1
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Yan R, Wei D, Varshneya A, Shan L, Dai B, Asencio HJ, Gollamudi A, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. Cell 2024:S0092-8674(24)01088-2. [PMID: 39406242 DOI: 10.1016/j.cell.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.
Collapse
Affiliation(s)
- Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Avni Varshneya
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lynn Shan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hector J Asencio
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Aishwarya Gollamudi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
3
|
Osaki H, Nakazono T, Yabe K, Takata M, Mikaelyan A. Fight, retreat, repeat: The male-male agonistic behavior in the wood-feeding cockroach, Panesthia angustipennis spadica (Dictyoptera: Blattodea: Blaberidae). Ecol Evol 2024; 14:e70319. [PMID: 39429792 PMCID: PMC11486662 DOI: 10.1002/ece3.70319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Competition is one of the most critical factors affecting animal behaviors. Aggressive interactions are central to acquiring resources or mating partners. Agonistic behavior is more common among males than females. Although laboratory observations of these behaviors give detailed descriptions under controlled conditions, field observations without human intervention are required because those supply information that provides insights into their function. In this paper, we report on the field observation and auxiliary laboratory experiments of male-male agonistic behavior of a wood-feeding cockroach, Panesthia angustipennis, and discuss its strategy. In the field, a male pushed the opponent with the horn on the pronotum out of a gap between two logs, under which a female was. After pushing, the male repeatedly returned to a place close to the female, even if it did not subdue the opponent entirely. It suggests that the male-male agonistic behavior in P. angustipennis has both attack and avoidance. The bout was repeated as the ejected male reapproached the male. In contrast, the inferior male often escaped in the laboratory recording after field observation. Keeping the fighting experience for several days may contribute to the males avoiding a "losing battle." This study significantly enhances our understanding of the mating strategy of P. angustipennis through male-male agonistic behavior and provides possibilities for its cognitive aspects from the fighting experience.
Collapse
Affiliation(s)
- Haruka Osaki
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversitySakyo‐kuKyotoJapan
| | - Tomohiro Nakazono
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversitySakyo‐kuKyotoJapan
| | - Kiyotaka Yabe
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversitySakyo‐kuKyotoJapan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversitySakyo‐kuKyotoJapan
| | - Aram Mikaelyan
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Yan R, Wei D, Varshneya A, Shan L, Asencio HJ, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608611. [PMID: 39229201 PMCID: PMC11370333 DOI: 10.1101/2024.08.19.608611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect". Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice, which is supported by three stages of plasticity in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10-day winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, a transient local connectivity strengthening, and a delayed excitability increase. These plasticity events are causally linked. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the cascade of plasticity events as those during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning that ultimately leads to an increase in "aggressiveness" in repeated winners.
Collapse
|
5
|
de Camargo NF, de Oliveira HFM, Ribeiro JF, de Camargo AJA, Vieira EM. Morphological traits explain the individual position within resource-consumer networks of a Neotropical marsupial. Curr Zool 2024; 70:453-464. [PMID: 39176064 PMCID: PMC11336675 DOI: 10.1093/cz/zoad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/13/2023] [Indexed: 08/24/2024] Open
Abstract
Knowledge regarding the influence of individual traits on interaction patterns in nature can help understand the topological role of individuals within a network of intrapopulation interactions. We tested hypotheses on the relationships between individuals' positions within networks (specialization and centrality) of 4 populations of the mouse opossum Gracilinanus agilis and their traits (i.e., body length, body condition, tail length relative to body length, sex, reproductive condition, and botfly parasitism) and also seasonal effects in the Brazilian savanna. Individuals with lower body length, better body condition, and relatively shorter tail were more specialized (i.e., less connected within the network). Individuals were also more specialized and less connected during the warm-wet season. The relationship between individuals' position in the network and body traits, however, was independent of season. We propose that specialization may arise not only as a result of preferred feeding strategies by more capable individuals (i.e., those with better body condition and potentially prone to defend and access high-quality food resources) but also because of morphological constraints. Smaller/younger individuals (consequently with less experience in foraging) and short-tailed individuals (less skilled to explore the vertical strata of the vegetation) would feed only on a subset of the available food resources and consequently become more specialized. Moreover, individuals are more specialized during the warm-wet season because of high competition (population-dense period) and higher ecological opportunities (resource-rich period). Therefore, our study reveals the relevance of individual traits in shaping interaction patterns and specialization in populations.
Collapse
Affiliation(s)
- Nícholas F de Camargo
- Laboratório de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, CP 04457, Brasília, DF, 70910-900, Brazil
| | - Hernani F M de Oliveira
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos100, Curitiba, PR, 81531980, Brazil
| | - Juliana F Ribeiro
- Laboratório de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, CP 04457, Brasília, DF, 70910-900, Brazil
| | | | - Emerson M Vieira
- Laboratório de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, CP 04457, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
6
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
7
|
Zang C, Chung MHJ, Neeman T, Harrison L, Vinogradov IM, Jennions MD. Does losing reduce the tendency to engage with rivals to reach mates? An experimental test. Behav Ecol 2024; 35:arae037. [PMID: 38779595 PMCID: PMC11107846 DOI: 10.1093/beheco/arae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Male-male contests for access to females or breeding resources are critical in determining male reproductive success. Larger males and those with more effective weaponry are more likely to win fights. However, even after controlling for such predictors of fighting ability, studies have reported a winner-loser effect: previous winners are more likely to win subsequent contests, while losers often suffer repeated defeats. While the effect of winning-losing is well-documented for the outcome of future fights, its effect on other behaviors (e.g. mating) remains poorly investigated. Here, we test whether a winning versus losing experience influenced subsequent behaviors of male mosquitofish (Gambusia holbrooki) toward rivals and potential mates. We housed focal males with either a smaller or larger opponent for 24 h to manipulate their fighting experience to become winners or losers, respectively. The focal males then underwent tests that required them to enter and swim through a narrow corridor to reach females, bypassing a cylinder that contained either a larger rival male (competitive scenario), a juvenile or was empty (non-competitive scenarios). The tests were repeated after 1 wk. Winners were more likely to leave the start area and to reach the females, but only when a larger rival was presented, indicating higher levels of risk-taking behavior in aggressive interactions. This winner-loser effect persisted for at least 1 wk. We suggest that male mosquitofish adjust their assessment of their own and/or their rival's fighting ability following contests in ways whose detection by researchers depends on the social context.
Collapse
Affiliation(s)
- Chenke Zang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Meng-Han Joseph Chung
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra Australian Capital Territory, 2601, Australia
| | - Lauren Harrison
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ivan M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Velazquez-Hernandez G, Miller NW, Curtis VR, Rivera-Pacheco CM, Lowe SM, Moy SS, Zannas AS, Pégard NC, Burgos-Robles A, Rodriguez-Romaguera J. Social threat alters the behavioral structure of social motivation and reshapes functional brain connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599379. [PMID: 38948883 PMCID: PMC11212885 DOI: 10.1101/2024.06.17.599379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.
