1
|
Falconi-Sobrinho LL, Fonseca-Rodrigues D, da Silva ML, Coimbra NC, Pinto-Ribeiro F. Neuroanatomical and neurochemical substrates mediating fear-induced antinociception: A systematic review of rodent preclinical studies. Neurosci Biobehav Rev 2025; 168:105959. [PMID: 39613200 DOI: 10.1016/j.neubiorev.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fear-induced antinociception (FIA), an instinctive defensive response producing pain suppression in stressful and/or dangerous situations, has been the subject of extensive research to elucidate the mechanisms involved in triggering and controlling pain during emotional disorders. In this systematic review, we synthesized pre-clinical studies that demonstrated the neural hodology and the neurochemical bases of FIA in laboratory animals. The literature search in PubMed, Web of Science, Science Direct, and Scopus, from inception up to July 2022, retrieved 797 articles from which 50 studies were included in this review. This review highlights key encephalic regions implicated in the modulation of FIA, such as the prefrontal cortex, the amygdaloid complex, the hippocampus, the hypothalamus, the corpora quadrigemina, the periaqueductal gray matter, and some reticular formation nuclei. FIA-related neural pathways, neurotransmitters and neuromodulators such as glutamatergic, serotonergic, norepinephrine, GABAergic, nitrergic, opioidergic and endocannabinoid connections across these encephalic regions were also addressed. Understanding these neural circuits and molecular neural mediation sheds light on the complex interplay between fear, anxiety, and pain modulation, offering potential avenues for therapeutic interventions targeting pain management in the context of heightened emotional states.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal
| | - Marcelo Lourenço da Silva
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
de Freitas RL, Acunha RM, Bendaña-Córdoba FR, Medeiros P, Melo-Thomas L, Coimbra NC. Nitric oxide-signalling affects panic-like defensive behaviour and defensive antinociception neuromodulation in the prelimbic cerebral cortex. Brain Res 2024; 1844:149134. [PMID: 39097217 DOI: 10.1016/j.brainres.2024.149134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic. OBJECTIVES To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception. METHODS Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline. The exploratory behaviours, defensive reactions and defensive antinociception were recorded. Encephalic c-Fos protein was immunolabelled after escape behaviour. RESULTS NPLA (an inhibition of nNOs) decreased panic-like responses and innate fear-induced antinociception. The c-PTIO (a membrane-impermeable NO scavenger) decreased the escape behaviour. PrL cortex pre-treatment with c-PTIO at all doses decreased defensive antinociception. c-Fos protein was labelled in neocortical areas, limbic system, and mesencephalic structures. CONCLUSION The NPLA and c-PTIO in the PrL/mPFC decreased the escape behaviour and defensive antinociception organised by medial hypothalamic nuclei. The oriented escape behaviour recruits neocortical areas, limbic system, and mesencephalic structures. These findings suggest that the organisation of defensive antinociception recruits NO-signalling mechanisms within the PrL cortex. Furthermore, the present findings also support the role of NO as a retrograde messenger in the PrL cortex during panic-like emotional reactions.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000 Minas Gerais (MG), Brazil.
| | - Renata Moreira Acunha
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando René Bendaña-Córdoba
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of General and Specialized Nursing, University of São Paulo at Ribeirão Preto College of Nursing (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Liana Melo-Thomas
- Marburg Centre for Mind, Brain, and Behaviour (MCMBB) of the Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
3
|
Calvo F, Dos Anjos-Garcia T, Paschoalin-Maurin T, Bazaglia-de-Sousa G, de Paula Rodrigues BM, Lobão-Soares B, Almada RC, Wotjak CT, Coimbra NC. Kappa-opioid receptor blockade in the inferior colliculus of prey threatened by pit vipers decreases anxiety and panic-like behaviour. Acta Neuropsychiatr 2024:1-13. [PMID: 39370934 DOI: 10.1017/neu.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour. The defensive immobility and escape elicited by IC activation is commonly related to panic-like emotional states. To investigate the role of κ-opioid receptor of the IC in the antiaversive effects of endogenous opioid receptor blockade in a dangerous situation, male Wistar rats were pretreated in the IC with the κ-opioid receptor-selective antagonist nor-binaltorphimine at different concentrations and submitted to the non-enriched polygonal arena for a snake panic test in the presence of a rattlesnake and, after 24 h, prey were resubmitted to the experimental context. The snakes elicited in prey a set of antipredatory behaviours, such as the anxiety-like responses of defensive attention and risk assessment, and the panic-like reactions of defensive immobility and either escape or active avoidance during the elaboration of unconditioned and conditioned fear-related responses. Pretreatment of the IC with microinjections of nor-binaltorphimine at higher concentrations significantly decreased the frequency and duration of both anxiety- and panic-attack-like behaviours. These findings suggest that κ-opioid receptor blockade in the IC causes anxiolytic- and panicolytic-like responses in threatening conditions, and that kappa-opioid receptor-selective antagonists can be a putative coadjutant treatment for panic syndrome treatment.
Collapse
Affiliation(s)
- Fabrício Calvo
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Department Physiological Sciences, Institute for Biomedical Sciences, Alfenas Federal University (ICB-UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Guilherme Bazaglia-de-Sousa
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno Lobão-Soares
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Munich, Germany
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Medeiros AC, Medeiros P, Pigatto GR, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: The role of prelimbic neocortex-hippocampal connections. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111039. [PMID: 38797491 DOI: 10.1016/j.pnpbp.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS BDA-labeled perikarya and terminal buttons were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. Animals submitted to CCI procedure showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the effect of CA1 treatment with CBD (60 nmol) on nociceptive, cognitive, and depressive behaviors. CONCLUSION CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.
