating that all five domains of spU2AFLG are essential for viability; a partial deletion of the linker region, which forms the small subunit interface, produces a severe growth defect and an aberrant morphology. A small subunit zinc-binding domain mutant confers a similar phenotype, suggesting that the heterodimer functions as a unit during splicing in Schizosaccharomyces pombe. As this is not predicted by the model for metazoan 3' splice site recognition, we sought introns for which the spU2AFLG and spU2AFSM make distinct contributions by analyzing diverse splicing events in strains harboring mutations in each partner. Requirements for the two subunits are generally parallel and, moreover, do not correlate with the length or strength of the 3' pyrimidine tract. These and other studies performed in fission yeast support a model for 3' splice site recognition in which the two subunits of U2AF functionally collaborate in vivo.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
12
|
Webb CJ, Wise JA. The splicing factor U2AF small subunit is functionally conserved between fission yeast and humans. Mol Cell Biol 2004; 24:4229-40. [PMID: 15121844 PMCID: PMC400479 DOI: 10.1128/mcb.24.10.4229-4240.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/17/2003] [Accepted: 02/25/2004] [Indexed: 01/22/2023] Open
Abstract
The small subunit of U2AF, which functions in 3' splice site recognition, is more highly conserved than its heterodimeric partner yet is less thoroughly investigated. Remarkably, we find that the small subunit of Schizosaccharomyces pombe U2AF (U2AF(SM)) can be replaced in vivo by its human counterpart, demonstrating that the conservation extends to function. Precursor mRNAs accumulate in S. pombe following U2AF(SM) depletion in a time frame consistent with a role in splicing. A comprehensive mutational analysis reveals that all three conserved domains are required for viability. Notably, however, a tryptophan in the pseudo-RNA recognition motif implicated in a key contact with the large subunit by crystallographic data is dispensable whereas amino acids implicated in RNA recognition are critical. Mutagenesis of the two zinc-binding domains demonstrates that they are neither equivalent nor redundant. Finally, two- and three-hybrid analyses indicate that mutations with effects on large-subunit interactions are rare whereas virtually all alleles tested diminished RNA binding by the heterodimer. In addition to demonstrating extraordinary conservation of U2AF small-subunit function, these results provide new insights into the roles of individual domains and residues.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
13
|
Banerjee H, Rahn A, Gawande B, Guth S, Valcarcel J, Singh R. The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF 65) is essential in vivo but dispensable for activity in vitro. RNA (NEW YORK, N.Y.) 2004; 10:240-53. [PMID: 14730023 PMCID: PMC1370536 DOI: 10.1261/rna.5153204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/13/2003] [Indexed: 05/09/2023]
Abstract
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
14
|
Habara Y, Urushiyama S, Shibuya T, Ohshima Y, Tani T. Mutation in the prp12+ gene encoding a homolog of SAP130/SF3b130 causes differential inhibition of pre-mRNA splicing and arrest of cell-cycle progression in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2001; 7:671-81. [PMID: 11350031 PMCID: PMC1370119 DOI: 10.1017/s1355838201001200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
prp12-1 is one of the mutants defective in pre-mRNA splicing at a nonpermissive temperature in Schizosaccharomyces pombe. We found that the prp12+ gene encodes a protein highly homologous with a human splicing factor, SAP130/SF3b130, a subunit of a U2 snRNP-associated complex SF3b. Prp12p was shown to interact genetically with Prp10p that is a homolog of SAP155/SF3b155, another subunit in SF3b, suggesting that Prp12p is a functional homolog of human SAP130/SF3b130. Prp12p tagged with GFP is uniformly localized in the nuclear DNA region. In addition to pre-mRNA splicing defects, the prp12-1 mutant produced elongated cells, a typical phenotype of cell division cycle (cdc) mutants, suggesting a possible link between pre-mRNA splicing and cell-cycle progression. We examined kinetics of splicing defects in prp12-1 and several other prp mutants using northern blot hybridization and found that, among all the tested pre-mRNAs, only Tflld pre-mRNA with low splicing efficiency showed detectable splicing defects at the nonpermissive temperature in prp12-1. In addition, we found that other prp mutants with the cdc phenotype also showed differential splicing defects in tested pre-mRNAs at the nonpermissive temperature. On the other hand, prp mutants that do not exhibit the cdc phenotype showed a rapid and complete block of pre-mRNA splicing in all the tested pre-mRNAs at the nonpermissive temperature, indicating that prp mutants with weak splicing defects have a tendency to exhibit the cdc phenotype. These results suggest that the cdc phenotype in prp12-1 is caused by a selective reduction of spliced transcripts encoding a protein (or proteins) required for G2/M transition.