Collapse
|
9
|
Rystrom TL, Richter SH, Sachser N, Kaiser S. Social niche shapes social behavior and cortisol concentrations during adolescence in female guinea pigs. Horm Behav 2024; 162:105539. [PMID: 38608380 DOI: 10.1016/j.yhbeh.2024.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Individualized social niches arise in social groups, resulting in divergent social behavior profiles among group members. During sensitive life phases, the individualized social niche can profoundly impact the development of social behavior and associated phenotypes such as hormone (e.g. cortisol) concentrations. Focusing on adolescence, we investigated the relationship between the individualized social niche, social behavior, and cortisol concentrations (baseline and responsiveness) in female guinea pigs. Females were pair-housed in early adolescence (initial social pair formation), and a social niche transition was induced after six weeks by replacing the partner with either a larger or smaller female. Regarding social behavior, dominance status was associated with aggression in both the initial social pairs and after the social niche transition, and the results suggest that aggression was rapidly and completely reshaped after the social niche transition. Meanwhile, submissive behavior was rapidly reshaped after the social niche transition, but this was incomplete. The dominance status attained in the initial social pair affected the extent of submissive behavior after the social niche transition, and this effect was still detected three weeks after the social niche transition. Regarding cortisol concentrations, higher baseline cortisol concentrations were measured in dominant females in the initial social pairs. After the social niche transition, cortisol responsiveness significantly increased for the females paired with a larger, older female relative to those paired with a smaller, younger female. These findings demonstrate that the social niche during adolescence plays a significant role in shaping behavior and hormone concentrations in females.
Collapse
Affiliation(s)
- Taylor L Rystrom
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| |
Collapse
|
10
|
Hutchins M, Douglas T, Pollack L, Saltz JB. Genetic Variation in Male Aggression Is Influenced by Genotype of Prior Social Partners in Drosophila melanogaster. Am Nat 2024; 203:551-561. [PMID: 38635366 DOI: 10.1086/729463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSocial behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how developmental IGEs, which describe the effects of a prior social partner's genotype on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be estimated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the experiment, we measured aggressive behavior in 15 genotypic pairings (n = 600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found contextual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner's genotype on the focal individual's day 2 behavior depended on the genotypic identity of both the day 1 partner and the focal male. Importantly, the developmental IGEs in our system produced fundamentally different dynamics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence demonstrating developmental IGEs, a first step toward incorporating developmental IGEs into our understanding of behavioral evolution.
Collapse
|
11
|
Kleindorfer S, Krupka MA, Katsis AC, Frigerio D, Common LK. Aggressiveness predicts dominance rank in greylag geese: mirror tests and agonistic interactions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231686. [PMID: 38577211 PMCID: PMC10987982 DOI: 10.1098/rsos.231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
Individual differences in aggressiveness, if consistent across time and contexts, may contribute to the long-term maintenance of social hierarchies in complex animal societies. Although agonistic interactions have previously been used to calculate individuals' positions within a dominance hierarchy, to date the repeatability of agonistic behaviour has not been tested when calculating social rank. Here, we examined the consistency and social relevance of aggressiveness as a personality trait in a free-flying population of greylag geese (Anser anser). For each individual, we quantified (i) aggressiveness using a standardized mirror stimulation test and (ii) dominance ranking based on the number of agonistic interactions won and lost in a feeding context. We found that individual differences in aggressiveness were significantly repeatable and that individuals' aggressiveness predicted their dominance rank position. The flock showed a robust and intermediately steep dominance hierarchy. Social rank was higher in paired birds, males and older birds, and most agonistic interactions occurred between individuals with moderate rank differences. We suggest that selection favours aggressiveness as a personality trait associated with resource acquisition and social rank, whereby a dominance hierarchy may increase the benefits of group living and reduce costs over conflict within dyads.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- Konrad Lorenz Research Center for Behavior and Cognition, Core Facility of the University of Vienna, Grünau im Almtal, Vienna4645, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1030, Austria
- College of Science and Engineering, Flinders University, Adelaide, South Australia5042, Australia
| | - Mara A. Krupka
- Biology Department, Kalamazoo College, Kalamazoo, MI49006, USA
| | - Andrew C. Katsis
- Konrad Lorenz Research Center for Behavior and Cognition, Core Facility of the University of Vienna, Grünau im Almtal, Vienna4645, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1030, Austria
| | - Didone Frigerio
- Konrad Lorenz Research Center for Behavior and Cognition, Core Facility of the University of Vienna, Grünau im Almtal, Vienna4645, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1030, Austria
| | - Lauren K. Common
- Konrad Lorenz Research Center for Behavior and Cognition, Core Facility of the University of Vienna, Grünau im Almtal, Vienna4645, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1030, Austria
| |
Collapse
|
12
|
Prunier A, Trannoy S. Learning from fights: Males' social dominance status impact reproductive success in Drosophila melanogaster. PLoS One 2024; 19:e0299839. [PMID: 38452142 PMCID: PMC10919672 DOI: 10.1371/journal.pone.0299839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
In animals, the access to vital resources often relies on individuals' behavioural personality, strength, motivation, past experiences and dominance status. Dominant individuals would be more territorial, providing them with a better access to food resources and mate. The so-called winner and loser effects induce individuals' behavioural changes after experiencing a victory or a defeat, and lead to an individual persistent state influencing the outcome of subsequent fights. However, whether and how development of winner and loser effects affect individuals' fitness is controversial. The aim of this study is to evaluate how individuals' fitness can be influenced by previous fighting experience in Drosophila melanogaster. In this study, we assess various behavioural performances as indicators for dominant and subordinate fitness. Our results show that subordinates are less territorial than dominants although their locomotor abilities are not affected. We also demonstrate that in a non-competitive context, experiencing a defeat reduces males' motivation to court females but not the reproductive success while in a competitive context, it negatively affects males' reproductive success. However, we found no impact upon either males' ability to distinguish potential mates nor on females' choice of a specific mating partner. Overall, these results indicate that previous defeats reduce reproductive success, a commonly used estimate of individual fitness.
Collapse
Affiliation(s)
- Antoine Prunier
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| | - Severine Trannoy
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Chung MHJ, Head ML, Fox RJ, Jennions MD. Effects of past mating behavior versus past ejaculation on male mate choice and male attractiveness. Behav Ecol 2024; 35:arae002. [PMID: 38273897 PMCID: PMC10807976 DOI: 10.1093/beheco/arae002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Past reproductive effort allows males to assess their ability to acquire mates, but it also consumes resources that can reduce their future competitive ability. Few studies have examined how a male's reproductive history affects his subsequent mate choice, and, to date, no study has determined the relative contribution of past mating behavior and past ejaculate production because these two forms of investment are naturally highly correlated. Here, we disentangled the relative effects of past mating behavior and past ejaculate production in mosquitofish (Gambusia holbrooki) by experimentally preventing some males from ejaculating when trying to mate. We assessed the effect of mating behavior on mate choice by comparing males that had previously been with or without access to females and male rivals for 8 and 16 weeks and assessed the effect of ejaculation on mate choice by comparing males that either could or could not ejaculate when they had access to females for 16 weeks. Reproductive treatment did not affect male attractiveness, but it did affect male mate choice. Somewhat surprisingly, in five of the six treatment-by-age at testing combinations, males preferred a female in the vicinity of a male rival over a solitary female. This preference was marginally stronger for males that had previously engaged in mating behavior but were unaffected by past ejaculate production. We discuss the potential benefits to males of associating with another male when seeking mates. This is the first study to quantify the relative influence of pre- and post-copulatory reproductive investment on male mate choice.
Collapse
Affiliation(s)
- Meng-Han Joseph Chung
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Acton, Australian Capital Territory 2600, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Acton, Australian Capital Territory 2600, Australia
| | - Rebecca J Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Acton, Australian Capital Territory 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Acton, Australian Capital Territory 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
14
|
Valiño G, Dunlap K, Quintana L. Androgen receptors rapidly modulate non-breeding aggression in male and female weakly electric fish (Gymnotus omarorum). Horm Behav 2024; 159:105475. [PMID: 38154435 DOI: 10.1016/j.yhbeh.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.
