1
|
Porter KJ, Cao L, Osteryoung KW. Dynamics of the Synechococcus elongatus cytoskeletal GTPase FtsZ yields mechanistic and evolutionary insight into cyanobacterial and chloroplast FtsZs. J Biol Chem 2023; 299:102917. [PMID: 36657643 PMCID: PMC9975276 DOI: 10.1016/j.jbc.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The division of cyanobacteria and their chloroplast descendants is orchestrated by filamenting temperature-sensitive Z (FtsZ), a cytoskeletal GTPase that polymerizes into protofilaments that form a "Z ring" at the division site. The Z ring has both a scaffolding function for division-complex assembly and a GTPase-dependent contractile function that drives cell or organelle constriction. A single FtsZ performs these functions in bacteria, whereas in chloroplasts, they are performed by two copolymerizing FtsZs, called AtFtsZ2 and AtFtsZ1 in Arabidopsis thaliana, which promote protofilament stability and dynamics, respectively. To probe the differences between cyanobacterial and chloroplast FtsZs, we used light scattering to characterize the in vitro protofilament dynamics of FtsZ from the cyanobacterium Synechococcus elongatus PCC 7942 (SeFtsZ) and investigate how coassembly of AtFtsZ2 or AtFtsZ1 with SeFtsZ influences overall dynamics. SeFtsZ protofilaments assembled rapidly and began disassembling before GTP depletion, whereas AtFtsZ2 protofilaments were far more stable, persisting beyond GTP depletion. Coassembled SeFtsZ-AtFtsZ2 protofilaments began disassembling before GTP depletion, similar to SeFtsZ. In contrast, AtFtsZ1 did not alter disassembly onset when coassembled with SeFtsZ, but fluorescence recovery after photobleaching analysis showed it increased the turnover of SeFtsZ subunits from SeFtsZ-AtFtsZ1 protofilaments, mirroring its effect upon coassembly with AtFtsZ2. Comparisons of our findings with previous work revealed consistent differences between cyanobacterial and chloroplast FtsZ dynamics and suggest that the scaffolding and dynamics-promoting functions were partially separated during evolution of two chloroplast FtsZs from their cyanobacterial predecessor. They also suggest that chloroplasts may have evolved a mechanism distinct from that in cyanobacteria for promoting FtsZ protofilament dynamics.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
2
|
Liu X, An J, Wang L, Sun Q, An C, Wu B, Hong C, Wang X, Dong S, Guo J, Feng Y, Gao H. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. THE PLANT CELL 2022; 34:419-432. [PMID: 34755875 PMCID: PMC8773991 DOI: 10.1093/plcell/koab272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 06/11/2023]
Abstract
In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.
Collapse
Affiliation(s)
- Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chuanjing An
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bibo Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoya Wang
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhua Guo
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
3
|
Porter KJ, Cao L, Chen Y, TerBush AD, Chen C, Erickson HP, Osteryoung KW. The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability in vitro. J Biol Chem 2021; 296:100627. [PMID: 33812992 PMCID: PMC8142252 DOI: 10.1016/j.jbc.2021.100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell and chloroplast division are driven by a contractile “Z ring” composed of the tubulin-like cytoskeletal GTPase FtsZ. Unlike bacterial Z rings, which consist of a single FtsZ, the chloroplast Z ring in plants is composed of two FtsZ proteins, FtsZ1 and FtsZ2. Both are required for chloroplast division in vivo, but their biochemical relationship is poorly understood. We used GTPase assays, light scattering, transmission electron microscopy, and sedimentation assays to investigate the assembly behavior of purified Arabidopsis thaliana (At) FtsZ1 and AtFtsZ2 both individually and together. Both proteins exhibited GTPase activity. AtFtsZ2 assembled relatively quickly, forming protofilament bundles that were exceptionally stable, as indicated by their sustained assembly and slow disassembly. AtFtsZ1 did not form detectable protofilaments on its own. When mixed with AtFtsZ2, AtFtsZ1 reduced the extent and rate of AtFtsZ2 assembly, consistent with its previously demonstrated ability to promote protofilament subunit turnover in living cells. Mixing the two FtsZ proteins did not increase the overall GTPase activity, indicating that the effect of AtFtsZ1 on AtFtsZ2 assembly was not due to a stimulation of GTPase activity. However, the GTPase activity of AtFtsZ1 was required to reduce AtFtsZ2 assembly. Truncated forms of AtFtsZ1 and AtFtsZ2 consisting of only their conserved core regions largely recapitulated the behaviors of the full-length proteins. Our in vitro findings provide evidence that FtsZ1 counterbalances the stability of FtsZ2 filaments in the regulation of chloroplast Z-ring dynamics and suggest that restraining FtsZ2 self-assembly is a critical function of FtsZ1 in chloroplasts.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yaodong Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allan D TerBush
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Harold P Erickson
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
4
|
