1
|
Duan Z, Tong J, Zheng N, Zeng R, Liu Y, Li M. Effect of 5-Aminolevulinic Acid Photodynamic Therapy on Aspergillus fumigatus Biofilms in Vitro. Curr Microbiol 2023; 80:334. [PMID: 37659001 PMCID: PMC10474982 DOI: 10.1007/s00284-023-03351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/27/2023] [Indexed: 09/05/2023]
Abstract
Aspergillus fumigatus biofilm development results in enhanced pathogenicity and treatment resistance. Most contemporary antibiotics, however, are unable to eliminate biofilms. In recent years, with the application of new photosensitizers and the development of treatment, ALA-PDT (5-aminolevulinic acid photodynamic treatment) has achieved remarkable curative effect in the treatment of fungal infectious diseases; however, no research has been conducted on ALA-PDT against A. fumigatus. This study investigated the inhibitory effect of ALA-PDT at various 5-aminolevulinic acid concentrations and light doses on A. fumigatus planktonic and biofilms in vitro. We found that ALA-PDT may successfully inhibit the development of A. fumigatus biofilm and disintegrate mature biofilm. After ALA-PDT treatment, the adherence rate and vitality dramatically decreased, and the biofilm's structure was severely compromised. Our findings show for the first time that ALA-PDT may be used to prevent the formation of A. fumigatus biofilm and disturb the structure of mature biofilm, and that it could be employed as a therapeutic therapy for A. fumigatus superficial infection.
Collapse
Affiliation(s)
- Zhimin Duan
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Jianbo Tong
- Department of Dermatology, Institute of Dermatology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330001, Jiangxi, China
| | - Nana Zheng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Rong Zeng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
- Department of Dermatology, The First Affiliated Hospital of Yunnan Traditional Chinese Medicine University, No. 120 Guanghua Rd, Kuming, 650021, China.
| | - Yuzhen Liu
- Department of Dermatology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu, China.
| | - Min Li
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
2
|
Laible AR, Dinius A, Schrader M, Krull R, Kwade A, Briesen H, Schmideder S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng Life Sci 2022; 22:725-743. [PMID: 36514528 PMCID: PMC9731605 DOI: 10.1002/elsc.202100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.
Collapse
Affiliation(s)
- Andreas Reiner Laible
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Anna Dinius
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Marcel Schrader
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Arno Kwade
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Heiko Briesen
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Stefan Schmideder
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| |
Collapse
|
3
|
Pili and other surface proteins influence the structure and the nanomechanical properties of Lactococcus lactis biofilms. Sci Rep 2021; 11:4846. [PMID: 33649417 PMCID: PMC7921122 DOI: 10.1038/s41598-021-84030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Lactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4-100 kPa) than those of piliated strains (Young Modulus around 0.04-0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.
Collapse
|
4
|
Böl M, Schrinner K, Tesche S, Krull R. Challenges of influencing cellular morphology by morphology engineering techniques and mechanical induced stress on filamentous pellet systems-A critical review. Eng Life Sci 2021; 21:51-67. [PMID: 33716605 PMCID: PMC7923580 DOI: 10.1002/elsc.202000060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Filamentous microorganisms are main producers of organic acids, enzymes, and pharmaceutical agents such as antibiotics and other active pharmaceutical ingredients. With their complex cell morphology, ranging from dispersed mycelia to dense pellets, the cultivation is challenging. In recent years, various techniques for tailor-made cell morphologies of filamentous microorganisms have been developed to increase product formation and have been summarised under the term morphology engineering. These techniques, namely microparticle-enhanced cultivation, macroparticle-enhanced cultivation, and alteration of the osmolality of the culture medium by addition of inorganic salts, the salt-enhanced cultivation, are presented and discussed in this review. These techniques have already proven to be useful and now await further proof-of-concept. Furthermore, the mechanical behaviour of individual pellets is of special interest for a general understanding of pellet mechanics and the productivity of biotechnological processes with filamentous microorganisms. Correlating them with substrate uptake and finally with productivity would be a breakthrough not to be underestimated for the comprehensive characterisation of filamentous systems. So far, this research field is under-represented. First results on filamentous pellet mechanics are discussed and important future aspects, which the filamentous expert community should deal with, will be presented and critically discussed.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and AdaptronicsTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
| | - Kathrin Schrinner
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Sebastian Tesche
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
5
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
6
|
Horvat S, Yu Y, Böjte S, Teßmer I, Lowman DW, Ma Z, Williams DL, Beilhack A, Albrecht K, Groll J. Engineering Nanogels for Drug Delivery to Pathogenic Fungi Aspergillus fumigatus by Tuning Polymer Amphiphilicity. Biomacromolecules 2020; 21:3112-3121. [PMID: 32603103 DOI: 10.1021/acs.biomac.0c00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Invasive aspergillosis is a serious threat to immunodeficient and critically ill patients caused mainly by the fungus Aspergillus fumigatus. Here, poly(glycidol)-based nanogels (NGs) are proposed as delivery vehicles for antifungal agents for sustained drug release. NGs are formed by simple self-assembly of random copolymers, followed by oxidative cross-linking of thiol functionalities. We investigate the impact of copolymer amphiphilicity on NG interaction with mature fungal hyphae in order to select the optimal drug delivery system for model antifungal drug amphotericin B. The results show that drug-loaded NGs decrease minimal inhibitory concentration (MIC) for around four times and slow down the fungal biofilm synthesis at concentrations lower than MIC. Our results suggest that amphiphilicity of nanoparticle's polymer matrix is an important factor in understanding the action of nanocarriers toward fungal cells and should be considered in the development of nanoparticle-based antifungal therapy.