Collapse
Affiliation(s)
- Guillermo Valiño
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Kent Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.
| |
Collapse
|
15
|
Ekanayake-Weber MS, O'Connor-Coates CJ, Koenig A. Steep Hierarchies without Skew? Modeling How Ecology and Decision-Making Shape Despotism of Relationships. Am Nat 2024; 203:189-203. [PMID: 38306279 DOI: 10.1086/727702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractAnimals can form dominance relationships that vary from highly unequal, or despotic, to egalitarian, and this variation likely impacts the fitness of individuals. How and why these differences in relationships and fitness exist among groups, populations, and species has been the subject of much debate. Here, we investigated the influence of two major factors: (1) spatial resource distribution and (2) the presence or absence of winner-loser effects. To determine the effects of these factors, we built an agent-based model that represented 10 agents directly competing over food resources on a simple landscape. By varying the food distribution and using either asymmetry of strength or experience, we contrasted four scenarios from which we recorded attack decisions, fight outcomes, and individual energy intake to calculate dominance hierarchy steepness and energetic skew. Surprisingly, resource distribution and winner-loser effects did not have the predicted effects on hierarchy steepness. However, skew in energy intake arose when resources were distributed heterogeneously, despite hierarchy steepness frequently being higher in the homogeneous resource scenarios. Thus, this study confirms some decades-old predictions about feeding competition but also casts doubt on the ability to infer energetic consequences from observations of agonistic interactions.
Collapse
|
16
|
Srinivasan A, Sajeevan A, Rajaramon S, David H, Solomon AP. Solving polymicrobial puzzles: evolutionary dynamics and future directions. Front Cell Infect Microbiol 2023; 13:1295063. [PMID: 38145044 PMCID: PMC10748482 DOI: 10.3389/fcimb.2023.1295063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
17
|
Richdon S, Price E, Wormell D, Jones G, McCabe G. Predictors of dominance rank and agonistic interactions in captive Livingstone's fruit bats. Curr Zool 2023; 69:694-702. [PMID: 37876641 PMCID: PMC10591144 DOI: 10.1093/cz/zoac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 10/26/2023] Open
Abstract
Male dominance hierarchies have been studied in many animals but rarely in bats (Chiroptera). The dominance rank of social animals may dictate access to resources and mates; therefore, it has important implications for an individual's fitness and is crucial for successful captive management. Between January and December 2018, at both Bristol Zoo Gardens (Bristol, UK) and Jersey Zoo (Jersey, British Isles), we observed 19 male Livingstone's fruit bats Pteropus livingstonii using focal follows for 345 h overall, noting the outcome of all agonistic interactions. We recorded instigators of interactions, along with winners and losers, and analyzed these data using the R-package "EloRating" to create Elo-rating temporal plots of dominance ranks. We used generalized linear mixed models and multiple linear regression to analyze interaction data and test hypotheses regarding predictors of dominance rank, frequency of agonistic interaction, and choice of interaction partner. Age was positively correlated with dominance rank up to around year 9, when an asymptote was attained. Highly ranked bats instigated the most agonistic interactions, and largely directed these interactions at bats with much lower rankings than themselves. Hierarchies were extremely stable throughout the data collection period at both sites. We conclude that Livingstone's fruit bats have a stable linear dominance hierarchy, with high-ranking, typically older males instigating the most interactions with lowest ranking males to secure dominance rank. This study adds to the limited discourse on Pteropus social behaviors, indicating that some bat species may have social systems similar in complexity to some nonhuman primates.
Collapse
Affiliation(s)
- Sarah Richdon
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Bristol Zoological Society, Clifton, Bristol, BS8 3HA, UK
| | - Eluned Price
- Jersey Zoo, La Profonde Rue, Jersey, JE3 5BP, UK
| | | | - Gareth Jones
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Grainne McCabe
- Bristol Zoological Society, Clifton, Bristol, BS8 3HA, UK
| |
Collapse
|
18
|
Yasuda CI, Koga T. Male Pagurus minutus hermit crabs use multiple types of information in decisions to give up male-male contests. Sci Rep 2023; 13:20654. [PMID: 38001142 PMCID: PMC10673833 DOI: 10.1038/s41598-023-47947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Organisms use information to make adaptive decisions in various contexts, including aggression. Potentially weaker, but better-informed, contestants should give up earlier to reduce fighting costs by using information related to their own lower success such as their size relative to their opponent and past contest outcomes to make this choice. Here, we examined whether intruders of the hermit crab Pagurus minutus could use information about their (1) smaller size, (2) past contest defeats, (3) opponent's past wins, or (4) relationship in the dominance hierarchy to their opponent when making a decision to give up during male-male contests for a female. In all trials, we randomly matched a smaller intruder with a larger opponent that was guarding a female. Our analyses suggest that P. minutus intruders can use all four types of information to decide whether to give up a contest without escalation or decrease its duration after escalation; it is the first species of Pagurus reported to do so, and the second reported to be able to distinguish familiar opponents from others in the context of male-male contests. These findings demonstrate the importance of cognitive abilities in minimizing costs when competing for vital resources.
Collapse
Affiliation(s)
- Chiaki I Yasuda
- Faculty of Education, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan.
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| | - Tsunenori Koga
- Faculty of Education, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
19
|
Suchon M, Ede T, Vandresen B, von Keyserlingk MA. Social housing improves dairy calves' performance in a competition test. JDS COMMUNICATIONS 2023; 4:479-483. [PMID: 38045900 PMCID: PMC10692294 DOI: 10.3168/jdsc.2023-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
On most dairy farms, calves are housed individually until weaning. However, depriving calves of an early social environment impairs behavioral development. We studied the effect of early-life social housing on calves' competitive skills. In this study, Holstein heifers were pseudorandomly assigned to either individual housing (n = 9) or pair housing (with a nonfocal companion, n = 9) at the age of 11 d. After 14 d of housing treatment, calves underwent a competition test for milk access against a group-reared calf; consisting of 2 test sessions per day for 5 d (session duration: 74.42 ± 2.29 s; mean ± standard error). Pair-housed calves performed better than individually housed calves: throughout the competition days, individually housed calves increased their latency to approach the milk bottle and decreased their time spent drinking in contrast to pair-housed calves, which exhibited stable latencies to reach the milk bottle and increased their time drinking. To control for the influence of personality on their competitive abilities, all calves were subjected to personality tests assessing boldness before being exposed to the housing treatment. Our findings indicate that calves assessed as bolder during the pretreatment personality test tended to approach the milk bottle faster. Our results provide additional evidence of the beneficial effects of social housing on dairy calves' behavioral development.
Collapse
Affiliation(s)
- Malina Suchon
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Thomas Ede
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Swine Teaching and Research Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348
| | - Bianca Vandresen
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Marina A.G. von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
20
|
Whitten CJ, Hooker MK, Wells AN, Kearney JN, Jenkins MS, Cooper MA. Sex differences in dominance relationships in Syrian hamsters. Physiol Behav 2023; 270:114294. [PMID: 37453726 PMCID: PMC10529893 DOI: 10.1016/j.physbeh.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dominance relationships are identified by changes in agonistic behavior toward specific individuals. While there are considerable individual and species differences in dominance relationships, sex differences are poorly understood in rodent models because aggression among female rodents is rare. The aim of this study was to characterize sex differences in the formation and maintenance of dominance relationships in same-sex pairs of male and female Syrian hamsters. We pooled data from multiple projects in our lab to evaluate dominance interactions in 68 male dyads and 88 female dyads. In each project, animals were matched with a partner similar in age, sex, and estrous cycle and we exposed animals to daily social encounters for two weeks in a resident-intruder format. We found that female hamsters were quicker to attack and attacked at higher rates compared to males regardless of dominance status. In addition, resident female hamsters were quicker to attack and attacked at higher rates than intruder females, but aggression in males did not depend on residency status. Female subordinates were quicker to submit and fled at higher rates from their dominant counterparts compared to male subordinates. Intruder subordinate females were quicker to submit and fled at higher rates than resident subordinate females. Females were also more resistant than males to becoming subordinate in that they fought back more consistently and were more likely to reverse their dominance status. These findings indicate that dominance relationships are less stable in females compared to males and that residency status has a larger impact on agonistic behavior in females than males. Overall, differences in how males and females display territorial aggression can lead to sex differences in the establishment and maintenance of dominance relationships.