Collapse
Affiliation(s)
- Ana Carolina Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
5
|
Uribe-Mariño A, Falconi-Sobrinho LL, Castiblanco-Urbina MA, Pigatto GR, Ullah F, da Silva JA, Coimbra NC. Alpha 1- and Beta-norepinephrinergic receptors of dorsomedial and ventromedial hypothalamic nuclei modulate panic attack-like defensive behaviour elicited by diencephalic GABAergic neurotransmission disinhibition. Pharmacol Biochem Behav 2024; 236:173710. [PMID: 38262489 DOI: 10.1016/j.pbb.2024.173710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or β-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and β-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and β-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and β-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and β-noradrenergic receptors in the MH, both α1- and β-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Maria Angélica Castiblanco-Urbina
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Farhad Ullah
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Department of Animal Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Eastern Medicine and Surgery, School of Medical and Health Sciences of the University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil..
| |
Collapse
|
6
|
Moura-Pacheco TL, Martins-Pereira RC, Medeiros P, Sbragia L, Ramos Andrade Leite-Panissi C, Machado HR, Coimbra NC, de Freitas RL. Effect of electrical and chemical (activation versus inactivation) stimulation of the infralimbic division of the medial prefrontal cortex in rats with chronic neuropathic pain. Exp Brain Res 2023; 241:2591-2604. [PMID: 37725136 DOI: 10.1007/s00221-023-06657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/20/2023] [Indexed: 09/21/2023]
Abstract
Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 μA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.
Collapse
Affiliation(s)
- Thais Lohanny Moura-Pacheco
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renata Cristina Martins-Pereira
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Protection Laboratory in Childhood, Division of Neurosurgery, Department of Surgery and Anatomy, FMRP-USP, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Lourenço Sbragia
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Hélio Rubens Machado
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
7
|
Falconi-Sobrinho LL, Dos Anjos-Garcia T, Hernandes PM, Rodrigues BMDP, Almada RC, Coimbra NC. Unravelling the dorsal periaqueductal grey matter NMDA receptors relevance in the nitric oxide-mediated panic‑like behaviour and defensive antinociception organised by the anterior hypothalamus of male mice. Psychopharmacology (Berl) 2023; 240:319-335. [PMID: 36648509 DOI: 10.1007/s00213-023-06309-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
RATIONALE Previous studies suggested that the dorsal column of the periaqueductal grey matter (dPAG) can be a target of neural pathways from hypothalamic nuclei involved in triggering fear-related defensive responses. In turn, evidence is provided suggesting that microinjection of the nitric oxide (NO) donor SIN-1 into the anterior hypothalamus (AH) of mice evokes panic-like behaviours and fear-induced antinociception. However, it is unknown whether the dPAG of mice mediates these latter defensive responses organised by AH neurons. OBJECTIVES This study was designed to examine the role of dPAG in mediating SIN-1-evoked fear-induced defensive behavioural and antinociceptive responses organised in the AH of mice. METHODS First, neural tract tracing was performed to characterise the AH-dPAG pathways. Then, using neuropharmacological approaches, we evaluated the effects of dPAG pretreatment with either the non-selective synaptic blocker cobalt chloride (CoCl2; 1 mM/0.1 μL) or the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.1 nmol/0.1 μL) on defensive behaviours and antinociception induced by microinjections of SIN-1 in the AH of male C57BL/6 mice. RESULTS AlexaFluor488-conjugated dextran-labelled axonal fibres from AH neurons were identified in both dorsomedial and dorsolateral PAG columns. Furthermore, we showed that pre-treatment of the dPAG with either CoCl2 or LY235959 inhibited freezing and impaired oriented escape and antinociception induced by infusions of SIN-1 into the AH. CONCLUSIONS These findings suggest that the panic-like freezing and oriented escape defensive behaviours, and fear-induced antinociception elicited by intra-AH microinjections of SIN-1 depend on the activation of dPAG NMDA receptors.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Centre, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil.
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Biomedical Sciences Institute of the Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Paloma Molina Hernandes
- Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Carvalho Almada
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil
- Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Centre, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil.
| |
Collapse
|
8
|
Neostriatum neuronal TRPV 1-signalling mediates striatal anandamide at high concentration facilitatory influence on neostriato-nigral dishinhibitory GABAergic connections. Brain Res Bull 2023; 192:128-141. [PMID: 36414159 DOI: 10.1016/j.brainresbull.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.
Collapse
|
9
|
Medeiros P, Medeiros AC, Coimbra JPC, de Paiva Teixeira LEP, Salgado-Rohner CJ, da Silva JA, Coimbra NC, de Freitas RL. Physical, Emotional, and Social Pain During COVID-19 Pandemic-Related Social Isolation. TRENDS IN PSYCHOLOGY 2022. [PMCID: PMC8886700 DOI: 10.1007/s43076-022-00149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The socio-emotional condition during the COVID-19 pandemic subsidises the (re)modulation of interactive neural circuits underlying risk assessment behaviour at the physical, emotional, and social levels. Experiences of social isolation, exclusion, or affective loss are generally considered some of the most “painful” things that people endure. The threats of social disconnection are processed by some of the same neural structures that process basic threats to survival. The lack of social connection can be “painful” due to an overlap in the neural circuitry responsible for both physical and emotional pain related to feelings of social rejection. Indeed, many of us go to great lengths to avoid situations that may engender these experiences. Accordingly, this work focuses on pandemic times; the somatisation mentioned above seeks the interconnection and/or interdependence between neural systems related to emotional and cognitive processes such that a person involved in an aversive social environment becomes aware of himself, others, and the threatening situation experienced and takes steps to avoid daily psychological and neuropsychiatric effects. Social distancing during isolation evokes the formation of social distress, increasing the intensity of learned fear that people acquire, consequently enhancing emotional and social pain.
