1
|
Ding H, Yan S. Excitation of the abdominal ganglion affects the electrophysiological activity of indirect flight muscles of the honeybee Apis mellifera. INSECT SCIENCE 2024; 31:1187-1199. [PMID: 37907450 DOI: 10.1111/1744-7917.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Our understanding of the nervous tissues that affect the wing flapping of insects mainly focuses on the brain, but wing flapping is a rhythmic movement related to the central pattern generator in the ventral nerve cord. To verify whether the neural activity of the abdominal ganglion of the honeybee (Apis mellifera) affects the flapping-wing flight, we profiled the response characteristics of indirect flight muscles to abdominal ganglion excitation. Strikingly, a change in the neural activity of ganglion 3 or ganglion 4 has a stronger effect on the electrophysiological activity of indirect flight muscles than that of ganglion 5. The electrophysiological activity of vertical indirect flight muscles is affected more by the change in neural activity of the abdominal ganglion than that of lateral indirect flight muscles. Moreover, the change in neural activity of the abdominal ganglion mainly causes the change in the muscular activity of indirect wing muscles, but the activity patterns change relatively little and there is little change in the complicated details. This work improves our understanding of the neuroregulatory mechanisms associated with the flapping-wing flight of honeybees.
Collapse
Affiliation(s)
- Haojia Ding
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Division of Intelligent and Biomechanical Systems, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shaoze Yan
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Division of Intelligent and Biomechanical Systems, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Noda R, Nakata T, Liu H. Effect of Hindwings on the Aerodynamics and Passive Dynamic Stability of a Hovering Hawkmoth. Biomimetics (Basel) 2023; 8:578. [PMID: 38132518 PMCID: PMC10741636 DOI: 10.3390/biomimetics8080578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Insects are able to fly stably in the complex environment of the various gusts that occur in nature. In addition, many insects suffer wing damage in their lives, but many species of insects are capable of flying without their hindwings. Here, we evaluated the effect of hindwings on aerodynamics using a Navier-Stokes-based numerical model, and then the passive dynamic stability was evaluated by coupling the equation of motion in three degrees of freedom with the aerodynamic forces estimated by the CFD solver under large and small perturbation conditions. In terms of aerodynamic effects, the presence of the hindwings slightly reduces the efficiency for lift generation but enhances the partial LEV circulation and increases the downwash around the wing root. In terms of thrust, increasing the wing area around the hindwing region increases the thrust, and the relationship is almost proportional at the cycle-averaged value. The passive dynamic stability was not clearly affected by the presence of the hindwings, but the stability was slightly improved depending on the perturbation direction. These results may be useful for the integrated design of wing geometry and flight control systems in the development of flapping-winged micro air vehicles.
Collapse
Affiliation(s)
- Ryusuke Noda
- Department of Mechanical Engineering, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Toshiyuki Nakata
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hao Liu
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H. Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Itai Cohen
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
4
|
Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, model parameter identification results are presented for a longitudinal mode dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and angular rate data from onboard sensors only. A gray box model approach with indirect method was utilized with adaptive Gauss–Newton, Levenberg–Marquardt, and gradient search identification methods. Regular and low-frequency reference commands were mainly used for identification since they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic parameters obtained using three identification methods with two different datasets were similar to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the identified dynamic model parameters had similar values to the computationally obtained ones, except stability derivatives for pitching moment with forward velocity and pitching rate variations. Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher than that of the computationally obtained one (~22%). Frequency domain analysis showed that the identified model was much different from that of the computationally obtained one in the frequency range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that the phase margin was very low, and that it should be increased by a feedback controller to have a robustly stable system. The stable dominant pole of the identified model had a higher magnitude which resulted in faster responses. The identified dynamic model exhibited much closer responses to experimental flight data in pitching motion than the computationally obtained dynamic model, demonstrating that the identified dynamic model could be used for the design of more effective pitch angle-stabilizing controllers.
Collapse
|
5
|
Olejnik DA, Muijres FT, Karásek M, Honfi Camilo L, De Wagter C, de Croon GC. Flying Into the Wind: Insects and Bio-Inspired Micro-Air-Vehicles With a Wing-Stroke Dihedral Steer Passively Into Wind-Gusts. Front Robot AI 2022; 9:820363. [PMID: 35280961 PMCID: PMC8907628 DOI: 10.3389/frobt.2022.820363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Natural fliers utilize passive and active flight control strategies to cope with windy conditions. This capability makes them incredibly agile and resistant to wind gusts. Here, we study how insects achieve this, by combining Computational Fluid Dynamics (CFD) analyses of flying fruit flies with freely-flying robotic experiments. The CFD analysis shows that flying flies are partly passively stable in side-wind conditions due to their dorsal-ventral wing-beat asymmetry defined as wing-stroke dihedral. Our robotic experiments confirm that this mechanism also stabilizes free-moving flapping robots with similar asymmetric dihedral wing-beats. This shows that both animals and robots with asymmetric wing-beats are dynamically stable in sideways wind gusts. Based on these results, we developed an improved model for the aerodynamic yaw and roll torques caused by the coupling between lateral motion and the stroke dihedral. The yaw coupling passively steers an asymmetric flapping flyer into the direction of a sideways wind gust; in contrast, roll torques are only stabilizing at high air gust velocities, due to non-linear coupling effects. The combined CFD simulations, robot experiments, and stability modeling help explain why the majority of flying insects exhibit wing-beats with positive stroke dihedral and can be used to develop more stable and robust flapping-wing Micro-Air-Vehicles.