Asgharzadeh P, Birkhold AI, Trivedi Z, Özdemir B, Reski R, Röhrle O. A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Comput Struct Biotechnol J 2020; 18:2774-2788. [PMID: 33101614 PMCID: PMC7559262 DOI: 10.1016/j.csbj.2020.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their mechanical functionality by investigating their structures. Here, we present a data-driven approach employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico mechanical experiments and machine learning to investigate this relationship. Our designed image processing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour of cytoskeletal networks and the developed gradient boosting surrogate models linking network structure to its functionality. In this study, for the first time, we perform mechanical simulations of Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens. Training on synthetically produced simulation data enables predicting the mechanical characteristics of FtsZ network purely based on its structural features (R2⩾0.93), therefore allowing to extract structural principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling failure in case of large network deformation.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Zubin Trivedi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
5
|
Özdemir B, Asgharzadeh P, Birkhold AI, Mueller SJ, Röhrle O, Reski R. Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Sci Rep 2018; 8:11165. [PMID: 30042487 PMCID: PMC6057934 DOI: 10.1038/s41598-018-29284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Although the concept of the cytoskeleton as a cell-shape-determining scaffold is well established, it remains enigmatic how eukaryotic organelles adopt and maintain a specific morphology. The Filamentous Temperature Sensitive Z (FtsZ) protein family, an ancient tubulin, generates complex polymer networks, with striking similarity to the cytoskeleton, in the chloroplasts of the moss Physcomitrella patens. Certain members of this protein family are essential for structural integrity and shaping of chloroplasts, while others are not, illustrating the functional diversity within the FtsZ protein family. Here, we apply a combination of confocal laser scanning microscopy and a self-developed semi-automatic computational image analysis method for the quantitative characterisation and comparison of network morphologies and connectivity features for two selected, functionally dissimilar FtsZ isoforms, FtsZ1-2 and FtsZ2-1. We show that FtsZ1-2 and FtsZ2-1 networks are significantly different for 8 out of 25 structural descriptors. Therefore, our results demonstrate that different FtsZ isoforms are capable of generating polymer networks with distinctive morphological and connectivity features which might be linked to the functional differences between the two isoforms. To our knowledge, this is the first study to employ computational algorithms in the quantitative comparison of different classes of protein networks in living cells.
Collapse
Affiliation(s)
- Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Pouyan Asgharzadeh
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Annette I Birkhold
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Stefanie J Mueller
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany.
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- BIOSS - Centre for Biological Signalling Research, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
6
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
7
|
Irieda H, Shiomi D. Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors. Int J Mol Sci 2018; 19:ijms19020544. [PMID: 29439474 PMCID: PMC5855766 DOI: 10.3390/ijms19020544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022] Open
Abstract
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery—an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan.
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
8
|
ARC6-mediated Z ring-like structure formation of prokaryote-descended chloroplast FtsZ in Escherichia coli. Sci Rep 2017; 7:3492. [PMID: 28615720 PMCID: PMC5471200 DOI: 10.1038/s41598-017-03698-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/04/2022] Open
Abstract
Plant chloroplasts proliferate through binary fission, and the stromal-side molecules that are involved in chloroplast division are bacterial derivatives. As in bacteria, the prokaryotic tubulin homolog FtsZ assembles into a ring-like structure (Z ring) at mid-chloroplast, and this process is followed by constriction. However, the properties of chloroplast FtsZs remain unclarified. Here, we employed Escherichia coli as a novel heterologous system for expressing chloroplast FtsZs and their regulatory components. Fluorescently labelled Arabidopsis FtsZ2 efficiently assembled into long filaments in E. coli cells, and artificial membrane tethering conferred FtsZ2 filaments with the ability to form Z ring-like structures resembling the bacterial Z ring. A negative regulator of chloroplast FtsZ assembly, ARC3, retained its inhibitory effects on FtsZ2 filamentation and Z ring-like structure formation in E. coli cells. Thus, we provide a novel heterologous system by using bacterial cells to study the regulation of the chloroplast divisome. Furthermore, we demonstrated that the FtsZ2-interacting protein ARC6, which is a potential candidate for Z ring tethering to the chloroplast inner envelope membrane, genuinely targeted FtsZ2 to the membrane components and supported its morphological shift from linear filaments to Z ring-like structures in a manner dependent on the C-terminal ARC6-interacting domain of FtsZ2.
Collapse
|
9
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|