Collapse
Affiliation(s)
- Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Jade Pisssamiglio Cysne Coimbra
- Pontificial Catholic University of Campinas (PUC-Campinas), Prof Dr Euryclides de Jesus Zerbini Str., 1516, Parque Rural Fazenda Santa Cândida, Campinas, São Paulo, 13087-571 Brazil
| | | | - Carlos José Salgado-Rohner
- NeuroSmart Lab, International School of Economics and Administrative Sciences, Universidad de La Sabana, Chia, Colombia
| | - José Aparecido da Silva
- Laboratory of Psychophysics, Perception, Psychometrics, and Pain, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), São Paulo, Ribeirão Preto 14049-901 Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
- Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva Str., 700, Alfenas, Minas Gerais 37130-000 Brazil
| |
Collapse
|
10
|
Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021; 13:pharmaceutics13111823. [PMID: 34834237 PMCID: PMC8625816 DOI: 10.3390/pharmaceutics13111823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors. Recent research has shown that major phytocannabinoids and their derivatives also interact with non-cannabinoid receptors such as vanilloid receptor 1, transient receptor ankyrin 1 potential, peroxisome proliferator-activated receptor-gamma or glitazone receptor, G55 protein-coupled receptor, and nuclear receptor, producing pharmacological effects in diseases such as Alzheimer's, epilepsy, depression, neuropathic pain, cancer, and diabetes. Nonetheless, further studies are needed to elucidate the precise mechanisms of these compounds. Structure modulation of phytocannabinoids, in order to improve pharmacological effects, should not be limited to the exploration of cannabinoid receptors, and it should target other courses of action discovered through recent research.
Collapse
|
11
|
Malvestio RB, Medeiros P, Negrini-Ferrari SE, Oliveira-Silva M, Medeiros AC, Padovan CM, Luongo L, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT 1A and CB 1 receptors. Brain Res Bull 2021; 174:323-338. [PMID: 34192579 DOI: 10.1016/j.brainresbull.2021.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.
Collapse
Affiliation(s)
- R B Malvestio
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - P Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - S E Negrini-Ferrari
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - M Oliveira-Silva
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - A C Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - C M Padovan
- Laboratory of Neurobiology of Stress and Depression, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - L Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - S Maione
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - N C Coimbra
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - R L de Freitas
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Biomedical Sciences Institute (ICB), Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Chen J, Hasanein P, Komaki A, Yari S. Effects of GABAA receptors in nucleus cuneiformis on the cannabinoid antinociception using the formalin test. Psychopharmacology (Berl) 2021; 238:1657-1669. [PMID: 33715044 DOI: 10.1007/s00213-021-05800-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Nucleus cuneiformis (NC), a reticular nucleus of the midbrain, is a part of the descending pain modulatory system and therefore has an important role in pain perception. OBJECTIVES Considering the abundance of GABAA and cannabinoid receptors in the NC and also the bidirectional roles for GABA in controlling nociception, the present study examined the effects of bilateral intra-NC microinjection of different doses of the GABAA receptor agonist, muscimol, and the GABAA receptor antagonist, bicuculline, on pain modulation using formalin test. We also assessed interaction between canabinergic and GABAergic systems in the NC during this test. METHODS Rats were exposed to intra-NC microinjection of bicuculline (50,100, and 200 ng/side) or muscimol (60, 120, and 240 ng/side) and then subjected to the formalin test. In another set of experiments, the effects of muscimol (60 ng/side) or bicuculline (50 ng/side) administration 5 min before a cannabinoid receptor agonist WIN 55,212-2 (5, 10, and 20 μg/side) microinjection into NC on the formalin test were evaluated. RESULTS Microinjection of bicuculline and muscimol into the NC decreased and increased pain responses, respectively, in a dose-dependent manner during both phases of the test. Microinjection of WIN 55,212-2 into the NC significantly reduced pain responses in a dose-dependent manner. Microinjection of bicuculline or muscimol in combination with WIN 55,212-2 into the NC respectively potentiated and attenuated WIN 55,212-2-induced antinociception in the formalin test. CONCLUSIONS This study shows that GABA in the NC is involved in pain modulation and suggests the existence of a GABAA-mediated inhibitory system in the NC on pain control. Furthermore, it seems that the antinociceptive effect of WIN 55,212-2 in the formalin test is mediated partly by the activity of local GABAA receptors in the NC.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Parisa Hasanein
- Department of Biology, School of Basic Sciences, University of Zabol, Po. Box: 98615-538, Zabol, 9861335856, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Yari
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
13
|
Medeiros P, Dos Santos IR, Júnior IM, Palazzo E, da Silva JA, Machado HR, Ferreira SH, Maione S, Coimbra NC, de Freitas RL. An Adapted Chronic Constriction Injury of the Sciatic Nerve Produces Sensory, Affective, and Cognitive Impairments: A Peripheral Mononeuropathy Model for the Study of Comorbid Neuropsychiatric Disorders Associated with Neuropathic Pain in Rats. PAIN MEDICINE 2021; 22:338-351. [PMID: 32875331 DOI: 10.1093/pm/pnaa206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic constriction injury (CCI) is a model of neuropathic pain induced by four loose ligatures around the sciatic nerve. This work aimed to investigate the sensory, affective, cognitive, and motor changes induced by an adaptation of the CCI model by applying a single ligature around the sciatic nerve. METHODS Mechanical allodynia was measured from day 1 to day 28 postsurgery by the von Frey test. The beam walking test (BWT) was conducted weekly until 28 days after surgery. Anxiety- and depression-like behaviors, and cognitive performance were assessed through the open field (OF), forced swimming (FS), and novel object recognition (NOR) tests, respectively, 21 days after surgery. RESULTS The two CCI models, both Bennett and Xie's model (four ligatures of the sciatic nerve) and a modification of it (one ligature), induced mechanical allodynia, increased immobility in the FS, and reduced recognition index in the NOR. The exploratory behavior and time spent in the central part of the arena decreased, while the defensive behavior increased in the OF. The animals subjected to the two CCI models showed motor alterations in the BWT; however, autotomy was observed only in the group with four ligatures and not in the group with a single ligature. CONCLUSIONS Overall these results demonstrate that our adapted CCI model, using a single ligature around the sciatic nerve, induces sensory, affective, cognitive, and motor alterations comparable to the CCI model with four ligatures without generating autotomy. This adaptation to the CCI model may therefore represent an appropriate and more easily performed model for inducing neuropathic pain and study underlying mechanisms and effective treatments.