Collapse
Affiliation(s)
- Diana A. Olejnik
- MAVLab, Department of Control and Operations, Delft University of Technology, Delft, Netherlands
- *Correspondence: Diana A. Olejnik,
| | - Florian T. Muijres
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Matěj Karásek
- MAVLab, Department of Control and Operations, Delft University of Technology, Delft, Netherlands
| | - Leonardo Honfi Camilo
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Christophe De Wagter
- MAVLab, Department of Control and Operations, Delft University of Technology, Delft, Netherlands
| | - Guido C.H.E. de Croon
- MAVLab, Department of Control and Operations, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Fu F, Li Y, Wang H, Li B, Sato H. The function of pitching in Beetle's flight revealed by insect-wearable backpack. Biosens Bioelectron 2022; 198:113818. [PMID: 34861525 DOI: 10.1016/j.bios.2021.113818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
The study of insect flight orientation is important for investigating flapping-wing aerodynamics and designing bioinspired micro air vehicles (MAVs). Pitch orientation plays a vital role in flight control, which has been explored less than directional control. In this study, the role of pitching maneuvers in flight was revealed by mounting an insect-wearable backpack on a beetle, which transformed the live insect into a bioelectronic device. The flight status of the cyborg beetle in a large chamber was recorded wirelessly. Accordingly, the pitch angle and forward acceleration showed a strong linear relationship. The coupling of pitch angle and forward acceleration was due to a tilted net aerodynamic force and the induced air drag. Moreover, the left and right subalar muscles of the beetle, a pair of major flight muscles, were electrically stimulated in free flight on demand to pitch up the beetle's body. We demonstrated that the induced nose-up movements were effective for decelerating the beetle in air. The flight orientation findings from the flying cyborgs would inspire a new approach to the study of flapping-wing flight and control of flapping-wing MAVs.
Collapse
Affiliation(s)
- Fang Fu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China; School of Design, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China.
| | - Haitong Wang
- School of Power and Energy, Northwestern Polytechnical University, Xi'an, China
| | - Bing Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China.
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
7
|
|
8
|
Hao J, Wu J, Zhang Y. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle. BIOINSPIRATION & BIOMIMETICS 2021; 16:065003. [PMID: 34450611 DOI: 10.1088/1748-3190/ac220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Passive wing pitching is a hypothesis in insect flight, and it is used widely by most flapping-wing micro air vehicles (FWMAVs). This study analyses the flight control of hovering model fruit fly and FWMAV with passive pitching wings. The longitudinal and lateral control derivatives are obtained by numerical simulation of the fluid dynamic equations coupled with the torsional spring passive pitching system. In contrast to active pitching wings, some of the control derivatives are remarkably changed by passive pitching wings, such asZΦ(vertical force produced by unit stroke amplitude),Zf(vertical force produced by unit flapping frequency), andMψ0(pitching moment produced by unit rest angle). For example, increasing flapping frequency does not lead to an evident increase in lift and may even have a reverse effect. Therefore, the flight control of FWMAV with passive pitching wings should be treated with caution. For wings pitching passively with a torsional spring at the root, the differential change of the angle of attack in the downstroke and upstroke (αdandαu) could be achieved by modulation of the rest angle alone; however, the equal change inαdandαumay require an otherwise manipulation of the elastic coefficient. Results in this study provide guidelines for the design of FWMAVs in evaluating the effects of different control inputs correctly and formulating a cost-effective control scheme.
Collapse
Affiliation(s)
- Jinjing Hao
- School of Transportation Science and Engineering, Beihang University, Beijing, People's Republic of China
| | - Jianghao Wu
- School of Transportation Science and Engineering, Beihang University, Beijing, People's Republic of China
| | - Yanlai Zhang
- School of Transportation Science and Engineering, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Shepherd S, Jackson CW, Sharkh SM, Aonuma H, Oliveira EE, Newland PL. Extremely Low-Frequency Electromagnetic Fields Entrain Locust Wingbeats. Bioelectromagnetics 2021; 42:296-308. [PMID: 33822398 DOI: 10.1002/bem.22336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Extremely low-frequency electromagnetic fields (ELF EMFs) have been shown to impact the behavior and physiology of insects. Recent studies have highlighted the need for more research to determine more specifically how they affect flying insects. Here, we ask how locust flight is affected by acute exposure to 50 Hz EMFs. We analyzed the flights of individual locusts tethered between a pair of copper wire coils generating EMFs of various frequency using high-speed video recording. The mean wingbeat frequency of tethered locusts was 18.92 ± 0.27 Hz. We found that acute exposure to 50 Hz EMFs significantly increased absolute change in wingbeat frequency in a field strength-dependent manner, with greater field strengths causing greater changes in wingbeat frequency. The effect of EMFs on wingbeat frequency depended on the initial wingbeat frequency of a locust, with locusts flying at a frequency lower than 20 Hz increasing their wingbeat frequency, while locusts flying with a wingbeat frequency higher than 20 Hz decreasing their wingbeat frequency. During the application of 50 Hz EMF, the wingbeat frequency was entrained to a 2:5 ratio (two wingbeat cycles to five EMF cycles) of the applied EMF. We then applied a range of ELF EMFs that were close to normal wingbeat frequency and found that locusts entrained to the exact frequency of the applied EMF. These results show that exposure to ELF EMFs lead to small but significant changes in wingbeat frequency in locusts. We discuss the biological implications of the coordination of insect flight in response to electromagnetic stimuli. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Sebastian Shepherd
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | | | - Suleiman M Sharkh
- Mechatronics, Mechanical Engineering, University of Southampton, Highfield Campus, Southampton, UK
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Philip L Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| |
Collapse
|
10
|
Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a thorough review on the system identification techniques applied to flapping wing micro air vehicles (FWMAVs). The main advantage of this work is to provide a solid background and domain knowledge of system identification for further investigations in the field of FWMAVs. In the system identification context, the flapping wing systems are first categorized into tailed and tailless MAVs. The most recent developments related to such systems are reported. The system identification techniques used for FWMAVs can be classified into time-response based identification, frequency-response based identification, and the computational fluid-dynamics based computation. In the system identification scenario, least mean square estimation is used for a beetle mimicking system recognition. In the end, this review work is concluded and some recommendations for the researchers working in this area are presented.
Collapse
|
11
|
Phan HV, Park HC. Mimicking nature's flyers: a review of insect-inspired flying robots. CURRENT OPINION IN INSECT SCIENCE 2020; 42:70-75. [PMID: 33010474 DOI: 10.1016/j.cois.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects have attracted much interest from scientists and engineers as they offer an endless source of inspiration for creating innovative engineering designs. By mimicking flying insects, it may be possible to create highly efficient biomimetic drones. In this paper, we provide an overview on how the principles of insect flight, including large stroke amplitudes and wing rotations, the clap-and-fling effect and flight control have been implemented to successfully demonstrate untethered, controlled free-flight in the insect-inspired flying robots. Despite the lack of insect-like muscles, various electro-mechanical systems have been invented to actuate insect robots. Achieving controlled free-flight is a cornerstone of next-generation insect-inspired robots which in addition to flight will be equipped with multiple modes of transportation, similar to real flying insects.
