1
|
Zhang S, Guo X, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Implications of different waterfowl farming on cephalosporin resistance: Investigating the role of bla CTX-M-55. Poult Sci 2023; 102:102929. [PMID: 37562134 PMCID: PMC10432832 DOI: 10.1016/j.psj.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
We investigated the cephalosporin resistance of Escherichia coli from waterfowl among different breeding mode farms. In 2021, we isolated 200 strains of E. coli from waterfowl feces samples collected from Sichuan, Heilongjiang, and Anhui provinces. The key findings are: Out of the 200 strains, 80, 80, and 40 strains were isolated from waterfowl feces samples in intensive, courtyard, and outdoor breeding mode farms, respectively. The overall positive rate of the ESBL phenotype, detecting by the double disk diffusion method, was 68.00% (136/200). In particular, the rates for intensive, courtyard, and outdoor breeding modes were 98.75%, 36.25%, and 70.00%, respectively. Results of MIC test showed drug resistance rates in the intensive breeding mode: 100.00% for cephalothin, 38.75% for cefoxitin, 100.00% for cefotaxime, and 100.00% for cefepime. In courtyard breeding mode, the corresponding rates were 100.00%, 40.00%, 63.75%, and 45.00%, respectively. In outdoor breeding mode, the corresponding rates were 100.00%, 52.50%, 82.50%, and 77.50%, respectively. The PCR results for blaCTX-M, blaTEM, blaOXA, and blaSHV showed the detection rate of blaCTX-M was highest at 75.50%, with blaCTX-M-55 is the main subtype gene, followed by blaTEM at 73.50%. We screened 58 donor strains carrying blaCTX-M-55, including 52 strains from the intensive breeding mode. These donor bacteria can transfer different plasmids to recipient E. coli J53, resulting in recipient bacteria acquiring cephalosporin resistance, and the conjugational transfer frequency ranged from 1.01 × 10-5 to 6.56 × 10-2. The transferred plasmids remained stable in recipient bacteria for up to several days without significant adaptation costs observed. During molecular typing of E. coli with conjugational transfer ability, the blaCTX-M-55 was found to be widely present in different ST strains with several phylogenetic groups. In summary, cephalosporin resistance of E. coli carried by waterfowl birds in intensive breeding mode farm was significantly higher than in courtyard and outdoor mode farms. The blaCTX-M-55 subtype gene was the prevalent ARGs and can be horizontally transferred through plasmids, which plays a key role in the spread of cephalosporin drug resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xiangyuan Guo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, P.R. China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China.
| |
Collapse
|
2
|
Fang Y, Tao S, Chen H, Xu Y, Chen L, Liang W. ESBL-Producing and Non-ESBL-Producing Escherichia coli Isolates from Urinary Tract Differ in Clonal Distribution, Virulence Gene Content and Phylogenetic Group. Infect Drug Resist 2023; 16:5563-5571. [PMID: 37641799 PMCID: PMC10460598 DOI: 10.2147/idr.s423860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose The objectives of this study are to determine the differences in clonality, virulence gene (VG) content and phylogenetic group between non extended-spectrum beta-lactamase-producing E. coli (non-ESBL-EC) and ESBL-EC isolates from urine. Patients and Methods This study characterized a total of 100 clinical E. coli isolates consecutively obtained from the inpatients hospitalized in The First Affiliated Hospital of Ningbo University in China by polymerase-chain reaction (PCR). Results Phylogenetic group B2 was found to be the most prevalent in both ESBL-EC and non-ESBL-EC group. Among 100 clinical isolates, the count of acquired virulence genes in group B2 was found to be significantly higher than that in group A, B1, and D (p <0.001). Additionally, the presence of content within virulence genes (the total number of virulence genes detected per isolate) in B2 of non-ESBL-EC and ESBL-EC showed a significant difference (p<0.001). ST131 was detected exclusively in ESBL-EC, while ST95 and ST73 were the main sequence types in non-ESBL-EC. Conclusion Our study demonstrated the different distribution of MLST, phylogenetic group in ESBL-EC and non-ESBL-EC group. The inverse association between beta-lactamase resistance and VG content performed in this study should get a lot more attention. At the same time, we should also be wary of the appearance of non-ESBL-EC isolates of group B2 harboring more virulence genes which will lead to high pathogenicity.