Collapse
Affiliation(s)
- Sonja Horvat
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Yidong Yu
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Szalbolcs Böjte
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Ingrid Teßmer
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Zuchao Ma
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Andreas Beilhack
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
7
|
|
8
|
The influence of salt-enhanced cultivation on the micromechanical behaviour of filamentous pellets. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
|
10
|
Peng C, Wang Q, Lu D, Han W, Li F. A Novel Bifunctional Endolytic Alginate Lyase with Variable Alginate-Degrading Modes and Versatile Monosaccharide-Producing Properties. Front Microbiol 2018; 9:167. [PMID: 29472911 PMCID: PMC5809466 DOI: 10.3389/fmicb.2018.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingbin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Danrong Lu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
11
|
Torelli R, Cacaci M, Papi M, Paroni Sterbini F, Martini C, Posteraro B, Palmieri V, De Spirito M, Sanguinetti M, Bugli F. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids Surf B Biointerfaces 2017; 158:349-355. [PMID: 28715766 DOI: 10.1016/j.colsurfb.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 11/29/2022]
Abstract
E. faecalis and E. faecium cause urinary tract infections highly resistant to therapies due to a protective extracellular matrix. To exploit a new strategy able to treat infections without increasing antibiotic doses, we used enzymes targeting specific biofilm matrix components in combination with Vancomycin. We investigated the activity of Vancomycin combined with two matrix-degrading enzymes, Alginate Lyase (AlgL) and Deoxyribonuclease I (DNase I) against in vitro biofilm of E. faecalis and E. faecium clinical isolates. The heterogeneity of matrix composition leads to defined physiological responses of biofilm communities to their environment: we demonstrated that the use of DNase I and AlgL enzymes affects biofilm structure, cell viability and reduces MBEC values of Vancomycin in E. faecalis and E. faecium, respectively.
Collapse
Affiliation(s)
- Riccardo Torelli
- Institute of Microbiology, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Margherita Cacaci
- Institute of Microbiology, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Massimiliano Papi
- Institute of Physics, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy.
| | | | - Cecilia Martini
- Institute of Microbiology, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Brunella Posteraro
- Institute of Hygiene, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Valentina Palmieri
- Institute of Physics, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy; Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185, Rome, Italy
| | - Marco De Spirito
- Institute of Physics, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| | - Francesca Bugli
- Institute of Microbiology, Università Cattolica del SC, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
12
|
Bugli F, Palmieri V, Torelli R, Papi M, De Spirito M, Cacaci M, Galgano S, Masucci L, Paroni Sterbini F, Vella A, Graffeo R, Posteraro B, Sanguinetti M. In vitro effect of clarithromycin and alginate lyase against helicobacter pylori biofilm. Biotechnol Prog 2016; 32:1584-1591. [PMID: 27535356 DOI: 10.1002/btpr.2339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Indexed: 12/31/2022]
Abstract
It is now established that the gastric pathogen Helicobacter pylori has the ability to form biofilms in vitro as well as on the human gastric mucosa. The aim of this study is to evaluate the antimicrobial effects of Clarithromycin on H. pylori biofilm and to enhance the effects of this antibiotic by combining it with Alginate Lyase, an enzyme degrading the polysaccharides present in the extracellular polymeric matrix forming the biofilm. We evaluated the Clarithromycin minimum inhibition concentration (MIC) on in vitro preformed biofilm of a H. pylori. Then the synergic effect of Clarithromycin and Alginate Lyase treatment has been quantified by using the Fractional Inhibitory Concentration index, measured by checkerboard microdilution assay. To clarify the mechanisms behind the effectiveness of this antibiofilm therapeutic combination, we used Atomic Force Microscopy to analyze modifications of bacterial morphology, percentage of bacillary or coccoid shaped bacteria cells and to quantify biofilm properties. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1584-1591, 2016.