Collapse
Affiliation(s)
- Conner J Whitten
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | | | - Ashley N Wells
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Jessica N Kearney
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew S Jenkins
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew A Cooper
- Department of Psychology, The University of Tennessee, Knoxville, USA.
| |
Collapse
|
21
|
Cabral JC, Garcia CM, Solano M, de Almeida RMM. More than a feeling: Effects of competitive asymmetry on human emotions. THE JOURNAL OF GENERAL PSYCHOLOGY 2023; 150:485-511. [PMID: 36579926 DOI: 10.1080/00221309.2022.2160427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/03/2022] [Indexed: 12/30/2022]
Abstract
Competitive interactions have important effects on human emotions. Both victory and defeat can evoke a wide range of emotional reactions, including joy, pride, anger, fear, sadness and shame. However, little is known about what determines this variety of contestants' affective responses. Therefore, the purpose of this study was to evaluate the effects of competitive asymmetry, a common and ecologically relevant feature of animal conflicts, on human emotional responses to winning or losing a contest. To test this hypothesis, we conducted two experiments, the first with high school students (n = 331) and the second with young athletes (n = 73), in which we manipulated the outcomes of successive matches in a non-athletic competition. Thus, by inducing the competitors' scores, ranging from closer to more decisive outcomes, we were able to define the degree of competitive asymmetry in victory and defeat conditions. We then assessed participants' emotional responses to a set of affective stimuli. In the defeat condition, we found in both studies an increase in the occurrence of anger and fear due to more symmetric contests. There were also more frequent reports of shame following more decisive defeats (Experiment 1) and of pride following closer victories (Experiment 2), which were seen neither for sadness nor joy in any of the studies. Supporting our hypothesis, emotional reactions triggered by asymmetries among contestants were consistent with the behavioral patterns commonly seen in symmetric and asymmetric animal conflict, such as dominance/aggressive and defensive/escape behaviors.
Collapse
Affiliation(s)
- J Centurion Cabral
- Federal University of Rio Grande do Sul (UFRGS)
- Federal University of Rio Grande (FURG)
| | | | | | | |
Collapse
|
22
|
Tinsley EK, Bailey NW. Intrasexual aggression reduces mating success in field crickets. Ecol Evol 2023; 13:e10557. [PMID: 37791290 PMCID: PMC10542478 DOI: 10.1002/ece3.10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Aggressive behaviour is thought to have significant consequences for fitness, sexual selection and the evolution of social interactions, but studies measuring its expression across successive encounters-both intra- and intersexual-are limited. We used the field cricket Teleogryllus oceanicus to evaluate factors affecting repeatability of male aggression and its association with mating success. We quantified focal male aggression expressed towards partners and received from partners in three successive, paired trials, each involving a different male partner. We then measured a proxy of focal male fitness in mating trials with females. The likelihood and extent of aggressive behaviour varied across trials, but repeatability was negligible, and we found no evidence that patterns of focal aggression resulted from interacting partner identity or prior experience. Males who consistently experienced aggression in previous trials showed decreased male mating 'efficiency'-determined by the number of females a male encountered before successfully mating, but the effect was weak and we found no other evidence that intrasexual aggression was associated with later mating success. During mating trials, however, we observed unexpected male aggression towards females, and this was associated with markedly decreased male mating efficiency and success. Our findings suggest that nonadaptive aggressive spillover in intersexual mating contexts could be an important but underappreciated factor influencing the evolution of intrasexual aggression.
Collapse
Affiliation(s)
- Eleanor K. Tinsley
- School of BiologyUniversity of St AndrewsSt AndrewsUK
- Institute of ZoologyZoological Society LondonLondonUK
- University College LondonLondonUK
| | | |
Collapse
|
23
|
Hermanussen M, Dammhahn M, Scheffler C, Groth D. Winner-loser effects improve social network efficiency between competitors with equal resource holding power. Sci Rep 2023; 13:14439. [PMID: 37660194 PMCID: PMC10475064 DOI: 10.1038/s41598-023-41225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Animal societies are structured of dominance hierarchy (DH). DH can be viewed as networks and analyzed by graph theory. We study the impact of state-dependent feedback (winner-loser effect) on the emergence of local dominance structures after pairwise contests between initially equal-ranking members (equal resource-holding-power, RHP) of small and large social groups. We simulated pairwise agonistic contests between individuals with and without a priori higher RHP by Monte-Carlo-method. Random pairwise contests between equal-ranking competitors result in random dominance structures ('Null variant') that are low in transitive triads and high in pass along triads; whereas state-dependent feedback ('Winner-loser variant') yields centralized 'star' structured DH that evolve from competitors with initially equal RHP and correspond to hierarchies that evolve from keystone individuals. Monte-Carlo simulated DH following state-dependent feedback show motif patterns very similar to those of a variety of natural DH, suggesting that state-dependent feedback plays a pivotal role in robust self-organizing phenomena that transcend the specifics of the individual. Self-organization based on state-dependent feedback leads to social structures that correspond to those resulting from pre-existing keystone individuals. As the efficiency of centralized social networks benefits both, the individual and the group, centralization of social networks appears to be an important evolutionary goal.
Collapse
Affiliation(s)
| | - M Dammhahn
- Behavioural Biology, University of Münster, Munster, Germany
| | - C Scheffler
- Institute of Biochemistry and Biology, Human Biology, University of Potsdam, Potsdam, Germany.
| | - D Groth
- Institute of Biochemistry and Biology, Bioinformatics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
24
|
Kareklas K, Teles MC, Nunes AR, Oliveira RF. Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology. J Neuroendocrinol 2023; 35:e13280. [PMID: 37165563 DOI: 10.1111/jne.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.
Collapse
Affiliation(s)
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
25
|
Li CY, Pan CY, Hsu Y. Age-dependent winner-loser effects in a mangrove rivulus fish, Kryptolebias marmoratus. Anim Cogn 2023; 26:1477-1488. [PMID: 37294474 DOI: 10.1007/s10071-023-01797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The outcomes of recent fights can provide individuals information about their relative fighting ability and affect their contest decisions (winner-loser effects). Most studies investigate the presence/absence of the effects in populations/species, but here we examine how they vary between individuals of a species in response to age-dependent growth rate. Many animals' fighting ability is highly dependent on body size, so rapid growth makes information from previous fights unreliable. Furthermore, fast-growing individuals are often at earlier developmental stages and are relatively smaller and weaker than most other individuals but are growing larger and stronger quickly. We therefore predicted winner-loser effects to be less detectable in individuals with high than low growth rates and to decay more quickly. Fast-growing individuals should also display stronger winner than loser effects, because a victory when small indicates a strength which will grow, whereas a loss might soon become irrelevant. We tested these predictions using naïve individuals of a mangrove killifish, Kryptolebias marmoratus, in different growth stages. Measures of contest intensity revealed winner/loser effects only for slow-growth individuals. Both fast- and slow-growth fish with a winning experience won more of the subsequent non-escalated contests than those with a losing experience; in fast-growth individuals this effect disappeared in 3 days, but in slow-growth fish it did not. Fast-growth individuals also displayed winner effects but not loser effects. The fish therefore responded to their contest experiences in a way which reflected value of the information from these experiences to them, consistent with our predictions.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, 4094 Campus Dr, College Park, MD, 20742, USA
| | - Chun-Ying Pan
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei, 11677, Taiwan
| | - Yuying Hsu
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei, 11677, Taiwan.