Collapse
Affiliation(s)
- Y Habara
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
15
|
Romfo CM, Alvarez CJ, van Heeckeren WJ, Webb CJ, Wise JA. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol Cell Biol 2000; 20:7955-70. [PMID: 11027266 PMCID: PMC86406 DOI: 10.1128/mcb.20.21.7955-7970.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe pre-mRNAs are generally multi-intronic and share certain features with pre-mRNAs from Drosophila melanogaster, in which initial splice site pairing can occur via either exon or intron definition. Here, we present three lines of evidence suggesting that, despite these similarities, fission yeast splicing is most likely restricted to intron definition. First, mutating either or both splice sites flanking an internal exon in the S. pombe cdc2 gene produced almost exclusively intron retention, in contrast to the exon skipping observed in vertebrates. Second, we were unable to induce skipping of the internal microexon in fission yeast cgs2, whereas the default splicing pathway excludes extremely small exons in mammals. Because nearly quantitative removal of the downstream intron in cgs2 could be achieved by expanding the microexon, we propose that its retention is due to steric occlusion. Third, several cryptic 5' junctions in the second intron of fission yeast cdc2 are located within the intron, in contrast to their generally exonic locations in metazoa. The effects of expanding and contracting this intron are as predicted by intron definition; in fact, even highly deviant 5' junctions can compete effectively with the standard 5' splice site if they are closer to the 3' splicing signals. Taken together, our data suggest that pairing of splice sites in S. pombe most likely occurs exclusively across introns in a manner that favors excision of the smallest segment possible.
Collapse
Affiliation(s)
- C M Romfo
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
16
|
Beales M, Flay N, McKinney R, Habara Y, Ohshima Y, Tani T, Potashkin J. Mutations in the large subunit of U2AF disrupt pre-mRNA splicing, cell cycle progression and nuclear structure. Yeast 2000; 16:1001-13. [PMID: 10923022 DOI: 10.1002/1097-0061(200008)16:11<1001::aid-yea605>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prp2 gene of fission yeast has previously been shown to encode the large subunit of the splicing factor spU2AF. SpU2AF(59) is an evolutionarily conserved protein that has an arginine/serine-rich region and three RNA recognition motifs (RRMs). We have sequenced three temperature-sensitive alleles of prp2 and determined that the mutations result in single amino acid changes within one of the RRMs or between RRMs. All mutant alleles of prp2 have pre-mRNA splicing defects at the non-permissive temperature. Although the mutant strains are growth-arrested at 37 degrees C, they do not elongate like typical fission yeast cell cycle mutants. The DNA of the prp2(-) strains stains more intensely than a wild-type strain, suggesting that the chromatin may be condensed. Ultrastructural studies show differences in the mutant nuclei including a prominent distinction between the chromatin- and non-chromatin-enriched regions compared to the more homogenous wild-type nucleus. Two-hybrid assays indicate that some of the wild-type protein interactions are altered in the mutant strains. These results suggest that normal functioning of spU2AF(59) may be essential not only for pre-mRNA splicing but also for the maintenance of proper nuclear structure and normal cell cycle progression.