Collapse
Affiliation(s)
- Hoang Vu Phan
- Department of Smart Vehicle Engineering, Konkuk University, Artificial Muscle Research Center, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea
| | - Hoon Cheol Park
- Department of Smart Vehicle Engineering, Konkuk University, Artificial Muscle Research Center, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
12
|
Yu W, Zhou Y, Guo J, Wyckhuys KAG, Shen X, Li X, Ge S, Liu D, Wu K. Interspecific and Seasonal Variation in Wingbeat Frequency Among Migratory Lepidoptera in Northern China. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2134-2140. [PMID: 32607536 DOI: 10.1093/jee/toaa134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Many lepidopteran species rely upon active flight to migrate over long distances, thus pursuing ephemeral resources, colonizing new habitats, or escaping adverse meteorological conditions. Though their biology and ecology are often well studied, there is only scant information on their wingbeat frequency (WBF), a key aerodynamic determinant of insect flight. In this study, we assessed interspecific and seasonal variability in WBF for 85 different migratory species of Lepidoptera (11 families) under the laboratory conditions of 25 ± 1°C and 75 ± 5% RH. WBF of migrant individuals ranged between 6.7 and 84.5 Hz and substantial interspecific differences were recorded, with members of the Bombycidae exhibiting the highest mean WBFs (i.e., 55.1 ± 1.0 Hz) and Saturniidae the lowest (8.5 ± 0.2 Hz). At a species level, seasonal variation was observed in WBF for Mythimna separata (Walker) (Lepidoptera: Noctuidae), Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Our findings add to the scientific knowledge on flight biology of migratory insects, facilitate (automatic) monitoring and population forecasting, and can have broader implications for insect pest management or biodiversity conservation.
Collapse
Affiliation(s)
- Wenhua Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianglong Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shishuai Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Krishna S, Cho M, Wehmann HN, Engels T, Lehmann FO. Wing Design in Flies: Properties and Aerodynamic Function. INSECTS 2020; 11:E466. [PMID: 32718051 PMCID: PMC7469158 DOI: 10.3390/insects11080466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
The shape and function of insect wings tremendously vary between insect species. This review is engaged in how wing design determines the aerodynamic mechanisms with which wings produce an air momentum for body weight support and flight control. We work out the tradeoffs associated with aerodynamic key parameters such as vortex development and lift production, and link the various components of wing structure to flight power requirements and propulsion efficiency. A comparison between rectangular, ideal-shaped and natural-shaped wings shows the benefits and detriments of various wing shapes for gliding and flapping flight. The review expands on the function of three-dimensional wing structure, on the specific role of wing corrugation for vortex trapping and lift enhancement, and on the aerodynamic significance of wing flexibility for flight and body posture control. The presented comparison is mainly concerned with wings of flies because these animals serve as model systems for both sensorimotor integration and aerial propulsion in several areas of biology and engineering.
Collapse
Affiliation(s)
| | | | | | | | - Fritz-Olaf Lehmann
- Department of Animal Physiology, Institute of Biosciences, University of Rostock, 18059 Rostock, Germany; (S.K.); (M.C.); (H.-N.W.); (T.E.)
| |
Collapse
|
14
|
Nagesh I, Walker SM, Taylor GK. Motor output and control input in flapping flight: a compact model of the deforming wing kinematics of manoeuvring hoverflies. J R Soc Interface 2019; 16:20190435. [PMID: 31795861 DOI: 10.1098/rsif.2019.0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects are conventionally modelled as controlling flight by varying a few summary kinematic parameters that are defined on a per-wingbeat basis, such as the stroke amplitude, mean stroke angle and mean wing pitch angle. Nevertheless, as insects have tens of flight muscles and vary their kinematics continuously, the true dimension of their control input space is likely to be much higher. Here, we present a compact description of the deforming wing kinematics of 36 manoeuvring Eristalis hoverflies, applying functional principal components analysis to Fourier series fits of the wingtip position and wing twist measured over 26 541 wingbeats. This analysis offers a high degree of data reduction, in addition to insight into the natural kinematic couplings. We used statistical resampling techniques to verify that the principal components (PCs) were repeatable features of the data, and analysed their coefficient vectors to provide insight into the form of these natural couplings. Conceptually, the dominant PCs provide a natural set of control input variables that span the control input subspace utilized by this species, but they can also be thought of as output states of the flight motor. This functional description of the wing kinematics is appropriate to modelling insect flight as a form of limit cycle control.
Collapse
Affiliation(s)
- Indira Nagesh
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Simon M Walker
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Graham K Taylor
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
15
|
Ma Y, Ren H, Rajabi H, Zhao H, Ning J, Gorb S. Structure, properties and functions of the forewing-hindwing coupling of honeybees. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103936. [PMID: 31473290 DOI: 10.1016/j.jinsphys.2019.103936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Worker honeybees (Apis mellifera) are morphologically four-winged, but are functionally dipterous insects. During flight, their fore- and hindwings are coupled by means of the forewing posterior rolled margin (PRM) and hindwing hamuli. Morphological analysis shows that the PRM can be connected to the hamuli, so that the fore- and hindwing are firmly hinged, and can rotate with respect to each other. In the present study, using a combination of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), we investigate the micromorphology and material composition of the coupling structures on both fore- and hindwings. High-speed filming is utilized to determine the angle variation between the fore- and hindwings in tethered flight. Using sets of two-dimensional (2D) computation fluid dynamic analyses, we further aim to understand the influence of the angle variation on the aerodynamic performance of the coupled wings. The results of the morphological investigations show that both PRM and hamuli are made up of a strongly sclerotized cuticle. The sclerotized hinge-like connection of the coupling structure allows a large angle variation between the wings (135°-235°), so that a change is made from an obtuse angle during the pronation and downstroke to a reflex angle during the supination and upstroke. Our computational results show that in comparison to a model with a rigid coupling hinge, the angle variation of a model having a flexible hinge results in both increased lift and drag with a higher rate of drag increase. This study deepens our understanding of the wing-coupling mechanism and functioning of coupled insect wings.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Huilan Ren
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hamed Rajabi
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Hongyan Zhao
- Beijing Institute of Astronautical System Engineering, Beijing 100076, China
| | - Jianguo Ning
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Stanislav Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany
| |
Collapse
|
16
|
Hügel T, Goerlitz HR. Species‐specific strategies increase unpredictability of escape flight in eared moths. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theresa Hügel
- Acoustic and Functional Ecology Group Max Planck Institute for Ornithology Seewiesen Germany
| | - Holger R. Goerlitz
- Acoustic and Functional Ecology Group Max Planck Institute for Ornithology Seewiesen Germany
| |
Collapse
|
17
|
Biswal S, Mignolet M, Rodriguez AA. Modeling and control of flapping wing micro aerial vehicles. BIOINSPIRATION & BIOMIMETICS 2019; 14:026004. [PMID: 30616230 DOI: 10.1088/1748-3190/aafc3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research in robots that emulate insect flight or micro aerial vehicles (MAV) has gained significant momentum in the past decade owing to the vast number of fields they could be employed in. In this paper, key modeling and control aspects of a flapping wing MAV in hover have been discussed. Models of varying complexity have been developed by previous researchers. Here, we examine the validity of key assumptions involved in some of these models in a closed-loop control setting. Every model has limitations and with proper design of feedback control these limitations can be overcome up to a certain degree. Three nonlinear models with increasing complexity have been developed. Model I includes only the rigid body dynamics while ignoring the wing dynamics while model II includes the rigid body dynamics along with the wing kinematics. Lastly, model III encompasses the complete rigid body and the rigid wing dynamics. To ensure these higher fidelity models can be rendered unnecessary with a suitably designed controller, a method is presented wherein the controller is designed for the simplest model and tested for its robustness on the more complex models. Linear quadratic regulator (LQR) is used as the main control system design methodology. A nonlinear parameter optimization algorithm is employed to design a family of LQR control systems for the MAV. Additionally, critical performance trade-offs are illuminated, and properties at both the plant output and input are examined. Lastly, we also provide specific rules of thumb for the control system design.