Collapse
Affiliation(s)
- Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ieda Regina Dos Santos
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Ivair Matias Júnior
- Laboratory of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enza Palazzo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania "L. Vanvitelli," Naples, Italy
| | - José Aparecido da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Psychology Department, Federal University of Juiz de Fora (UFJF-MG), Juiz de Fora, Minas Gerais, Brazil
| | - Hélio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Henrique Ferreira
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, University of Campania "L. Vanvitelli," Naples, Italy.,IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
14
|
Szkudlarek HJ, Rodríguez-Ruiz M, Hudson R, De Felice M, Jung T, Rushlow WJ, Laviolette SR. THC and CBD produce divergent effects on perception and panic behaviours via distinct cortical molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110029. [PMID: 32623021 DOI: 10.1016/j.pnpbp.2020.110029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022]
Abstract
Clinical and pre-clinical evidence demonstrates divergent psychotropic effects of THC vs. CBD. While THC can induce perceptual distortions and anxiogenic effects, CBD displays antipsychotic and anxiolytic properties. A key brain region responsible for regulation of cognition and affect, the medial prefrontal cortex (PFC), is strongly modulated by cannabinoids, suggesting that these dissociable THC/CBD-dependent effects may involve functional and molecular interplay within the PFC. The primary aim of this study was to investigate potential interactions and molecular substrates involved in PFC-mediated effects of THC and CBD on differential cognitive and affective behavioural processing. Male Sprague Dawley rats received intra-PFC microinfusions of THC, CBD or their combination, and tested in the latent inhibition paradigm, spontaneous oddity discrimination test, elevated T-maze and open field. To identify local, drug-induced molecular modulation in the PFC, PFC samples were collected and processed with Western Blotting. Intra-PFC THC induced strong panic-like responses that were counteracted with CBD. In contrast, CBD did not affect panic-like behaviours but blocked formation of associative fear memories and impaired latent inhibition and oddity discrimination performance. Interestingly, these CBD effects were dependent upon 5-HT1A receptor transmission but not influenced by THC co-administration. Moreover, THC induced robust phosphorylation of ERK1/2 that was prevented by CBD, while CBD decreased phosphorylation of p70S6K, independently of THC. These results suggest that intra-PFC infusion of THC promotes panic-like behaviour associated with increased ERK1/2 phosphorylation. In contrast, CBD impairs perceptive functions and latent inhibition via activation of 5-HT1A receptors and reduced phosphorylation of p70S6K.
Collapse
Affiliation(s)
- Hanna J Szkudlarek
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Roger Hudson
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Marta De Felice
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Tony Jung
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Steven R Laviolette
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
15
|
Mendes-Gomes J, Paschoalin-Maurin T, Donaldson LF, Lumb BM, Blanchard DC, Coimbra NC. Repeated exposure of naïve and peripheral nerve-injured mice to a snake as an experimental model of post-traumatic stress disorder and its co-morbidity with neuropathic pain. Brain Res 2020; 1744:146907. [PMID: 32474017 DOI: 10.1016/j.brainres.2020.146907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Confrontation of rodents by natural predators provides a number of advantages as a model for traumatic or stressful experience. Using this approach, one of the aims of this study was to investigate a model for the study of post-traumatic stress disorder (PTSD)-related behaviour in mice. Moreover, because PTSD can facilitate the establishment of chronic pain (CP), and in the same way, patients with CP have an increased tendency to develop PTSD when exposed to a traumatic event, our second aim was to analyse whether this comorbidity can be verified in the new paradigm. C57BL/6 male mice underwent chronic constriction injury of the sciatic nerve (CCI), a model of neuropathic CP, or not (sham groups) and were submitted to different threatening situations. Threatened mice exhibited enhanced defensive behaviours, as well as significantly enhanced risk assessment and escape behaviours during context reexposure. Previous snake exposure reduced open-arm time in the elevated plus-maze test, suggesting an increase in anxiety levels. Sham mice showed fear-induced antinociception immediately after a second exposure to the snake, but 1 week later, they exhibited allodynia, suggesting that multiple exposures to the snake led to increased nociceptive responses. Moreover, after reexposure to the aversive environment, allodynia was maintained. CCI alone produced intense allodynia, which was unaltered by exposure to either the snake stimuli or reexposure to the experimental context. Together, these results specifically parallel the behavioural symptoms of PTSD, suggesting that the snake/exuvia/reexposure procedure may constitute a useful animal model to study PTSD.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Dracena Medical School (UNIFADRA-FUNDEC), Rua Bahia, 332, Dracena, 17900-000 São Paulo, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil
| | - Lucy F Donaldson
- Arthritis Research UK Pain Centre and School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - D Caroline Blanchard
- Pacific Biosciences Research Centre, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; University of São Paulo Neurobiology of Emotions Research Centre (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil.
| |
Collapse
|
16
|
Corcoran L, Mattimoe D, Roche M, Finn DP. Attenuation of fear-conditioned analgesia in rats by monoacylglycerol lipase inhibition in the anterior cingulate cortex: Potential role for CB 2 receptors. Br J Pharmacol 2020; 177:2240-2255. [PMID: 31967664 PMCID: PMC7174879 DOI: 10.1111/bph.14976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Improved understanding of brain mechanisms regulating endogenous analgesia is important from a fundamental physiological perspective and for identification of novel therapeutic strategies for pain. The endocannabinoid system plays a key role in stress-induced analgesia, including fear-conditioned analgesia (FCA), a potent form of endogenous analgesia. Here, we studied the role of the endocannabinoid 2-arachidonoyl glycerol (2-AG) within the anterior cingulate cortex (ACC; a brain region implicated in the affective component of pain) in FCA in rats. EXPERIMENTAL APPROACH FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-ACC administration of MJN110 (inhibitor of monoacylglycerol lipase [MGL], the primary enzyme catabolizing 2-AG), AM630 (CB2 receptor antagonist), AM251 (CB1 receptor antagonist) or MJN110 + AM630 on FCA were assessed. KEY RESULTS MJN110 attenuated FCA when microinjected into the ACC, an effect associated with increased levels of 2-AG in the ACC. This effect of MJN110 on FCA was unaltered by co-administration of AM251 but was blocked by AM630, which alone reduced nociceptive behaviour in non-fear-conditioned rats. RT-qPCR confirmed that mRNA encoding CB1 and CB2 receptors was detectable in the ACC of formalin-injected rats and unchanged in those expressing FCA. CONCLUSION AND IMPLICATIONS These results suggest that an MGL substrate in the ACC, likely 2-AG, modulates FCA and that within the ACC, 2-AG-CB2 receptor signalling may suppress this form of endogenous analgesia. These results may facilitate increased understanding and improved treatment of pain- and fear-related disorders and their co-morbidity.
