1
|
Zhao J, Yu X, Shentu X, Li D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res 2024; 396:1-18. [PMID: 38416172 DOI: 10.1007/s00441-024-03878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Iyer S, Mukherjee S, Kumar M. Watching the embryo: Evolution of the microscope for the study of embryogenesis. Bioessays 2021; 43:e2000238. [PMID: 33837551 DOI: 10.1002/bies.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/08/2022]
Abstract
Embryos and microscopes share a long, remarkable history and biologists have always been intrigued to watch how embryos develop under the microscope. Here we discuss the advances in microscopy which have greatly influenced our current understanding of embryogenesis. We highlight the evolution of microscopes and the optical technologies that have been instrumental in studying various developmental processes. These imaging modalities provide mechanistic insights into the dynamic cellular and molecular events which drive lineage commitment and morphogenetic changes in the developing embryo. We begin the journey with a brief history of microscopy to study embryos. First, we review the principles and optics of light, fluorescence, confocal, and electron microscopy which have been key techniques for imaging cellular and molecular events during embryonic development. Next, we discuss recent key imaging modalities such as light-sheet microscopy, which are suitable for whole embryo imaging. Further, we highlight imaging techniques like multiphoton and super resolution microscopy for beyond light diffraction limit, high resolution imaging. Lastly, we review some of the scattering-based imaging methods and techniques used for imaging human embryos.
Collapse
Affiliation(s)
- Sharada Iyer
- Academy of Scientific and Innovative Research (AcCSIR), CSIR-CCMB campus, Uppal road, Hyderabad, 500007, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Megha Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
3
|
Rykiel G, López CS, Riesterer JL, Fries I, Deosthali S, Courchaine K, Maloyan A, Thornburg K, Rugonyi S. Multiscale cardiac imaging spanning the whole heart and its internal cellular architecture in a small animal model. eLife 2020; 9:e58138. [PMID: 33078706 PMCID: PMC7595733 DOI: 10.7554/elife.58138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.
Collapse
Affiliation(s)
- Graham Rykiel
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Jessica L Riesterer
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Ian Fries
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Sanika Deosthali
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | | | - Alina Maloyan
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
4
|
Riesterer JL, López CS, Stempinski ES, Williams M, Loftis K, Stoltz K, Thibault G, Lanicault C, Williams T, Gray JW. A workflow for visualizing human cancer biopsies using large-format electron microscopy. Methods Cell Biol 2020; 158:163-181. [PMID: 32423648 DOI: 10.1016/bs.mcb.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent developments in large format electron microscopy have enabled generation of images that provide detailed ultrastructural information on normal and diseased cells and tissues. Analyses of these images increase our understanding of cellular organization and interactions and disease-related changes therein. In this manuscript, we describe a workflow for two-dimensional (2D) and three-dimensional (3D) imaging, including both optical and scanning electron microscopy (SEM) methods, that allow pathologists and cancer biology researchers to identify areas of interest from human cancer biopsies. The protocols and mounting strategies described in this workflow are compatible with 2D large format EM mapping, 3D focused ion beam-SEM and serial block face-SEM. The flexibility to use diverse imaging technologies available at most academic institutions makes this workflow useful and applicable for most life science samples. Volumetric analysis of the biopsies studied here revealed morphological, organizational and ultrastructural aspects of the tumor cells and surrounding environment that cannot be revealed by conventional 2D EM imaging. Our results indicate that although 2D EM is still an important tool in many areas of diagnostic pathology, 3D images of ultrastructural relationships between both normal and cancerous cells, in combination with their extracellular matrix, enables cancer researchers and pathologists to better understand the progression of the disease and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jessica L Riesterer
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States.
| | - Claudia S López
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States; Pacific Northwest Center for CryoEM, Oregon Health and Sciences University, Portland, OR, United States.
| | - Erin S Stempinski
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States
| | - Melissa Williams
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States
| | - Kevin Loftis
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Kevin Stoltz
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Guillaume Thibault
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Christian Lanicault
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, United States
| | - Todd Williams
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, United States
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States.
| |
Collapse
|
5
|
Abstract
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
Collapse
|
6
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
7
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition. Front Physiol 2017; 8:56. [PMID: 28228731 PMCID: PMC5296359 DOI: 10.3389/fphys.2017.00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial-mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial-mesenchymal transition. Outflow tract banding enhances the endothelial-mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial-mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Claudia S López
- Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA; Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science UniversityPortland, OR, USA
| | - Larry David
- Proteomics Core, Oregon Health and Science University Portland, OR, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|