Collapse
Affiliation(s)
- Shiba Biswal
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, United States of America
| | | | | |
Collapse
|
18
|
Ravi S, Bertrand O, Siesenop T, Manz LS, Doussot C, Fisher A, Egelhaaf M. Gap perception in bumblebees. ACTA ACUST UNITED AC 2019; 222:222/2/jeb184135. [PMID: 30683732 DOI: 10.1242/jeb.184135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022]
Abstract
A number of insects fly over long distances below the natural canopy, where the physical environment is highly cluttered consisting of obstacles of varying shape, size and texture. While navigating within such environments, animals need to perceive and disambiguate environmental features that might obstruct their flight. The most elemental aspect of aerial navigation through such environments is gap identification and 'passability' evaluation. We used bumblebees to seek insights into the mechanisms used for gap identification when confronted with an obstacle in their flight path and behavioral compensations employed to assess gap properties. Initially, bumblebee foragers were trained to fly though an unobstructed flight tunnel that led to a foraging chamber. After the bees were familiar with this situation, we placed a wall containing a gap that unexpectedly obstructed the flight path on a return trip to the hive. The flight trajectories of the bees as they approached the obstacle wall and traversed the gap were analyzed in order to evaluate their behavior as a function of the distance between the gap and a background wall that was placed behind the gap. Bumblebees initially decelerated when confronted with an unexpected obstacle. Deceleration was first noticed when the obstacle subtended around 35 deg on the retina but also depended on the properties of the gap. Subsequently, the bees gradually traded off their longitudinal velocity to lateral velocity and approached the gap with increasing lateral displacement and lateral velocity. Bumblebees shaped their flight trajectory depending on the salience of the gap, indicated in our case by the optic flow contrast between the region within the gap and on the obstacle, which decreased with decreasing distance between the gap and the background wall. As the optic flow contrast decreased, the bees spent an increasing amount of time moving laterally across the obstacles. During these repeated lateral maneuvers, the bees are probably assessing gap geometry and passability.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany .,School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Olivier Bertrand
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Tim Siesenop
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Lea-Sophie Manz
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany.,Faculty of Biology, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Martin Egelhaaf
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Williams RD, Massey TL, Maharbiz MM. Blowfly yaw control via electrical stimulation of the H1 lobula plate tangential cell. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1685-1688. [PMID: 30440719 DOI: 10.1109/embc.2018.8512680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eliciting predictable flight responses in insects via exogenous stimulation of the nervous system is an area of both scientific and engineering interest. Blowflies in particular possess an excellent biological flight control system, making them an ideal system for characterising responses to stimulation. Here we demonstrate a means of electrically controlling Calliphoridae-Protophormia terranovae wing behaviour, generating a repeatable yaw response via biphasic electrical stimulation of the H1 lobula plate tangential cell (LPTC). We found that a 10 mA current pulse at a frequency of 30-270 Hz produces a yaw response in the preferred direction of H1 in a tethered blowfly preparation, and the magnitude of the yaw response is proportional to the frequency of the stimulus. This result suggests that these LPTCs, which encode optic flow, may be a viable interface for controlling fly flight behaviour. This platform could find application not only for micro air vehicles (MAVs), but also in developing flight models or for studying neurological control of fly flight behaviour.
Collapse
|
20
|
Phan HV, Park HC. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot. BIOINSPIRATION & BIOMIMETICS 2018; 13:036009. [PMID: 29493535 DOI: 10.1088/1748-3190/aab313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on wing kinematics indicate that flapping insect wings operate at higher angles of attack (AoAs) than conventional rotary wings. Thus, effectively flying an insect-like flapping-wing micro air vehicle (FW-MAV) requires appropriate wing design for achieving low power consumption and high force generation. Even though theoretical studies can be performed to identify appropriate geometric AoAs for a wing for achieving efficient hovering flight, designing an actual wing by implementing these angles into a real flying robot is challenging. In this work, we investigated the wing morphology of an insect-like tailless FW-MAV, which was named KUBeetle, for obtaining high vertical force/power ratio or power loading. Several deformable wing configurations with various vein structures were designed, and their characteristics of vertical force generation and power requirement were theoretically and experimentally investigated. The results of the theoretical study based on the unsteady blade element theory (UBET) were validated with reference data to prove the accuracy of power estimation. A good agreement between estimated and measured results indicated that the proposed UBET model can be used to effectively estimate the power requirement and force generation of an FW-MAV. Among the investigated wing configurations operating at flapping frequencies of 23 Hz to 29 Hz, estimated results showed that the wing with a suitable vein placed outboard exhibited an increase of approximately 23.7% ± 0.5% in vertical force and approximately 10.2% ± 1.0% in force/power ratio. The estimation was supported by experimental results, which showed that the suggested wing enhanced vertical force by approximately 21.8% ± 3.6% and force/power ratio by 6.8% ± 1.6%. In addition, wing kinematics during flapping motion was analyzed to determine the reason for the observed improvement.