Collapse
Affiliation(s)
- Louise Corcoran
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - Darragh Mattimoe
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - Michelle Roche
- Physiology, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - David P. Finn
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
17
|
Tamaddonfard E, Erfanparast A, Salighedar R, Tamaddonfard S. Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:371-379. [PMID: 31641818 DOI: 10.1007/s00210-019-01735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Supraspinal mechanisms of non-steroidal anti-inflammatory drug (NSAID)-induced antinociception are not well understood. In the present study, the possible antinociceptive mechanisms induced by intra-medial prefrontal cortex (intra-mPFC) microinjection of diclofenac were investigated after blockade of GPR55, cannabinoid CB1, and mu-opioid receptors in this area and ventrolateral periaqueductal gray (vlPAG). For drug delivery, unilateral (left side) of mPFC and bilateral (right and left sides) of vlPAG were surgically cannulated. Formalin test was induced by subcutaneous injection of a diluted formalin solution into the right vibrissa pad. A typical biphasic (neurogenic and inflammatory phases) pain behavior was produced following formalin injection. Microinjection of diclofenac (2.5, 5, and 10 μg/0.25 μL) into the mPFC suppressed both phases of pain. Intra-mPFC microinjection of naloxonazine (a mu-opioid receptor antagonist, 1 μg/0.25 μL) and AM251 (a cannabinoid CB1 receptor antagonist, 1 μg/0.25 μL) increased both phases of pain intensity. In addition, intra-mPFC-microinjected diclofenac-induced antinociception was inhibited by prior intra-mPFC and intra-vlPAG administration of naloxonazine and AM251. On the other hand, intra-mPFC and intra-vlPAG microinjection of AM251 (0.25 μg/0.25 μL) decreased pain severity which was inhibited by prior administration of ML193. The above-mentioned drugs did not alter locomotor activity. In conclusion, diclofenac suppressed both the neurogenic and inflammatory phases of formalin-induced orofacial pain at the level of mPFC. GPR55, cannabinoid CB1, and mu-opioid receptors of the mPFC and vlPAG might be involved in the mPFC analgesic effects of diclofenac.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Erfanparast
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Reza Salighedar
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sina Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
18
|
Medeiros P, de Freitas RL, Boccella S, Iannotta M, Belardo C, Mazzitelli M, Romano R, De Gregorio D, Coimbra NC, Palazzo E, Maione S. Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice. J Neurosci Res 2019; 98:338-352. [PMID: 31396990 DOI: 10.1002/jnr.24501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The chronic constriction injury (CCI) of the sciatic nerve is a nerve injury-based model of neuropathic pain (NP). Comorbidities of NP such as depression, anxiety, and cognitive deficits are associated with a functional reorganization of the medial prefrontal cortex (mPFC). Here, we have employed an adapted model of CCI by placing one single loose ligature around the sciatic nerve in mice for investigating the alterations in sensory, motor, affective, and cognitive behavior and in electrophysiological and biochemical properties in the prelimbic division (PrL) of the mPFC. Our adapted model of CCI induced mechanical allodynia, motor, and cognitive impairments and anxiety- and depression-like behavior. In the PrL division of mPFC was observed an increase in GABA and a decrease in d-aspartate levels. Moreover an increase in the activity of neurons responding to mechanical stimulation with an excitation, mPFC (+), and a decrease in those responding with an inhibition, mPFC (-), was found. Altogether these findings demonstrate that a single ligature around the sciatic nerve was able to induce sensory, affective, cognitive, biochemical, and functional alterations already observed in other neuropathic pain models and it may be an appropriate and easily reproducible model for studying neuropathic pain mechanisms and treatments.
Collapse
Affiliation(s)
- Priscila Medeiros
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.,Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Renato Leonardo de Freitas
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.,Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL), Alfenas (MG), Brazil
| | - Serena Boccella
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Monica Iannotta
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Carmela Belardo
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Mariacristina Mazzitelli
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Rosaria Romano
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Enza Palazzo
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
19
|
N-methyl-d-aspartate Receptors in the Prelimbic Cortex are Critical for the Maintenance of Neuropathic Pain. Neurochem Res 2019; 44:2068-2080. [DOI: 10.1007/s11064-019-02843-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022]
|
20
|
Li MM, Zhou P, Chen XD, Xu HS, Wang J, Chen L, Zhang N, Liu N. NO in the dPAG modulates panic-like responses and ASIC1a expression in the prefrontal cortex and hippocampus in mice. Biochem Biophys Res Commun 2019; 511:274-279. [PMID: 30770101 DOI: 10.1016/j.bbrc.2019.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/04/2019] [Indexed: 01/20/2023]
Abstract
Panic disorder (PD) is a multifactorial neuropsychiatric disorder. Our previous study has demonstrated that the nitric oxide (NO) pathway and the acid-sensing ion channel 1a (ASIC1a) level in the dorsal midbrain periaqueductal gray (dPAG) are involved in the modulation of panic-like responses. In addition, the prefrontal cortex (PFC) and the hippocampus also play a role in panic-like responses. However, no studies have investigated the protein level of ASIC1a in the PFC and hippocampus in a mouse model of panic-like disorders after alteration of the NO pathway in the dPAG. We investigated the production of a panic attack with intra-dPAG injections of SNAP, an NO donor, and 7-NI, an nNOS inhibitor. Moreover, we measured ASIC1a protein levels in the PFC and hippocampus. The rat exposure test (RET) is frequently used as an animal model of panic. In our study, C57BL/6 mice received an intra-dPAG injection of SNAP or 7-NI before RET; neurobehavioral tests were then conducted, followed by mechanistic evaluation through western blot analysis in the PFC and hippocampus. An intra-dPAG infusion of SNAP significantly increased the panic-like effect, whereas treatment with 7-NI decreased fear behavior. Mice treated with SNAP/7-NI showed significantly increased/decreased ASIC1a expression in the PFC, and a decreasing/increasing trend in the hippocampus. The present study suggests that the NO pathway in the dPAG plays a key role in panic-like responses in mice confronted by a rat, further, NO intra-dPAG injection also modulates the ASIC1a expression levels in the PFC and hippocampus.