Collapse
Affiliation(s)
- M Beales
- Department of Cellular and Molecular Pharmacology, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tang Z, Kuo T, Shen J, Lin RJ. Biochemical and genetic conservation of fission yeast Dsk1 and human SR protein-specific kinase 1. Mol Cell Biol 2000; 20:816-24. [PMID: 10629038 PMCID: PMC85198 DOI: 10.1128/mcb.20.3.816-824.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine/serine-rich (RS) domain-containing proteins and their phosphorylation by specific protein kinases constitute control circuits to regulate pre-mRNA splicing and coordinate splicing with transcription in mammalian cells. We present here the finding that similar SR networks exist in Schizosaccharomyces pombe. We previously showed that Dsk1 protein, originally described as a mitotic regulator, displays high activity in phosphorylating S. pombe Prp2 protein (spU2AF59), a homologue of human U2AF65. We now demonstrate that Dsk1 also phosphorylates two recently identified fission yeast proteins with RS repeats, Srp1 and Srp2, in vitro. The phosphorylated proteins bear the same phosphoepitope found in mammalian SR proteins. Consistent with its substrate specificity, Dsk1 forms kinase-competent complexes with those proteins. Furthermore, dsk1(+) gene determines the phenotype of prp2(+) overexpression, providing in vivo evidence that Prp2 is a target for Dsk1. The dsk1-null mutant strain became severely sick with the additional deletion of a related kinase gene. Significantly, human SR protein-specific kinase 1 (SRPK1) complements the growth defect of the double-deletion mutant. In conjunction with the resemblance of dsk1(+) and SRPK1 in sequence homology, biochemical properties, and overexpression phenotypes, the complementation result indicates that SRPK1 is a functional homologue of Dsk1. Collectively, our studies illustrate the conserved SR networks in S. pombe consisting of RS domain-containing proteins and SR protein-specific kinases and thus establish the importance of the networks in eucaryotic organisms.
Collapse
Affiliation(s)
- Z Tang
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
18
|
Mazroui R, Puoti A, Krämer A. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. RNA (NEW YORK, N.Y.) 1999; 5:1615-31. [PMID: 10606272 PMCID: PMC1369883 DOI: 10.1017/s1355838299991872] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Splicing factor SF1 contributes to the recognition of the 3' splice site by interacting with U2AF65 and binding to the intron branch site during the formation of the early splicing complex E. These interactions and the essential functional domains of SF1 are highly conserved in Saccharomyces cerevisiae. We have isolated cDNAs encoding SF1 from Drosophila (Dm) and Caenorhabditis (Ce). The encoded proteins share the U2AF65 interaction domain, a hnRNP K homology domain, and one or two zinc knuckles required for RNA binding as well as Pro-rich C-terminal sequences with their yeast and mammalian counterparts. In contrast to SF1 in other species, DmSF1 and CeSF1 are characterized by an N-terminal region enriched in Ser, Arg, Lys, and Asp residues with homology to the RS domains of several splicing proteins. These domains mediate protein-protein or protein-RNA interactions, suggesting an additional role for DmSF1 and CeSF1 in pre-mRNA splicing. Human (Hs), fly, and worm SF1 interact equally well with HsU2AF65 or the Drosophila homolog DmU2AF50. Moreover, DmSF1 lacking its N terminus is functional in prespliceosome formation in a HeLa splicing system, emphasizing the conserved nature of interactions at an early step in spliceosome assembly. The Ce-SF1 gene is located in a polycistronic transcription unit downstream of the genes encoding U2AF35 (uaf-2) and a cyclophilin (cyp-13), implying the coordinate transcriptional regulation of these genes. Injection of double-stranded RNA into C. elegans results in embryonic lethality; thus, the SF1 gene is essential not only in yeast but also in at least one metazoan.
Collapse
Affiliation(s)
- R Mazroui
- Département de Biologie Cellulaire, Université de Genève, Switzerland
| | | | | |
Collapse
|