| |
Collapse
|
26
|
Catitti B, Kormann UG, van Bergen VS, Grüebler MU. Turning tables: food availability shapes dynamic aggressive behaviour among asynchronously hatching siblings in red kites Milvus milvus. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230328. [PMID: 37476514 PMCID: PMC10354486 DOI: 10.1098/rsos.230328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Aggression represents the backbone of dominance acquisition in several animal societies, where the decision to interact is dictated by its relative cost. Among siblings, such costs are weighted in the light of inclusive fitness, but how this translates to aggression patterns in response to changing external and internal conditions remains unclear. Using a null-model-based approach, we investigate how day-to-day changes in food provisioning affect aggression networks and food allocation in growing red kite (Milvus milvus) nestlings, whose dominance rank is largely dictated by age. We show that older siblings, irrespective of age, change from targeting only close-aged peers (close-competitor pattern) when food provisioning is low, to uniformly attacking all other peers (downward heuristic pattern) as food conditions improve. While food allocation was generally skewed towards the older siblings, the youngest sibling in the nest increased its probability of accessing food as more was provisioned and as downward heuristic patterns became more prominent, suggesting that different aggression patterns allow for catch-up growth after periods of low food. Our results indicate that dynamic aggression patterns within the nest modulate environmental effects on juvenile development by influencing the process of dominance acquisition and potentially impacting the fledging body condition, with far-reaching fitness consequences.
Collapse
Affiliation(s)
- Benedetta Catitti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Urs G. Kormann
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | | | | |
Collapse
|
27
|
Coppinger BA, Carlson NV, Freeberg TM, Sieving KE. Mixed-species groups and the question of dominance in the social ecosystem. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220097. [PMID: 37066641 PMCID: PMC10107276 DOI: 10.1098/rstb.2022.0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/10/2023] [Indexed: 04/18/2023] Open
Abstract
Dominance interactions and hierarchies are of long-standing interest in the field of animal behaviour. Currently, dominance hierarchies are viewed as complex social structures formed by repeated interactions between individuals. Most studies on this phenomenon come from single-species groups. However, animals are constantly surrounded by and interact with individuals of other species. Behaviour and social interactions of individuals can be shaped by the presence or behaviour of other species in their social ecosystem, which has important implications for social behaviour in groups. Given how ubiquitous mixed-species animal groups are, deeper study of the relationships between mixed-species group (MSG) structure and dominance will be key to understanding constraints on individual behaviour and decision making. Here we call for more research into dominance interactions among individuals in MSGs. Greater understanding of the dynamics of dominance relationships among individuals in MSGs, whose size and composition can change considerably over shorter and longer term time frames, will be crucial to understanding their structure and functioning. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- B. A. Coppinger
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - N. V. Carlson
- Graduate School of Science, Faculty of Science, Kyoto University, Kyoto, Japan
- Department of Biology, University of Victoria, Victoria, Canada V8W 2Y2
| | - T. M. Freeberg
- Department of Psychology, University of Tennessee, Knoxville, PA 37996, USA
| | - K. E. Sieving
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
28
|
Leimar O, McNamara JM. Game theory in biology: 50 years and onwards. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210509. [PMID: 36934762 PMCID: PMC10024991 DOI: 10.1098/rstb.2021.0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 03/20/2023] Open
Abstract
Game theory in biology gained prominence 50 years ago, when Maynard Smith & Price formulated the concept of an evolutionarily stable strategy (ESS). Their aim was to explain why conflicts between animals of the same species usually are of a 'limited war' type, not causing serious injury. They emphasized that game theory is an alternative to previous ideas about group selection, which were used by ethologists to explain limited aggression. Subsequently, the ESS concept was applied to many phenomena with frequency dependence in the evolutionary success of strategies, including sex allocation, alternative mating types, contest behaviour and signalling, cooperation, and parental care. Both the analyses of signalling and cooperation were inspired by similar problems in economics and attracted much attention in biology. Here we give a perspective on which of the ambitions in the field have been achieved, with a focus on contest behaviour and cooperation. We evaluate whether the game-theoretical study of the evolution of cooperation has measured up to expectations in explaining the behaviour of non-human animals. We also point to potentially fruitful directions for the field, and emphasize the importance of incorporating realistic behavioural mechanisms into models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - John M. McNamara
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
| |
Collapse
|
29
|
Schuett GW, Peterson KH, Powell AR, Taylor JD, Alexander JR, Lappin AK. Female-female aggression in the Gila monster ( Heloderma suspectum). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221466. [PMID: 37181791 PMCID: PMC10170349 DOI: 10.1098/rsos.221466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
Historically, the role of aggression in the social lives of animals overwhelmingly focused on males. In recent years, however, female-female aggression in vertebrates, particularly lizards, has received increasing attention. This growing body of literature shows both similarities and differences to aggressive behaviours between males. Here, we document female-female aggression in captive Gila monsters (Heloderma suspectum). Based on four unique dyadic trials (eight adult female subjects), we developed a qualitative ethogram. Unexpected and most intriguing were the prevalence and intensity of aggressive acts that included brief and sustained biting, envenomation, and lateral rotation (i.e. rolling of body while holding onto opponent with closed jaws). Given specific behavioural acts (i.e. biting) and the results of bite-force experiments, we postulate that osteoderms (bony deposits in the skin) offer some degree of protection and reduce the likelihood of serious injury during female-female fights. Male-male contests in H. suspectum, in contrast, are more ritualized, and biting is rarely reported. Female-female aggression in other lizards has a role in territoriality, courtship tactics, and nest and offspring guarding. Future behavioural research on aggression in female Gila monsters is warranted to test these and other hypotheses in the laboratory and field.
Collapse
Affiliation(s)
- Gordon W. Schuett
- Department of Biology | Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Chiricahua Desert Museum, Rodeo, NM, USA
| | | | - Anthony R. Powell
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - John D. Taylor
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - Jennifer R. Alexander
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - A. Kristopher Lappin
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
30
|
Haluts A, Jordan A, Gov NS. Modelling animal contests based on spatio-temporal dynamics. J R Soc Interface 2023; 20:20220866. [PMID: 37221864 PMCID: PMC10206449 DOI: 10.1098/rsif.2022.0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
We present a general theoretical model for the spatio-temporal dynamics of animal contests. Inspired by interactions between physical particles, the model is formulated in terms of effective interaction potentials, which map typical elements of contest behaviour into empirically verifiable rules of contestant motion. This allows us to simulate the observable dynamics of contests in various realistic scenarios, notably in dyadic contests over a localized resource. Assessment strategies previously formulated in game-theoretic models, as well as the effects of fighting costs, can be described as variations in our model's parameters. Furthermore, the trends of contest duration associated with these assessment strategies can be derived and understood within the model. Detailed description of the contestants' motion enables the exploration of spatio-temporal properties of asymmetric contests, such as the emergence of chase dynamics. Overall, our framework aims to bridge the growing gap between empirical capabilities and theory in this widespread aspect of animal behaviour.