Collapse
Affiliation(s)
- Meng-Meng Li
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Ping Zhou
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Huai-Sha Xu
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Jun Wang
- Department of Toxicology, The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| |
Collapse
|
21
|
Blockade of synaptic activity in the neostriatum and activation of striatal efferent pathways produce opposite effects on panic attack-like defensive behaviours evoked by GABAergic disinhibition in the deep layers of the superior colliculus. Physiol Behav 2018; 196:104-111. [DOI: 10.1016/j.physbeh.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
|
22
|
Rea K, McGowan F, Corcoran L, Roche M, Finn DP. The prefrontal cortical endocannabinoid system modulates fear-pain interactions in a subregion-specific manner. Br J Pharmacol 2018; 176:1492-1505. [PMID: 29847859 DOI: 10.1111/bph.14376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The emotional processing and coordination of top-down responses to noxious and conditioned aversive stimuli involves the medial prefrontal cortex (mPFC). Evidence suggests that subregions of the mPFC [infralimbic (IfL), prelimbic (PrL) and anterior cingulate (ACC) cortices] differentially alter the expression of contextually induced fear and nociceptive behaviour. We investigated the role of the endocannabinoid system in the IfL, PrL and ACC in formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA) and conditioned fear in the presence of nociceptive tone. EXPERIMENTAL APPROACH FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-mPFC administration of AM251 [cannabinoid type 1 (CB1 ) receptor antagonist/inverse agonist], URB597 [fatty acid amide hydrolase (FAAH) inhibitor] or URB597 + AM251 on FCA and freezing behaviour were assessed. KEY RESULTS AM251 attenuated FCA when injected into the IfL or PrL and reduced contextually induced freezing behaviour when injected intra-IfL but not intra-PrL or intra-ACC. Intra-ACC administration of AM251 alone or in combination with URB597 had no effect on FCA or freezing. URB597 attenuated FCA and freezing behaviour when injected intra-IfL, prolonged the expression of FCA when injected intra-PrL and had no effect on these behaviours when injected intra-ACC. CONCLUSIONS AND IMPLICATIONS These results suggest important and differing roles for FAAH substrates or CB1 receptors in the PrL, IfL and ACC in the expression of FCA and conditioned fear in the presence of nociceptive tone. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Louise Corcoran
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
23
|
Transgenic autoinhibition of p21-activated kinase exacerbates synaptic impairments and fronto-dependent behavioral deficits in an animal model of Alzheimer's disease. Aging (Albany NY) 2018; 9:1386-1403. [PMID: 28522792 PMCID: PMC5472739 DOI: 10.18632/aging.101239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022]
Abstract
Defects in p21-activated kinase (PAK) lead to dendritic spine abnormalities and are sufficient to cause cognition impairment. The decrease in PAK in the brain of Alzheimer's disease (AD) patients is suspected to underlie synaptic and dendritic disturbances associated with its clinical expression, particularly with symptoms related to frontal cortex dysfunction. To investigate the role of PAK combined with Aβ and tau pathologies (3xTg-AD mice) in the frontal cortex, we generated a transgenic model of AD with a deficit in PAK activity (3xTg-AD-dnPAK mice). PAK inactivation had no effect on Aβ40 and Aβ42 levels, but increased the phosphorylation ratio of tau in detergent-insoluble protein fractions in the frontal cortex of 18-month-old heterozygous 3xTg-AD mice. Morphometric analyses of layer II/III pyramidal neurons in the frontal cortex showed that 3xTg-AD-dnPAK neurons exhibited significant dendritic attrition, lower spine density and longer spines compared to NonTg and 3xTg-AD mice. Finally, behavioral assessments revealed that 3xTg-AD-dnPAK mice exhibited pronounced anxious traits and disturbances in social behaviors, reminiscent of fronto-dependent symptoms observed in AD. Our results substantiate a critical role for PAK in the genesis of neuronal abnormalities in the frontal cortex underlying the emergence of psychiatric-like symptoms in AD.
Collapse
|
24
|
Abstract
Chronic pain is frequently associated with anxiety, depression, and cognitive dysfunction. This review discusses recent work in rodents that contributes to the understanding of their neurobiological links. Brain regions that contain circuits that mediate persistent changes in behavior that are caused by nerve injury or joint inflammation include the rostral anterior cingulate and other parts of the medial prefrontal cortex, the basolateral and central nucleus of the amygdala, and the nucleus accumbens. Functional changes, including increases in the activity within specific neuronal pathways and in the levels of specific synaptic components, that are associated with the behavior changes, or are in some cases necessary for them, have recently been identified. Broadly projecting modulatory systems and widely expressed factors such as cytokines and growth factors also contribute to pain-associated behavior. Integrating these observations and determining their causal relationships is now critical for the identification of therapeutic targets and the design of appropriate interventions.
