1
|
Ortega E, Boothroyd C, de Jonge N. The influence of chromatic aberration on the dose-limited spatial resolution of transmission electron microscopy. Ultramicroscopy 2021; 230:113383. [PMID: 34450389 DOI: 10.1016/j.ultramic.2021.113383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/15/2022]
Abstract
The effect of chromatic aberration (CC) on the spatial resolution in transmission electron microscopy (TEM) was studied in thick specimens in which the sample becomes the limiting factor in the resolution. The sample influences the energy spread of the electron beam, allows only a limited electron dose, and modulates electron scattering events. The experimental set-up consisted of a thin silicon nitride membrane and a silicon wedge containing gold nanoparticles. The resolution was measured as a function of electron dose and sample thickness for different sample configurations and for different microscopy modalities including regular TEM, energy filtered TEM (EFTEM) and CC-corrected TEM. Comparison with an analytical model aided the understanding of the experimental data applied over varied conditions. The general trend for all microscopy modalities was a transition from a noise-limited resolution at low electron dose to a CC-limited resolution at high-dose in the absence of beam blurring. EFTEM required an accurate energy slit offset and an optimal energy spread to energy-slit width ratio to surpass regular TEM. The key advantage of CC correction appeared to be the best possible resolution for larger sample thickness at low electron dose outperforming EFTEM by about fifty percent. Several hypothetical sample configurations relevant to liquid phase electron microscopy were evaluated as well to demonstrate the capabilities of the analytical model and to determine the most optimal microscopy modality for this type of experiment. The analytical model included an automated optimization of the EFTEM settings and may aid in optimizing the sample-limited resolution for experimental analysis and planning.
Collapse
Affiliation(s)
- Eduardo Ortega
- INM-Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Chris Boothroyd
- Facility for Analysis Characterisation Testing and Simulation and School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Niels de Jonge
- INM-Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Physics, Saarland University, Saarbrücken 66123, Germany.
| |
Collapse
|
2
|
Di L, Maiseyeu A. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential. Drug Deliv 2021; 28:408-421. [PMID: 33594923 PMCID: PMC7894439 DOI: 10.1080/10717544.2021.1886199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery and uptake of LDL particles by target cells are more complex. The most well-known mode of LDL-based delivery is via the interaction between apolipoprotein B (Apo-B) - the main protein of LDL - and the low-density lipoprotein receptor (LDLR). LDLR is expressed in the liver, adipocytes, and macrophages, and thus selectively delivers LDL carriers to these cells and tissues. Moreover, the elevated expression of LDLR in tumor cells indicates a role for LDL in the targeted delivery of chemotherapy drugs. In addition, chronic inflammation associated with hypercholesterolemia (i.e., high levels of endogenous LDL) can be abated by LDL carriers, which outcompete the deleterious oxidized LDL for uptake by macrophages. In this case, synthetic LDL nanocarriers act as 'eat-me' signals and exploit mechanisms of native LDL uptake for targeted drug delivery and imaging. Lastly, recent studies have shown that the delivery of LDL-based nanocarriers to macrophages via fluid-phase pinocytosis is a promising tool for atherosclerosis imaging. Hence, the present review summarizes the use of natural and synthetic LDL-based carriers for drug delivery and imaging and discusses various mechanisms of targeting.
Collapse
Affiliation(s)
- Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| |
Collapse
|
3
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
4
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 633] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
5
|
de Jonge N. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 2018; 187:113-125. [DOI: 10.1016/j.ultramic.2018.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 01/29/2023]
|
6
|
Majorovits E, Angert I, Kaiser U, Schröder RR. Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples. Biophys J 2016; 110:776-84. [PMID: 26910420 DOI: 10.1016/j.bpj.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Object contrast is one of the most important parameters of macromolecular imaging. Low-voltage transmission electron microscopy has shown an increased atom contrast for carbon materials, indicating that amplitude contrast contributions increase at a higher rate than phase contrast and inelastic scattering. Here, we studied image contrast using ice-embedded tobacco mosaic virus particles as test samples at 20-80 keV electron energy. The particles showed the expected increase in contrast for lower energies, but at the same time the 2.3-nm-resolution measure decayed more rapidly. We found a pronounced signal loss below 60 keV, and therefore we conclude that increased inelastic scattering counteracts increased amplitude contrast. This model also implies that as long as the amplitude contrast does not increase with resolution, beam damage and multiple scattering will always win over increased contrast at the lowest energies. Therefore, we cannot expect that low-energy imaging of conventionally prepared samples would provide better data than state-of-the-art 200-300 keV imaging.
Collapse
Affiliation(s)
| | | | | | - Rasmus R Schröder
- Centre for Advanced Materials, Universität Heidelberg, Heidelberg, Germany; Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Schröder RR. Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography. Arch Biochem Biophys 2015; 581:25-38. [PMID: 26032338 DOI: 10.1016/j.abb.2015.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Macromolecular imaging and tomography of ice embedded samples has developed into a mature imaging technology, in structural biology today widely referred to simply as cryo electron microscopy.(1) While the pioneers of the technique struggled with ill-suited instruments, state-of-the-art cryo microscopes are now readily available and an increasing number of groups are producing excellent high-resolution structural data of macromolecular complexes, of cellular organelles, or the morphology of whole cells. Instrumentation developers, however, are offering yet more novel electron optical devices, such as energy filters and monochromators, aberration correctors or physical phase plates. Here we discuss how current instrumentation has already changed cryo EM, and how newly available instrumentation - often developed in other fields of electron microscopy - may further develop the use and applicability of cryo EM to the imaging of single isolated macromolecules of smaller size or molecules embedded in a crowded cellular environment.
Collapse
Affiliation(s)
- Rasmus R Schröder
- Cryo Electron Microscopy, CellNetwork, BioQuant, Universitätsklinikum Heidelberg, Universität Heidelberg, Germany.
| |
Collapse
|
8
|
Kirchenbuechler D, Mutsafi Y, Horowitz B, Levin-Zaidman S, Fass D, G. Wolf S, Elbaum M. Cryo-STEM Tomography of Intact Vitrified Fibroblasts. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Dahmen T, Baudoin JP, Lupini AR, Kübel C, Slusallek P, de Jonge N. Combined scanning transmission electron microscopy tilt- and focal series. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:548-560. [PMID: 24548618 DOI: 10.1017/s1431927614000075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.
Collapse
Affiliation(s)
- Tim Dahmen
- 1 German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken, Germany
| | - Jean-Pierre Baudoin
- 2 Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | - Andrew R Lupini
- 4 Karlsruhe Institute for Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- 4 Karlsruhe Institute for Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp Slusallek
- 1 German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken, Germany
| | - Niels de Jonge
- 2 Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| |
Collapse
|