Collapse
Affiliation(s)
- Amir Haluts
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alex Jordan
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78315, Germany
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
31
|
Mikami K, Watanabe N, Tochio T, Kimoto K, Akama F, Yamamoto K. Impact of Gut Microbiota on Host Aggression: Potential Applications for Therapeutic Interventions Early in Development. Microorganisms 2023; 11:microorganisms11041008. [PMID: 37110431 PMCID: PMC10141163 DOI: 10.3390/microorganisms11041008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aggression in the animal kingdom is a necessary component of life; however, certain forms of aggression, especially in humans, are pathological behaviors that are detrimental to society. Animal models have been used to study a number of factors, including brain morphology, neuropeptides, alcohol consumption, and early life circumstances, to unravel the mechanisms underlying aggression. These animal models have shown validity as experimental models. Moreover, recent studies using mouse, dog, hamster, and drosophila models have indicated that aggression may be affected by the "microbiota-gut-brain axis." Disturbing the gut microbiota of pregnant animals increases aggression in their offspring. In addition, behavioral analyses using germ-free mice have shown that manipulating the intestinal microbiota during early development suppresses aggression. These studies suggest that treating the host gut microbiota during early development is critical. However, few clinical studies have investigated gut-microbiota-targeted treatments with aggression as a primary endpoint. This review aims to clarify the effects of gut microbiota on aggression and discusses the therapeutic potential of regulating human aggression by intervening in gut microbiota.
Collapse
Affiliation(s)
- Katsunaka Mikami
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Natsuru Watanabe
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Keitaro Kimoto
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Fumiaki Akama
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Kenji Yamamoto
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
32
|
Heuristics Facilitates the Evolution of Transitive Inference and Social Hierarchy in a Large Group. Acta Biotheor 2023; 71:8. [PMID: 36867273 PMCID: PMC9984311 DOI: 10.1007/s10441-023-09459-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Transitive inference (TI) refers to social cognition that facilitates the discernment of unknown relationships between individuals using known relationships. It is extensively reported that TI evolves in animals living in a large group because TI could assess relative rank without deducing all dyadic relationships, which averts costly fights. The relationships in a large group become so complex that social cognition may not be developed adequately to handle such complexity. If members apply TI to all possible members in the group, TI requires extremely highly developed cognitive abilities especially in a large group. Instead of developing cognitive abilities significantly, animals may apply simplified TI we call reference TI in this study as heuristic approaches. The reference TI allows members to recognize and remember social interactions only among a set of reference members rather than all potential members. Our study assumes that information processes in the reference TI comprises (1) the number of reference members based on which individuals infer transitively, (2) the number of reference members shared by the same strategists, and (3) memory capacity. We examined how information processes evolve in a large group using evolutionary simulations in the hawk-dove game. Information processes with almost any numbers of reference members could evolve in a large group as long as the numbers of shared reference member are high because information from the others' experiences is shared. TI dominates immediate inference, which assesses relative rank on direct interactions, because TI could establish social hierarchy more rapidly applying information from others' experiences.
Collapse
|
33
|
Burciaga LM, Alcaraz G. Metabolic and behavioural effects of hermit crab shell removal techniques: Is heating less invasive than cracking? Anim Welf 2023; 32:e24. [PMID: 38487407 PMCID: PMC10936351 DOI: 10.1017/awf.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 03/04/2023]
Abstract
Hermit crabs (Paguroidea; Latreille 1802) offer great opportunities to study animal behaviour and physiology. However, the animals' size and sex cannot be determined when they are inside their shell; information crucial to many experimental designs. Here, we tested the effects of the two most common procedures used to make crabs leave their shells: heating the shell apex and cracking the shell with a bench press. We compared the effects of each of the two procedures on the metabolic rate, hiding time, and duration of the recovery time relative to unmanipulated hermit crabs. The hermit crabs forced to abandon their shell through heating increased their respiratory rate shortly after the manipulation (1 h) and recovered their metabolic rate in less than 24 h, as occurs in individuals suddenly exposed to high temperatures in the upper-intertidal zone. Hermit crabs removed from their shells via cracking spent more time hiding in their new shells; this effect was evident immediately after the manipulation and lasted more than 24 h, similar to responses exhibited after a life-threatening predator attack. Both methods are expected to be stressful, harmful, or fear-inducing; however, the temperature required to force the crabs to abandon the shell is below the critical thermal maxima of most inhabitants of tropical tide pools. The wide thermal windows of intertidal crustaceans and the shorter duration of consequences of shell heating compared to cracking suggest heating to be a less harmful procedure for removing tropical hermit crabs from their shells.
Collapse
Affiliation(s)
- Luis M Burciaga
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México04510, México
| | - Guillermina Alcaraz
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México04510, México
| |
Collapse
|
34
|
Toyoshima N, Matsuo T. Fight outcome influences male mating success in Drosophila prolongata. J ETHOL 2023. [DOI: 10.1007/s10164-023-00778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractThe outcomes of preceding fights can influence the probability of winning a subsequent fight, known as the winner/loser effect. However, we know relatively little about how the experience of a preceding fight influences subsequent mating success. Here, we investigated the influence of preceding fight outcomes on subsequent mating behavior in a fruit fly Drosophila prolongata. Subordinate males mated less in two-choice mating assays, showing that the fight outcome predicts male mating success in this species. This tendency remained in a no-choice mating assay where direct interaction between the dominant and subordinate males was eliminated, suggesting that the mating disadvantage of the subordinate males was dependent on the experience of the previous fight rather than the direct interference by the dominant male. When a no-choice mating assay was performed before the fight, the prospective subordinate males mated at the same rate as the dominant males, confirming that the intrinsic male qualities in fighting and mating performances were independent of each other in our experiments. These results indicated that the experience-dependent changes in the subordinate males led to the reduced mating success.
Collapse
|
35
|
Neural mechanism underlying depressive-like state associated with social status loss. Cell 2023; 186:560-576.e17. [PMID: 36693374 DOI: 10.1016/j.cell.2022.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Downward social mobility is a well-known mental risk factor for depression, but its neural mechanism remains elusive. Here, by forcing mice to lose against their subordinates in a non-violent social contest, we lower their social ranks stably and induce depressive-like behaviors. These rank-decline-associated depressive-like behaviors can be reversed by regaining social status. In vivo fiber photometry and single-unit electrophysiological recording show that forced loss, but not natural loss, generates negative reward prediction error (RPE). Through the lateral hypothalamus, the RPE strongly activates the brain's anti-reward center, the lateral habenula (LHb). LHb activation inhibits the medial prefrontal cortex (mPFC) that controls social competitiveness and reinforces retreats in contests. These results reveal the core neural mechanisms mutually promoting social status loss and depressive behaviors. The intertwined neuronal signaling controlling mPFC and LHb activities provides a mechanistic foundation for the crosstalk between social mobility and psychological disorder, unveiling a promising target for intervention.
Collapse
|
36
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
37
|
Zhao W, Yang N, Zhu L, Lin Y, Zhang Q, Shu G, Wang S, Gao P, Zhu X, Wang L, Jiang Q. Effect of different odors on the fighting behavior of weaning piglets after merging into a large pen. Anim Sci J 2023; 94:e13809. [PMID: 36653895 DOI: 10.1111/asj.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
In intensive pig production, the fighting behavior of weaning piglets after merging pens is relatively common. Fighting behavior not only easily causes injury in pigs but also affects the production performance of pigs. To reduce fighting behavior in farms, this study aimed to explore the possible effect of odorous substances on piglet fighting behavior after merging into a large pen. Six different sprays were tested: original creamy, cheese flavor, orange flavor, truffle, vanilla and pigpen flavor. In each experiment, two groups were set (one odor-sprayed and no sprayed control), and 12 pigs were used per group. After mixing, the frequency of occurrence of various piglet behaviors in different pens was recorded. During this period, salivary cortisol levels and skin lesion scores were evaluated. As a result, the piglets sprayed with the original creamy, cheese flavor and vanilla substances obtained significantly higher average daily gain and feed intake and showed a significantly lower incidence of fighting behavior, and the skin lesion score and salivary cortisol of piglets were also reduced significantly. All the other odorous substances had no significant effects on the fighting behavior and production performance of piglets.