Collapse
Affiliation(s)
- Hoang Vu Phan
- Artificial Muscle Research Center and Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | |
Collapse
|
21
|
Mills R, Hildenbrandt H, Taylor GK, Hemelrijk CK. Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey. PLoS Comput Biol 2018; 14:e1006044. [PMID: 29649207 PMCID: PMC5896925 DOI: 10.1371/journal.pcbi.1006044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
The peregrine falcon Falco peregrinus is renowned for attacking its prey from high altitude in a fast controlled dive called a stoop. Many other raptors employ a similar mode of attack, but the functional benefits of stooping remain obscure. Here we investigate whether, when, and why stooping promotes catch success, using a three-dimensional, agent-based modeling approach to simulate attacks of falcons on aerial prey. We simulate avian flapping and gliding flight using an analytical quasi-steady model of the aerodynamic forces and moments, parametrized by empirical measurements of flight morphology. The model-birds’ flight control inputs are commanded by their guidance system, comprising a phenomenological model of its vision, guidance, and control. To intercept its prey, model-falcons use the same guidance law as missiles (pure proportional navigation); this assumption is corroborated by empirical data on peregrine falcons hunting lures. We parametrically vary the falcon’s starting position relative to its prey, together with the feedback gain of its guidance loop, under differing assumptions regarding its errors and delay in vision and control, and for three different patterns of prey motion. We find that, when the prey maneuvers erratically, high-altitude stoops increase catch success compared to low-altitude attacks, but only if the falcon’s guidance law is appropriately tuned, and only given a high degree of precision in vision and control. Remarkably, the optimal tuning of the guidance law in our simulations coincides closely with what has been observed empirically in peregrines. High-altitude stoops are shown to be beneficial because their high airspeed enables production of higher aerodynamic forces for maneuvering, and facilitates higher roll agility as the wings are tucked, each of which is essential to catching maneuvering prey at realistic response delays. Peregrine falcons are famed for their high-speed, high-altitude stoops. Hunting prey at perhaps the highest speed of any animal places a stooping falcon under extraordinary physical, physiological, and cognitive demands, yet it remains unknown how this behavioural strategy promotes catch success. Because the behavioral aspects of stooping are intimately related to its biomechanical constraints, we address this question through an embodied cognition approach. We model the falcon’s cognition using guidance laws inspired by theory and experiment, and embody this in a physics-based simulation of predator and prey flight. Stooping maximizes catch success against agile prey by minimizing roll inertia and maximizing the aerodynamic forces available for maneuvering, but requires a tightly tuned guidance law, and exquisitely precise vision and control.
Collapse
Affiliation(s)
- Robin Mills
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Groningen, Netherlands
- Department of Zoology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Groningen, Netherlands
| | - Graham K. Taylor
- Department of Zoology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Li Q, Zheng M, Pan T, Su G. Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off. Sci Rep 2018; 8:1011. [PMID: 29343709 PMCID: PMC5772656 DOI: 10.1038/s41598-018-19237-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 11/09/2022] Open
Abstract
We present a detailed analysis of the voluntary take-off procedure of a dragonfly. The motions of the body and wings are recorded using two high-speed cameras at Beihang University. The experimental results show that the dragonfly becomes airborne after approximately one wingbeat and then leaves the ground. During this process, the maximum vertical acceleration could reach 20 m/s2. Evidence also shows that acceleration is generated only by the aerodynamic force induced by the flapping of wings. The dragonfly voluntary take-off procedure is divided into four phases with distinctive features. The variation in phase difference between the forewing and hindwing and angle of attack in the down-stroke are calculated to explain the different features of the four phases. In terms of the key parameters of flapping, the phase difference increases from approximately 0 to 110 degrees; the angle of attack in down-stroke reaches the maximum at first and then decreases in the following take-off procedure. Due to experimental limitations, 2-D simulations are conducted using the immersed boundary method. The results indicate that the phase difference and the angle of attack are highly correlated with the unsteady fluid field around the dragonfly's wings and body, which determines the generation of aerodynamic forces.
Collapse
Affiliation(s)
- Qiushi Li
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Mengzong Zheng
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Tianyu Pan
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Guanting Su
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| |
Collapse
|
23
|
Hsu SJ, Thakur N, Cheng B. Speed control and force-vectoring of blue bottle flies in a magnetically-levitated flight mill. J Exp Biol 2018; 222:jeb.187211. [DOI: 10.1242/jeb.187211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
Abstract
Flies fly at a broad range of speeds and produce sophisticated aerial maneuvers with precisely controlled wing movements. Remarkably, only subtle changes in wing motion are used by flies to produce aerial maneuvers, resulting in little directional tilt of aerodynamic force vector relative to the body. Therefore, it is often considered that flies fly according to a helicopter model and control speed mainly via force-vectoring by body-pitch change. Here we examined the speed control of blue bottle flies using a magnetically-levitated (MAGLEV) flight mill, as they fly at different body pitch angles and with different augmented aerodynamic damping. We identified wing kinematic contributors to the changes of estimated aerodynamic force through testing and comparing two force-vectoring models: i.e., a constant force-vectoring model and a variable force-vectoring model, while using the Akaike's information criterion for the selection of best-approximating model. Results show that the best-approximating variable force-vectoring model, which includes the effects of wing kinematic changes, yields a considerably more accurate prediction of flight speed, particularly in higher velocity range, as compared with those of the constant force-vectoring model. Examining the variable force-vectoring model reveals that, in the flight-mill tethered flight, flies use a collection of wing kinematic variables to control primarily the force magnitude, while the force direction is also modulated, albeit to a smaller extent compared to those due to the changes in body pitch. The roles of these wing kinematic variables are analogous to those of throttle, and collective and cyclic pitch of helicopters.