Collapse
Affiliation(s)
- Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Eugene L Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
25
|
Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27:1120-1131. [PMID: 28939165 DOI: 10.1016/j.euroneuro.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022]
Abstract
Acute γ-aminobutyric acid (GABA) disinhibition in the posterior hypothalamus (PH) elicits defensive reactions that are considered anxiety- and panic attack-like behaviour, and these defensive reactions are followed by antinociception. Evidence indicates that the PH connects with the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), which seems to regulate these unconditioned fear-induced defensive responses. However, few studies have shown the participation of cortical regions in the control of behavioural and antinociceptive responses organised by diencephalic structures. It has been suggested that the glutamatergic system can mediate this cortical influence, as excitatory imbalance is believed to play a role in both defensive mechanisms. Thus, the aim of the present study was to investigate the involvement of ACC glutamatergic connections via blockade of local N-methyl-D-aspartate (NMDA) receptors to elaborate panic-like defensive behaviours and unconditioned fear-induced antinociception organised by PH neurons. Wistar rats were treated with microinjections of 0.9% NaCl or LY235959 (a selective NMDA receptor antagonist) in the ACC at different concentrations (2, 4 and 8 nmol/0.2μL), followed by GABAA receptor blockade in the PH. Defensive reactions were analysed for 20min, and the nociceptive threshold was then measured at 10-min intervals for 60min. Pretreatment of the ACC with LY235959 reduced both panic-like defensive behaviour and fear-induced antinociception evoked by PH GABAergic disinhibition. Our findings suggest that ACC NMDA receptor-signalled glutamatergic inputs play a relevant role in the organisation of anxiety- and panic attack-like behaviours and in fear-induced antinociception.
Collapse
|
26
|
Wanner SP, Almeida MC, Shimansky YP, Oliveira DL, Eales JR, Coimbra CC, Romanovsky AA. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats. J Neurosci 2017; 37:6956-6971. [PMID: 28630253 PMCID: PMC5518423 DOI: 10.1523/jneurosci.0100-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking.SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest representation of cold-seeking behavior at the ventral border of the dorsomedial nucleus. We also built maps for cold-induced thermogenesis in unanesthetized rats and found the dorsal hypothalamic area to be its main representation site. Our work identifies the neural substrate of cold-seeking behavior in systemic inflammation and expands the functional topography of the DMH, a structure that modulates autonomic, endocrine, and behavioral responses and is a potential therapeutic target in anxiety and panic disorders.
Collapse
Affiliation(s)
- Samuel P Wanner
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - M Camila Almeida
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Yury P Shimansky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
- Kinesiology Program, Arizona State University, Phoenix, Arizona 85004, and
| | - Daniela L Oliveira
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Justin R Eales
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Cândido C Coimbra
- Endocrinology and Metabolism Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013,
| |
Collapse
|
27
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
28
|
Roncon CM, Yamashita PSDM, Frias AT, Audi EA, Graeff FG, Coimbra NC, Zangrossi H. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses. J Psychopharmacol 2017; 31:715-721. [PMID: 28583050 DOI: 10.1177/0269881117693747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.
Collapse
Affiliation(s)
- Camila Marroni Roncon
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Shimene de Melo Yamashita
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Alana Tercino Frias
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elisabeth Aparecida Audi
- 3 Laboratory of Psychopharmacology, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Frederico Guilherme Graeff
- 4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Ullah F, dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RLD, Khan AU, Oliveira RD, Coimbra NC. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319:135-147. [DOI: 10.1016/j.bbr.2016.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 01/20/2023]
|
30
|
CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus. Neuropharmacology 2017; 113:156-166. [DOI: 10.1016/j.neuropharm.2016.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
|
31
|
Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2016; 113:367-385. [PMID: 27717879 DOI: 10.1016/j.neuropharm.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022]
Abstract
The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.
Collapse
|
32
|
de Freitas RL, Medeiros P, Khan AU, Coimbra NC. µ1-Opioid receptors in the dorsomedial and ventrolateral columns of the periaqueductal grey matter are critical for the enhancement of post-ictal antinociception. Synapse 2016; 70:519-530. [DOI: 10.1002/syn.21926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Department of Surgery and Anatomy, Multiuser Centre of Neurophysiology; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Laboratory of Pain and Emotions, Department of Surgery and Anatomy; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Behavioural Neurosciences Institute; Av. do Café, 2450 Ribeirão Preto São Paulo 14050-220 Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Laboratory of Pain and Emotions, Department of Surgery and Anatomy; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
| | - Asmat Ullah Khan
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Department of Eastern Medicine and Surgery; School of Medical and Health Sciences of the University of Poonch Rawalakot, Azad Jammu and Kashmir; Pakistan
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Laboratory of Pain and Emotions, Department of Surgery and Anatomy; Ribeirão Preto Medical School of the University of São Paulo (USP); Av. Bandeirantes, 3900 Ribeirão Preto São Paulo 14049-900 Brazil
- Behavioural Neurosciences Institute; Av. do Café, 2450 Ribeirão Preto São Paulo 14050-220 Brazil
| |
Collapse
|
33
|
Biagioni AF, de Oliveira RC, de Oliveira R, da Silva JA, dos Anjos-Garcia T, Roncon CM, Corrado AP, Zangrossi H, Coimbra NC. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception. Eur Neuropsychopharmacol 2016; 26:532-45. [PMID: 26749090 DOI: 10.1016/j.euroneuro.2015.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Abstract
The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.