Collapse
Affiliation(s)
- Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Na Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lei Zhu
- Chuxiong Anyou Livestock Co., Chuxiong, People's Republic of China
| | - Yisheng Lin
- Guangdong Ruisheng Technology Group Co., Ltd., Guangzhou, People's Republic of China
| | - Qiman Zhang
- Guangdong Ruisheng Technology Group Co., Ltd., Guangzhou, People's Republic of China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Hemelrijk CK, Seex L, Pederboni M, Ilany A, Geffen E, Koren L. Adult sex ratios and partial dominance of females over males in the rock hyrax. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1004919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Competition in group-living animals often results in a dominance hierarchy. The sex that is larger (usually the males) generally dominates the one that is smaller (the females). In certain species, however, despite being smaller, the females dominate several males. Female dominance over males may here arise from the self-reinforcing effects of winning and losing fights, the so-called winner-loser effect, as demonstrated in the model DomWorld. In the model, females may become dominant over more males when the percentage of males in the group is higher due to the higher intensity of aggression of males than females combined with the higher frequency of male–male fights. This association between female dominance and the percentage of adult males in the group has been confirmed in several primate species. Since in the model DomWorld this association requires few assumptions, it should be tested beyond primates. In the present study, we investigated it in the group-living rock hyrax (Procavia capensis), because it fulfilled most requirements. We used data on adults from six groups, collected over 20 years in natural colonies in Israel. We confirmed that body weight and intensity of aggression was greater in males than females. Three measurements indicated that females dominated ca. 70% of the males. Unexpectedly, only in the data where groups comprised several males, female dominance over males was shown to increase with male percentage, but not when including (the many) years in which groups comprised a single male. We attribute this non significance to the limited male–male interactions. One of the requirements of DomWorld is that individuals live in permanent groups, but in rock hyrax there were also bachelor males, that were not permanently associated with a group. Thus, we expected and confirmed that there was no association between the percentage of males and female dominance over males when including them. In conclusion, our results support the hypothesis that the winner-loser effect contributes to the dominance of females over males, and the association between the percentage of males in a group and female dominance over males requires an extra criterion: that most groups contain multiple males.
Collapse
|
39
|
Interrelationship among spatial cohesion, aggression rate, counter-aggression and female dominance in three lemur species. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
How social and ecological factors are associated with variation in dominance style across species of animals has been studied frequently, but the underlying processes are often not addressed. Theoretical research indicates that stronger spatial cohesion among individuals in a group causes a higher frequency of fighting and, thus, through the self-reinforcing effects of winning and losing fights, a stronger differentiation of the dominance hierarchy and dominance of females over more males. Our aim in the present paper is to study whether the same interrelationship among processes may underlie differences in dominance style among three species of lemur that differ in their degree of despotism: Lemur catta, Propithecus verreauxi and Eulemur rufifrons. We investigated their agonistic interactions and spatial cohesion based on 2752 h of observational data of 20 wild groups of these three species. We determined dominance style using the proportion of counter-aggression, with a lower proportion indicating a more despotic dominance style. We found that stronger spatial cohesion among individuals is associated with a higher rate of aggression, stronger despotism and dominance of females over more males. The results of our study emphasise the general importance of spatial cohesion in determining dominance style.
Significance statement
Theoretical studies have shown that the spatial configuration of individuals in a group influences the dominance style. In an agent-based model, DomWorld, individuals are guided by simple rules of grouping and fighting and emergent patterns of behaviour switch between resembling those of despotic or egalitarian primates depending on the degree of cohesion in groups. Yet this link has seldom been studied empirically. We, therefore, examine the relevance of spatial cohesion on patterns of behaviour of individuals in groups of three species of lemur. We confirm the predictions from the model and show that stronger spatial cohesion results in more frequent aggression, a more despotic dominance style and stronger female dominance over males. In light of this, we urge future research of animal dominance to include measures of cohesion.
Collapse
|
40
|
Amiri A, Bandani AR. Callosobruchus
larval competition and its consequences for male and female adults. Ethology 2022. [DOI: 10.1111/eth.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Azam Amiri
- College of Geography and Environmental Planning University of Sistan and Baluchestan Zahedan Iran
| | - Ali R. Bandani
- Department of Plant Protection College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
41
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Jennings DJ, Gammell MP. Bystander fallow deer engage in third-party behaviour based on similarities in contestant resource-holding potential. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
43
|
Lee VE, Arnott G, Turner SP. Social behavior in farm animals: Applying fundamental theory to improve animal welfare. Front Vet Sci 2022; 9:932217. [PMID: 36032304 PMCID: PMC9411962 DOI: 10.3389/fvets.2022.932217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A fundamental understanding of behavior is essential to improving the welfare of billions of farm animals around the world. Despite living in an environment managed by humans, farm animals are still capable of making important behavioral decisions that influence welfare. In this review, we focus on social interactions as perhaps the most dynamic and challenging aspects of the lives of farm animals. Social stress is a leading welfare concern in livestock, and substantial variation in social behavior is seen at the individual and group level. Here, we consider how a fundamental understanding of social behavior can be used to: (i) understand agonistic and affiliative interactions in farm animals; (ii) identify how artificial environments influence social behavior and impact welfare; and (iii) provide insights into the mechanisms and development of social behavior. We conclude by highlighting opportunities to build on previous work and suggest potential fundamental hypotheses of applied relevance. Key areas for further research could include identifying the welfare benefits of socio–positive interactions, the potential impacts of disrupting important social bonds, and the role of skill in allowing farm animals to navigate competitive and positive social interactions. Such studies should provide insights to improve the welfare of farm animals, while also being applicable to other contexts, such as zoos and laboratories.
Collapse
Affiliation(s)
- Victoria E. Lee
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
- *Correspondence: Victoria E. Lee
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, United Kingdom
| | - Simon P. Turner
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
44
|
Fülöp A, Németh Z, Kocsis B, Deák-Molnár B, Bozsoky T, Kőmüves G, Barta Z. Fighting ability, personality and melanin signalling in free-living Eurasian tree sparrows ( Passer montanus). PeerJ 2022; 10:e13660. [PMID: 35923892 PMCID: PMC9341450 DOI: 10.7717/peerj.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Individuals' access to resources is often decided during dyadic contests the outcome of which is determined by the fighting (or competitive) ability of the participants. Individuals' fighting ability (termed also as resource-holding power or potential, RHP) is usually associated with individual features (e.g., sex, age, body size) and is also frequently signalled through various ornaments like the black throat patch (bib) in many birds. Individual personality is a behavioural attribute often linked to fighting ability as well. Based on earlier studies, however, the relationship between personality and fighting ability is far from being straightforward. While accounting for sex and body size, we studied whether exploratory behaviour, an aspect of personality, predicts fighting ability when competing for food during winter in free-living Eurasian tree sparrows (Passer montanus). We also investigated whether the bib can serve as a potential indicator of individual competitiveness in this species. Methods We captured adult tree sparrows, marked them with a unique combination of colour rings, and collected data about the individuals' sex, body size, bib size and exploratory behaviour. Birds were then released and the agonistic behaviour of the marked individuals was recorded while foraging in groups on bird feeding platforms. Results The probability of winning a fight, a proxy for fighting ability of individuals, was not related to exploratory behaviour, in either of the sexes. However, bib size was positively related to probability of winning in females, but not in males. Body size was not associated with probability of winning neither in males, nor in females. Conclusions Our results suggest that, at least in tree sparrows, the outcome of dyadic encounters over food during the non-breeding period are not determined by the exploratory personality of individuals. However, our findings provide further support for a status signalling role of the black bib in tree sparrows, and hint for the first time that bib size might function as a status signal in females as well. Finally, our results do not confirm that body size could serve as an indicator of fighting ability (i.e., RHP) in this species.