Collapse
Affiliation(s)
- Shih-Jung Hsu
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Neel Thakur
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bo Cheng
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Hightower BJ, Ingersoll R, Chin DD, Lawhon C, Haselsteiner AF, Lentink D. Design and analysis of aerodynamic force platforms for free flight studies. BIOINSPIRATION & BIOMIMETICS 2017; 12:064001. [PMID: 28691925 DOI: 10.1088/1748-3190/aa7eb2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe and explain new advancements in the design of the aerodynamic force platform, a novel instrument that can directly measure the aerodynamic forces generated by freely flying animals and robots. Such in vivo recordings are essential to better understand the precise aerodynamic function of flapping wings in nature, which can critically inform the design of new bioinspired robots. By designing the aerodynamic force platform to be stiff yet lightweight, the natural frequencies of all structural components can be made over five times greater than the frequencies of interest. The associated high-frequency noise can then be filtered out during post-processing to obtain accurate and precise force recordings. We illustrate these abilities by measuring the aerodynamic forces generated by a freely flying bird. The design principles can also be translated to other fluid media. This offers an opportunity to perform high-throughput, real-time, non-intrusive, and in vivo comparative biomechanical measurements of force generation by locomoting animals and robots. These recordings can include complex bimodal terrestrial, aquatic, and aerial behaviors, which will help advance the fields of experimental biology and bioinspired design.
Collapse
|
25
|
Phan HV, Kang T, Park HC. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. BIOINSPIRATION & BIOMIMETICS 2017; 12:036006. [PMID: 28281468 DOI: 10.1088/1748-3190/aa65db] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.
Collapse
Affiliation(s)
- Hoang Vu Phan
- Department of Advanced Technology Fusion, Artificial Muscle Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | | | | |
Collapse
|
26
|
Lawson KKK, Srinivasan MV. Flight control of fruit flies: dynamic response to optic-flow and headwind. J Exp Biol 2017; 220:2005-2016. [DOI: 10.1242/jeb.153056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 11/20/2022]
Abstract
Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings, and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies (Bactrocera tryoni) was examined. 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust, and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captures the fruit flies' behavioural responses. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, on the other hand, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of ‘selective attention’.
Collapse
Affiliation(s)
- Kiaran K. K. Lawson
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Mandyam V. Srinivasan
- Queensland Brain Institute and the School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
27
|
Davidovich H, Ribak G. Flying with eight wings: inter-sex differences in wingbeat kinematics and aerodynamics during the copulatory flight of damselflies (Ischnura elegans). Naturwissenschaften 2016; 103:65. [PMID: 27406591 DOI: 10.1007/s00114-016-1390-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
Abstract
Copulation in the blue-tailed damselfly, Ischnura elegans, can last over 5 hours, during which the pair may fly from place to place in the so-called "wheel position". We filmed copulatory free-flight and analyzed the wingbeat kinematics of males and females in order to understand the contribution of the two sexes to this cooperative flight form. Both sexes flapped their wings but at different flapping frequencies resulting in a lack of synchronization between the flapping of the two insects. Despite their unusual body posture, females flapped their wings in a stroke-plane not significantly different to that of the males (repeated-measures ANOVA, F1,7 = 0.154, p = 0.71). However, their flapping amplitudes were smaller by 42 ± 17 %, compared to their male mates (t test, t 7 = 9.298, p < 0.001). This was mostly due to shortening of the amplitude at the ventral stroke reversal point. Compared to solitary flight, males flying in copula increased flapping frequency by 19 %, while females decreased flapping amplitude by 27 %. These findings suggest that although both sexes contribute to copulatory flight, females reduce their effort, while males increase their aerodynamic output in order to carry both their own weight and some of the female's weight. This increased investment by the male is amplified due to male I. elegans being typically smaller than females. The need by smaller males to fly while carrying some of the weight of their larger mates may pose a constraint on the ability of mating pairs to evade predators or counter interference from competing solitary males.
Collapse
Affiliation(s)
- Hilla Davidovich
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Gal Ribak
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
28
|
Cheng X, Sun M. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight. Sci Rep 2016; 6:25706. [PMID: 27168523 PMCID: PMC4863373 DOI: 10.1038/srep25706] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.
Collapse
Affiliation(s)
- Xin Cheng
- Institute of Fluid Mechanics, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
| | - Mao Sun
- Institute of Fluid Mechanics, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
| |
Collapse
|
29
|
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc Math Phys Eng Sci 2016; 472:20150712. [PMID: 27118897 PMCID: PMC4841661 DOI: 10.1098/rspa.2015.0712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.
Collapse
Affiliation(s)
- Wei Shyy
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Chang-kwon Kang
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Pakpong Chirarattananon
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Sridhar Ravi
- Graduate School of Engineering, Chiba University, Chiba, Japan
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Hao Liu
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
- Shanghai-Jiao Tong University and Chiba, University International Cooperative Research Centre (SJTU-CU ICRC), Minhang, Shanghai, China
| |
Collapse
|
30
|
Kassner Z, Dafni E, Ribak G. Kinematic compensation for wing loss in flying damselflies. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:1-9. [PMID: 26598807 DOI: 10.1016/j.jinsphys.2015.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 05/28/2023]
Abstract
Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18±15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p=0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged.
Collapse
Affiliation(s)
- Ziv Kassner
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
| | - Eyal Dafni
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
| | - Gal Ribak
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, 6997801, Israel.
| |
Collapse
|
31
|
Cheng B, Tobalske BW, Powers DR, Hedrick TL, Wethington SM, Chiu GTC, Deng X. Flight mechanics and control of escape manoeuvres in hummingbirds I. Flight kinematics. J Exp Biol 2016; 219:3518-3531. [DOI: 10.1242/jeb.137539] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022]
Abstract
Hummingbirds are nature‘s masters of aerobatic manoeuvres. Previous research shows hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees-of-freedom on stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the “helicopter model” that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Donald R. Powers
- Biology & Chemistry Department, George Fox University, Newberg, OR 97132, USA
| | - Tyson L. Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - George T. C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xinyan Deng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Sato H, Vo Doan T, Kolev S, Huynh N, Zhang C, Massey T, van Kleef J, Ikeda K, Abbeel P, Maharbiz M. Deciphering the Role of a Coleopteran Steering Muscle via Free Flight Stimulation. Curr Biol 2015; 25:798-803. [DOI: 10.1016/j.cub.2015.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/03/2014] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
|
33
|
Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster. PLoS One 2015; 10:e0116813. [PMID: 25710715 PMCID: PMC4339832 DOI: 10.1371/journal.pone.0116813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/15/2014] [Indexed: 12/04/2022] Open
Abstract
Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12 000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.