Collapse
Affiliation(s)
- Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Ricardo de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; Mato Grosso Federal University Medical School (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, 78550-000 Sinop, Mato Grosso, Brazil
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Tayllon dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Camila Marroni Roncon
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Alexandre Pinto Corrado
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Hélio Zangrossi
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
34
|
Ullah F, dos Anjos-Garcia T, dos Santos IR, Biagioni AF, Coimbra NC. Relevance of dorsomedial hypothalamus, dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal gray matter in the organization of freezing or oriented and non-oriented escape emotional behaviors. Behav Brain Res 2015. [DOI: 10.1016/j.bbr.2015.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bondarenko E, Beig MI, Hodgson DM, Braga VA, Nalivaiko E. Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am J Physiol Regul Integr Comp Physiol 2015; 308:R816-22. [DOI: 10.1152/ajpregu.00415.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) and the perifornical area (DMH/PeF) is one of the key regions of central autonomic processing. Previous studies have established that this region contains neurons that may be involved in respiratory processing; however, this has never been tested in conscious animals. The aim of our study was to investigate the involvement of the DMH/PeF area in mediating respiratory responses to stressors of various intensities and duration. Adult male Wistar rats ( n = 8) received microinjections of GABAA agonist muscimol or saline into the DMH/PeF bilaterally and were subjected to a respiratory recording using whole body plethysmography. Presentation of acoustic stimuli (500-ms white noise) evoked transient responses in respiratory rate, proportional to the stimulus intensity, ranging from +44 ± 27 to +329 ± 31 cycles/min (cpm). Blockade of the DMH/PeF almost completely abolished respiratory rate and tidal volume responses to the 40- to 70-dB stimuli and also significantly attenuated responses to the 80- to 90-dB stimuli. Also, it significantly attenuated respiratory rate during the acclimatization period (novel environment stress). The light stimulus (30-s 2,000 lux) as well as 15-min restraint stress significantly elevated respiratory rate from 95 ± 4.0 to 236 ± 29 cpm and from 117 ± 5.2 to 189 ± 13 cpm, respectively; this response was abolished after the DMH/PeF blockade. We conclude that integrity of the DMH/PeF area is essential for generation of respiratory responses to both stressful and alerting stimuli.
Collapse
Affiliation(s)
| | | | | | - Valdir A. Braga
- Biotechnology Centre, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | | |
Collapse
|
36
|
da Silva JA, Biagioni AF, Almada RC, de Souza Crippa JA, Cecílio Hallak JE, Zuardi AW, Coimbra NC. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon. Eur J Pharmacol 2015; 758:153-63. [PMID: 25841876 DOI: 10.1016/j.ejphar.2015.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 01/17/2023]
Abstract
Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.
Collapse
Affiliation(s)
- Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil
| | - Audrey Francisco Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Jaime Eduardo Cecílio Hallak
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Antônio Waldo Zuardi
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil; Neurobiology of Emotions Research Centre (NAP-USP-NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, São Paulo, Brazil.
| |
Collapse
|
37
|
µ- and κ-Opioid receptor activation in the dorsal periaqueductal grey matter differentially modulates panic-like behaviours induced by electrical and chemical stimulation of the inferior colliculus. Brain Res 2015; 1597:168-79. [DOI: 10.1016/j.brainres.2014.11.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 11/24/2022]
|
38
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus. Brain Behav Immun 2014; 40:226-34. [PMID: 24726835 PMCID: PMC4102625 DOI: 10.1016/j.bbi.2014.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/13/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (MΦRIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-α, IL-1β, TGF-1β, IL1-RA and neuropeptide Y (NPY) expression, and in vitro studies examined the effects of macrophage's RIP140 on astrocytes' NPY production. We found that RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of MΦRIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in MΦRIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of MΦRIPKD mice, and in vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of MΦRIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders.
Collapse
|
40
|
McLaughlin RJ, Hill MN, Gorzalka BB. A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev 2014; 42:116-31. [PMID: 24582908 DOI: 10.1016/j.neubiorev.2014.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) provides executive control of the brain in humans and rodents, coordinating cognitive, emotional, and behavioral responses to threatening stimuli and subsequent feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. The endocannabinoid system has emerged as a fundamental regulator of HPA axis feedback inhibition and an important modulator of emotional behavior. However, the precise role of endocannabinoid signaling within the PFC with respect to stress coping and emotionality has only recently been investigated. This review discusses the current state of knowledge regarding the localization and function of the endocannabinoid system in the PFC, its sensitivity to stress and its role in modulating the neuroendocrine and behavioral responses to aversive stimuli. We propose a model whereby steady-state endocannabinoid signaling in the medial PFC indirectly regulates the outflow of pyramidal neurons by fine-tuning GABAergic inhibition. Local activation of this population of CB1 receptors increases the downstream targets of medial PFC activation, which include inhibitory interneurons in the basolateral amygdala, inhibitory relay neurons in the bed nucleus of the stria terminalis and monoamine cell bodies such as the dorsal raphe nucleus. This ultimately produces beneficial effects on emotionality (active coping responses to stress and reduced anxiety) and assists in constraining activation of the HPA axis. Under conditions of chronic stress, or in individuals suffering from mood disorders, this system may be uniquely recruited to help maintain appropriate function in the face of adversity, while breakdown of the endocannabinoid system in the medial PFC may be, in and of itself, sufficient to produce neuropsychiatric illness. Thus, we suggest that endocannabinoid signaling in the medial PFC may represent an attractive target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
| | - Matthew N Hill
- Department of Cell Biology & Anatomy and Department of Psychiatry, Calgary, AB, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Twardowschy A, Castiblanco-Urbina MA, Uribe-Mariño A, Biagioni AF, Salgado-Rohner CJ, Crippa JADS, Coimbra NC. The role of 5-HT1A receptors in the anti-aversive effects of cannabidiol on panic attack-like behaviors evoked in the presence of the wild snake Epicrates cenchria crassus (Reptilia, Boidae). J Psychopharmacol 2013; 27:1149-59. [PMID: 23926240 DOI: 10.1177/0269881113493363] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors.
Collapse
Affiliation(s)
- André Twardowschy
- 1Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T, de Aguiar Corrêa FM, Coimbra NC. The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT₂A and 5-HT₂C serotonergic receptors in post-ictal antinociception. Synapse 2013; 68:16-30. [PMID: 23913301 DOI: 10.1002/syn.21697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/08/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
Abstract
The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil; Institute for Neuroscience and Behavior (INeC), Av. do Café, S/N, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | |
Collapse
|