Collapse
Affiliation(s)
- Attila Fülöp
- Juhász-Nagy Pál Doctoral School, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Zoltán Németh
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Bianka Kocsis
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Bettina Deák-Molnár
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Tímea Bozsoky
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Gabriella Kőmüves
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| |
Collapse
|
45
|
Wright J, Haaland TR, Dingemanse NJ, Westneat DF. A reaction norm framework for the evolution of learning: how cumulative experience shapes phenotypic plasticity. Biol Rev Camb Philos Soc 2022; 97:1999-2021. [PMID: 35790067 PMCID: PMC9543233 DOI: 10.1111/brv.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior experiences or exposures to environmental cues. We therefore suggest that all forms of learning (and some similar biological phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of phenotypic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting). Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatomical ‘states’ that mediate the carry‐over effects of cumulative environmental experiences on phenotypes across different time periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes. Learning and non‐learning plasticity interact whenever cumulative prior experience causes a modification in the reaction norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory] and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environments can also be accommodated within this approach. A common reaction norm approach should thus encourage productive cross‐fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we model the evolution of plasticity with and without learning under different levels of environmental estimation error to show how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments. Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.
Collapse
Affiliation(s)
- Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
| | - Thomas R. Haaland
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians University of Munich (LMU) 82152 Planegg‐Martinsried Germany
| | - David F. Westneat
- Department of Biology University of Kentucky 101 Morgan Building Lexington KY 40506‐0225 USA
| |
Collapse
|
46
|
George EM, Rosvall KA. Bidirectional relationships between testosterone and aggression: a critical analysis of four predictions. Integr Comp Biol 2022; 62:icac100. [PMID: 35759399 PMCID: PMC9494517 DOI: 10.1093/icb/icac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Experimentally elevated testosterone (T) often leads to enhanced aggression, with examples across many different species, including both males and females. Indeed, the relationship between T and aggression is among the most well-studied and fruitful areas of research at the intersection of behavioral ecology and endocrinology. This relationship is also hypothesized to be bidirectional (i.e., T influences aggression, and aggression influences T), leading to four key predictions: (1) Individuals with higher T levels are more aggressive than individuals with lower T. (2) Seasonal changes in aggression mirror seasonal changes in T secretion. (3) Aggressive territorial interactions stimulate increased T secretion. (4) Temporary elevations in T temporarily increase aggressiveness. These predictions cover a range of timescales, from a single snapshot in time, to rapid fluctuations, and to changes over seasonal timescales. Adding further complexity, most predictions can also be addressed by comparing among individuals or with repeated sampling within-individuals. In our review, we explore how the spectrum of results across predictions shapes our understanding of the relationship between T and aggression. In all cases, we can find examples of results that do not support the initial predictions. In particular, we find that predictions 1-3 have been tested frequently, especially using an among-individual approach. We find qualitative support for all three predictions, though there are also many studies that do not support predictions 1 and 3 in particular. Prediction 4, on the other hand, is something that we identify as a core underlying assumption of past work on the topic, but one that has rarely been directly tested. We propose that when relationships between T and aggression are individual-specific or condition-dependent, then positive correlations between the two variables may be obscured or reversed. In essence, even though T can influence aggression, many assumed or predicted relationships between the two variables may not manifest. Moving forward, we urge greater attention to understanding how and why it is that these bidirectional relationships between T and aggression may vary among timescales and among individuals. In doing so, we will move towards a deeper understanding on the role of hormones in behavioral adaptation.
Collapse
Affiliation(s)
- Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
47
|
Domínguez‐Godoy MA, Hudson R, Montoya B, Bastiaans E, Díaz de la Vega‐Pérez AH. Too cool to fight: Is ambient temperature associated with male aggressive behavior in the mesquite lizard? J Zool (1987) 2022. [DOI: 10.1111/jzo.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M. A. Domínguez‐Godoy
- Doctorado en Ciencias Biológicas Centro Tlaxcala de Biología de la Conducta Universidad Autónoma de Tlaxcala Tlaxcala Mexico
- Laboratorio de Herpetología Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - R. Hudson
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - B. Montoya
- Centro Tlaxcala de Biología de la Conducta Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| | - E. Bastiaans
- State University of New York College at Oneonta Oneonta NY USA
| | - A. H. Díaz de la Vega‐Pérez
- Consejo Nacional de Ciencia y Tecnología‐Centro Tlaxcala de Biología de la Conducta Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| |
Collapse
|
48
|
Ferreira-Fernandes E, Peça J. The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates. Front Cell Neurosci 2022; 16:874310. [PMID: 35634473 PMCID: PMC9133341 DOI: 10.3389/fncel.2022.874310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Social status is recognized as a major determinant of social behavior and health among animals; however, the neural circuits supporting the formation and navigation of social hierarchies remain under extensive research. Available evidence suggests the prefrontal cortex is a keystone in this circuit, but upstream and downstream candidates are progressively emerging. In this review, we compare and integrate findings from rodent and primate studies to create a model of the neural and cellular networks supporting social hierarchies, both from a macro (i.e., circuits) to a micro-scale perspective (microcircuits and synapses). We start by summarizing the literature on the prefrontal cortex and other relevant brain regions to expand the current “prefrontal-centric” view of social hierarchy behaviors. Based on connectivity data we also discuss candidate regions that might inspire further investigation, as well as the caveats and strategies that have been used to further our understanding of the biological substrates underpinning social hierarchy and dominance.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: João Peça
| |
Collapse
|
49
|
Křivan V, Cressman R. The asymmetric Hawk-Dove game with costs measured as time lost. J Theor Biol 2022; 547:111162. [DOI: 10.1016/j.jtbi.2022.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
50
|
Flanigan ME, Kash TL. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur J Neurosci 2022; 55:2404-2420. [PMID: 33006806 PMCID: PMC9906816 DOI: 10.1111/ejn.14991] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic, neuropeptide-rich node of the extended amygdala that has been implicated in responses to stress, drugs of abuse, and natural rewards. Its function is dysregulated in neuropsychiatric disorders that are characterized by stress- or drug-induced alterations in mood, arousal, motivation, and social behavior. However, compared to the BNST's role in mood, arousal, and motivation, its role in social behavior has remained relatively understudied. Moreover, the precise cell types and circuits underlying the BNST's role in social behavior have only recently begun to be explored using modern neuroscience techniques. Here, we systematically review the existing literature investigating the neurobiological substrates within the BNST that contribute to the coordination of various sex-dependent and sex-independent social behavioral repertoires, focusing largely on pharmacological and circuit-based behavioral studies in rodents. We suggest that the BNST coordinates social behavior by promoting appropriate assessment of social contexts to select relevant behavioral outputs and that disruption of socially relevant BNST systems by stress and drugs of abuse may be an important factor in the development of social dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC,Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC,Correspondence: Thomas L. Kash, John R. Andrews Distinguished Professor, Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA, , (919) 843-7867
| |
Collapse
|