Collapse
|
34
|
Chen P, Xu Y, He S, Sun X, Guo W, Zhang Z, Qiu L, Li J, Chen D, Peng H. Biologically inspired, sophisticated motions from helically assembled, conducting fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1042-1047. [PMID: 25446835 DOI: 10.1002/adma.201402867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/24/2014] [Indexed: 06/04/2023]
Abstract
A hierarchically helical organization of carbon nanotubes into macroscopic fibers enables sophistication while controlling three-dimensional electromechanical actuations, e.g., an artificial swing and tail. The actuation generates a stress of more than 260 times that of a typical natural skeletal muscle and an accelerated velocity of more than 10 times that of a cheetah at low electric currents with high reversibility, good stability, and availability to various media.
Collapse
Affiliation(s)
- Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fuller SB, Karpelson M, Censi A, Ma KY, Wood RJ. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J R Soc Interface 2015; 11:20140281. [PMID: 24942846 DOI: 10.1098/rsif.2014.0281] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role.
Collapse
Affiliation(s)
- Sawyer B Fuller
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Michael Karpelson
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Andrea Censi
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Kevin Y Ma
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Robert J Wood
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
36
|
Whitehead SC, Beatus T, Canale L, Cohen I. Pitch perfect: how fruit flies control their body pitch angle. J Exp Biol 2015; 218:3508-19. [DOI: 10.1242/jeb.122622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022]
Abstract
Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40° in 29±8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process only 10±2 ms after the perturbation onset, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations–greater than 150°–providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw and roll control, our results on pitch show that flies' stabilization of each of these body angles is consistent with PI control
Collapse
Affiliation(s)
| | - Tsevi Beatus
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - Luca Canale
- Département de Mécanique, École Polytechnique, 911128, Palaiseau, France
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
37
|
Bar NS, Skogestad S, Marçal JM, Ulanovsky N, Yovel Y. A sensory-motor control model of animal flight explains why bats fly differently in light versus dark. PLoS Biol 2015; 13:e1002046. [PMID: 25629809 PMCID: PMC4309566 DOI: 10.1371/journal.pbio.1002046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022] Open
Abstract
Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.
Collapse
Affiliation(s)
- Nadav S. Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sigurd Skogestad
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jose M. Marçal
- Institute for Telecommunications, University of Lisbon, Lisbon, Portugal
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Chirarattananon P, Ma KY, Wood RJ. Adaptive control of a millimeter-scale flapping-wing robot. BIOINSPIRATION & BIOMIMETICS 2014; 9:025004. [PMID: 24855052 DOI: 10.1088/1748-3182/9/2/025004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Challenges for the controlled flight of a robotic insect are due to the inherent instability of the system, complex fluid-structure interactions, and the general lack of a complete system model. In this paper, we propose theoretical models of the system based on the limited information available from previous work and a comprehensive flight controller. The modular flight controller is derived from Lyapunov function candidates with proven stability over a large region of attraction. Moreover, it comprises adaptive components that are capable of coping with uncertainties in the system that arise from manufacturing imperfections. We have demonstrated that the proposed methods enable the robot to achieve sustained hovering flights with relatively small errors compared to a non-adaptive approach. Simple lateral maneuvers and vertical takeoff and landing flights are also shown to illustrate the fidelity of the flight controller. The analysis suggests that the adaptive scheme is crucial in order to achieve millimeter-scale precision in flight control as observed in natural insect flight.
Collapse
|
39
|
Windsor SP, Bomphrey RJ, Taylor GK. Vision-based flight control in the hawkmoth Hyles lineata. J R Soc Interface 2014; 11:20130921. [PMID: 24335557 PMCID: PMC3869164 DOI: 10.1098/rsif.2013.0921] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 11/12/2022] Open
Abstract
Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths' responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths' responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight.
Collapse
Affiliation(s)
| | | | - Graham K. Taylor
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
40
|
Kolev S, Massey TL, Abbeel P, Maharbiz MM, Sato H. Insect-machine hybrid system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:2816-9. [PMID: 24110313 DOI: 10.1109/embc.2013.6610126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. This paper summarizes these results. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.
Collapse
|
41
|
Ma KY, Chirarattananon P, Fuller SB, Wood RJ. Controlled flight of a biologically inspired, insect-scale robot. Science 2013; 340:603-7. [PMID: 23641114 DOI: 10.1126/science.1231806] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.
Collapse
Affiliation(s)
- Kevin Y Ma
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
42
|
Dyhr JP, Morgansen KA, Daniel TL, Cowan NJ. Flexible strategies for flight control: an active role for the abdomen. J Exp Biol 2013; 216:1523-36. [DOI: 10.1242/jeb.077644] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual–abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus–response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic–abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or ‘airframe’ of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.
Collapse
Affiliation(s)
- Jonathan P. Dyhr
- University of Washington, Department of Biology, 24 Kincaid Hall, Seattle, WA 98195-1800, USA
| | - Kristi A. Morgansen
- Department of Aeronautics and Astronautics, University of Washington, 211 Guggenheim Hall, Box 352400, Seattle, WA 98195-2400, USA
| | - Thomas L. Daniel
- University of Washington, Department of Biology, 24 Kincaid Hall, Seattle, WA 98195-1800, USA
| | - Noah J. Cowan
- Department of Mechanical Engineering, Johns Hopkins University, 126 Hackerman Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
43
|
Philippides A, de Ibarra NH, Riabinina O, Collett TS. Bumblebee calligraphy: the design and control of flight motifs in the learning and return flights of Bombus terrestris. J Exp Biol 2013; 216:1093-104. [DOI: 10.1242/jeb.081455] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many wasps and bees learn the position of their nest relative to nearby visual features during elaborate ‘learning’ flights that they perform on leaving the nest. Return flights to the nest are thought to be patterned so that insects can reach their nest by matching their current view to views of their surroundings stored during learning flights. To understand how ground-nesting bumblebees might implement such a matching process, we have video-recorded the bees' learning and return flights and analysed the similarities and differences between the principal motifs of their flights. Loops that take bees away from and bring them back towards the nest are common during learning flights and less so in return flights. Zigzags are more prominent on return flights. Both motifs tend to be nest based. Bees often both fly towards and face the nest in the middle of loops and at the turns of zigzags. Before and after flight direction and body orientation are aligned, the two diverge from each other so that the nest is held within the bees' fronto-lateral visual field while flight direction relative to the nest can fluctuate more widely. These and other parallels between loops and zigzags suggest that they are stable variations of an underlying pattern, which enable bees to store and reacquire similar nest-focused views during learning and return flights.