Collapse
Affiliation(s)
- F Bugli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - V Palmieri
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - R Torelli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - M Papi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - M De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - M Cacaci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - S Galgano
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - L Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - F Paroni Sterbini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - A Vella
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - R Graffeo
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - B Posteraro
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| | - M Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma, 00168, Italy
| |
Collapse
|
13
|
Abstract
Fungal biofilms have become an increasingly important clinical problem. The widespread use of antibiotics, frequent use of indwelling medical devices, and a trend toward increased patient immunosuppression have resulted in a creation of opportunity for clinically important yeasts and molds to form biofilms. This review will discuss the diversity and importance of fungal biofilms in the context of clinical medicine, provide novel insights into the clinical management of fungal biofilm infection, present evidence why these structures are recalcitrant to antifungal therapy, and discuss how our knowledge and understanding may lead to novel therapeutic intervention.
Collapse
|
14
|
Faria-Oliveira F, Carvalho J, Belmiro CLR, Ramalho G, Pavão M, Lucas C, Ferreira C. Elemental biochemical analysis of the polysaccharides in the extracellular matrix of the yeastSaccharomyces cerevisiae. J Basic Microbiol 2015; 55:685-94. [DOI: 10.1002/jobm.201400781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Fábio Faria-Oliveira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Joana Carvalho
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Celso LR Belmiro
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Federal University of Rio de Janeiro; Campus of Macaé RJ Brazil
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Gustavo Ramalho
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Mauro Pavão
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| |
Collapse
|
15
|
Effect of Alginate Lyase on Biofilm-GrownHelicobacter pyloriProbed by Atomic Force Microscopy. INT J POLYM SCI 2015. [DOI: 10.1155/2015/989516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori(H. pylori) is a microorganism with a pronounced capability of adaptation under environmental stress solicitations. Its persistence and antimicrobial resistance to the drugs commonly used in the anti-H. pyloritherapy are associated with the development of a biofilm mainly composed of DNA, proteins, and polysaccharides. A fundamental step to increase the success of clinical treatments is the development of new strategies and molecules able to interfere with the biofilm architecture and thus able to enhance the effects of antibiotics. By using Atomic Force Microscopy and Scanning Electron Microscopy we analyzed the effects of the alginate lyase (AlgL), an enzyme able to degrade a wide class of polysaccharides, on theH. pylorishape, surface morphology, and biofilm adhesion properties. We demonstrated that AlgL generates a noticeable loss ofH. pyloricoccoid form in favor of the bacillary form and reduces theH. pyloriextracellular polymeric substances (EPS).
Collapse
|
16
|
In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Antimicrob Agents Chemother 2013; 58:1443-50. [PMID: 24342649 DOI: 10.1128/aac.01007-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus biofilms still present a challenge for effective treatment in clinical settings. While mild heat stress has been introduced as a treatment for infectious diseases, the effectiveness of mild heat stress on A. fumigatus biofilm formation and antifungal susceptibility is still unknown. In the present study, confocal laser scanning microscopy (CLSM) was used to image and quantify Aspergillus fumigatus biofilm formation under three different regimens of continuous mild heat stress: at 37, 39, and 41°C. Furthermore, fungal growth has been investigated under the above conditions in combination with antifungal drugs (amphotericin B [AMB], micafungin [MCF], and voriconazole [VOC]) at early and late stages. CLSM analysis showed that higher temperatures induce earlier germination and greater hyphal elongation but poorer polar growth and reduced biofilm thickness. In the early stage of biofilm formation, the combination of treatment at 39 or 41°C with MCF or VOC produced no visible difference in biomass formation from similar treatments at 37°C with the same drug. Interestingly, AMB treatment at 37°C inhibited early stage biofilm formation to a much greater extent than at 39 and 41°C. At the late stage of biofilm formation, the mild heat treatments at 39 and 41°C with AMB, MCF, and VOC inhibited biomass formation compared to that at 37°C. The present data show that mild heat stress has a negative regulatory effect on biofilm formation in vitro, and antifungal drug improvement with mild heat treatment at late-stage biofilm formation provides useful indications of possible effective strategies for clinical management of aspergillosis.
Collapse
|
17
|
In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrob Agents Chemother 2012; 57:1275-82. [PMID: 23263007 DOI: 10.1128/aac.01875-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus biofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treat Aspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study, in vitro interactions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, against A. fumigatus biofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that when A. fumigatus biofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed in A. fumigatus biofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.
Collapse
|