Collapse
Affiliation(s)
| | | | - Olena Riabinina
- Department of Informatics, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
44
|
Medici V, Fry SN. Embodied linearity of speed control in Drosophila melanogaster. J R Soc Interface 2012; 9:3260-7. [PMID: 22933185 PMCID: PMC3481592 DOI: 10.1098/rsif.2012.0527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/03/2012] [Indexed: 11/12/2022] Open
Abstract
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.
Collapse
Affiliation(s)
- V Medici
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
45
|
Van Truong T, Byun D, Lavine LC, Emlen DJ, Park HC, Kim MJ. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation. BIOINSPIRATION & BIOMIMETICS 2012; 7:036021. [PMID: 22711210 DOI: 10.1088/1748-3182/7/3/036021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.
Collapse
Affiliation(s)
- Tien Van Truong
- Department of Aerospace Information Engineering, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Cheng B, Deng X. A Neural Adaptive Controller in Flapping Flight. JOURNAL OF ROBOTICS AND MECHATRONICS 2012. [DOI: 10.20965/jrm.2012.p0602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we propose a neural adaptive controller for attitude control in a flapping-wing insect model. The model is nonlinear and subjected to periodic force/torque generated by nominal wing kinematics. Two sets of model parameters are obtained from the fruit flyDrosophila melanogasterand the honey beeApis mellifera. Attitude control is achieved by modifying the wing kinematics on a stroke-by-stroke basis. The controller is based on filtered-error with neural network models approximating system nonlinearities. Lyapunov-based stability analysis shows the asymptotic convergence of system outputs. We present simulation results for angular position stabilization and trajectory tracking. Trajectory tracking is illustrated by two cases: saccadic turning and sinusoidal variation in the yaw angle. The proposed controller successfully regulates flight orientation – roll, pitch and yaw angles – by generating desired torque resulting from tuning parameterized wing motion. Results furthermore show similarities between simulated and observed turning from real insects, suggesting some inherent properties in insect flight dynamics and control. The proposed controller has potential applications in future flapping-wing Micro Air Vehicles (MAVs).
Collapse
|
47
|
Abstract
In the study of insect flight, adaptations to complex flight conditions such as wind and rain are poorly understood. Mosquitoes thrive in areas of high humidity and rainfall, in which raindrops can weigh more than 50 times a mosquito. In this combined experimental and theoretical study, we here show that free-flying mosquitoes can survive the high-speed impact of falling raindrops. High-speed videography of those impacts reveals a mechanism for survival: A mosquito's strong exoskeleton and low mass renders it impervious to falling drops. The mosquito's low mass causes raindrops to lose little momentum upon impact and so impart correspondingly low forces to the mosquitoes. Our findings demonstrate that small fliers are robust to in-flight perturbations.
Collapse
|
48
|
Campolo D, Schenato L, Pi L, Deng X, Guglielmelli E. Attitude Estimation of a Biologically Inspired Robotic Housefly via Multimodal Sensor Fusion. Adv Robot 2012. [DOI: 10.1163/156855309x443052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Domenico Campolo
- a Biomedical Robotics Laboratory, Campus Bio-Medico University, 00128 Rome, Italy
| | - Luca Schenato
- b Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Lijuan Pi
- c Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinyan Deng
- d Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenio Guglielmelli
- e Biomedical Robotics Laboratory, Campus Bio-Medico University, 00128 Rome, Italy
| |
Collapse
|
49
|
Campolo D, Barbera G, Schenato L, Pi L, Deng X, Guglielmelli E. Attitude Stabilization of a Biologically Inspired Robotic Housefly via Dynamic Multimodal Attitude Estimation. Adv Robot 2012. [DOI: 10.1163/016918609x12529306840253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Domenico Campolo
- a School of Mechanical & Aerospace Engineering, Nanyang Technological University, 639798 Singapore;,
| | - Giovanni Barbera
- b Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Luca Schenato
- c Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Lijuan Pi
- d Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinyan Deng
- e Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenio Guglielmelli
- f Biomedical Robotics Laboratory, Campus Bio-Medico University, 00128 Roma, Italy
| |
Collapse
|
50
|
CONN ANDREWT, BURGESS STUARTC, CHUNG SENGLING. THE PARALLEL CRANK-ROCKER FLAPPING MECHANISM: AN INSECT-INSPIRED DESIGN FOR MICRO AIR VEHICLES. INT J HUM ROBOT 2011. [DOI: 10.1142/s0219843607001199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper presents a novel micro air vehicle (MAV) design that seeks to reproduce the unsteady aerodynamics of insects in their natural flight. The challenge of developing an MAV capable of hovering and maneuvering through indoor environments has led to bio-inspired flapping propulsion being considered instead of conventional fixed or rotary winged flight. Insects greatly outperform these conventional flight platforms by exploiting several unsteady aerodynamic phenomena. Therefore, reproducing insect aerodynamics by mimicking their complex wing kinematics with a miniature flying robot has significant benefits in terms of flight performance. However, insect wing kinematics are extremely complex and replicating them requires optimal design of the actuation and flapping mechanism system. A novel flapping mechanism based on parallel crank-rockers has been designed that accurately reproduces the wing kinematics employed by insects and also offers control for flight maneuvers. The mechanism has been developed into an experimental prototype with MAV scale wings (75 mm long). High-speed camera footage of the non-airborne prototype showed that its wing kinematics closely matched desired values, but that the wing beat frequency of 5.6 Hz was below the predicted value of 15 Hz. Aerodynamic testing of the prototype in hovering conditions was completed using a load cell and the mean lift force at the maximum power output was measured to be 23.8 mN.
Collapse
Affiliation(s)
- ANDREW T. CONN
- Department of Mechanical Engineering, University of Bristol, Queens Building, Bristol, BS8 1TR, United Kingdom
| | - STUART C. BURGESS
- Department of Mechanical Engineering, University of Bristol, Queens Building, Bristol, BS8 1TR, United Kingdom
| | - SENG LING CHUNG
- Department of Mechanical Engineering, University of Bristol, Queens Building, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|