Collapse
Affiliation(s)
- Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Shuan Tao
- School of Medicine, Jiangsu University, Zhejiang, People’s Republic of China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhejiang, People’s Republic of China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, People’s Republic of China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
3
|
Nguyen QH, Le TTH, Nguyen ST, Nguyen KOT, Quyen DV, Hayer J, Bañuls AL, Tran TTT. Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. Front Microbiol 2023; 14:1094119. [PMID: 37323902 PMCID: PMC10265513 DOI: 10.3389/fmicb.2023.1094119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. Methods The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. Results The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the blaKPC-2, blaNDM-5, blaOXA-1, blaOXA-48, and blaOXA-181 β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. Discussion Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Thu Hang Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
| | - Son Thai Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
| | - Kieu-Oanh Thi Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
| | - Dong Van Quyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Juliette Hayer
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
- UMR MIVEGEC, University of Montpellier-IRD-CNRS, Montpellier, France
| | - Anne-Laure Bañuls
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
- UMR MIVEGEC, University of Montpellier-IRD-CNRS, Montpellier, France
| | - Tam Thi Thanh Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- LMI DRISA, IRD-USTH, Hanoi, Vietnam
| |
Collapse
|
4
|
Genomic characterisation of multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii in two intensive care units in Hanoi, Viet Nam: a prospective observational cohort study. THE LANCET. MICROBE 2022; 3:e857-e866. [PMID: 36206776 DOI: 10.1016/s2666-5247(22)00181-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Viet Nam has high rates of antimicrobial resistance (AMR) but little capacity for genomic surveillance. This study used whole genome sequencing to examine the prevalence and transmission of three key AMR pathogens in two intensive care units (ICUs) in Hanoi, Viet Nam. METHODS A prospective surveillance study of all adults admitted to ICUs at the National Hospital for Tropical Diseases and Bach Mai Hospital was done between June 19, 2017, and Jan 16, 2018. Clinical and environmental samples were cultured on selective media, characterised with MALDI TOF mass spectrometry, and sequenced with Illumina. Phylogenies based on the de-novo assemblies (SPAdes) were constructed with MAFFT (PARsnp), Gubbins, and RAxML. Resistance genes were detected with Abricate against the US National Center for Biotechnology Information database. FINDINGS 3153 Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii isolates from 369 patients were analysed. Phylogenetic analysis revealed predominant lineages within A baumannii (global clone 2, sequence types ST2 and ST571) and K pneumoniae (ST15, ST16, ST656, ST11, and ST147) isolates. Isolation from stool was most common with E coli (87·0%) followed by K pneumoniae (62·5%). Of the E coli, 85·0% carried a blaCTX-M variant, while 81·8% of K pneumoniae isolates carried blaNDM (54·4%), or blaKPC (45·1%), or both. Transmission analysis with single nucleotide polymorphisms identified 167 clusters involving 251 (68%) of 369 patients, in some cases involving patients from both ICUs. There were no clear differences between the lineages or AMR genes recovered between the two ICUs. INTERPRETATION This study represents the largest prospective surveillance study of key AMR pathogens in Vietnamese ICUs. Clusters of closely related isolates in patients across both ICUs suggests recent transmission before ICU admission in other health-care settings or in the community. FUNDING UK Medical Research Council Newton Fund, Viet Nam Ministry of Science and Technology, Wellcome Trust, Academy of Medical Sciences, Health Foundation, and UK National Institute for Health and Care Research Cambridge Biomedical Research Centre.
Collapse
|
5
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
6
|
Widyatama FS, Yagi N, Sarassari R, Shirakawa T, Le DT, Bui MHT, Kuntaman K, Hirai I. Analysis of the upstream genetic structures of the ISEcp1-bla CTX-M transposition units in Escherichia coli isolates carrying bla CTX-M obtained from the Indonesian and Vietnamese communities. Microbiol Immunol 2021; 65:542-550. [PMID: 34581451 DOI: 10.1111/1348-0421.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Escherichia coli have been found in healthy individuals in Indonesia and Vietnam. The ISEcp1-blaCTX-M transposition unit of ESBL-producing bacterial isolates has been considered responsible for the production of CTX-M type ESBL and it is important for the dissemination of blaCTX-M . This study aimed to characterize the upstream genetic structure (UGS) of E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes obtained from healthy individuals in Indonesia and Vietnam. A total of 501 CTX-M type ESBL-producing E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes were obtained from healthy individuals of the two countries in 2018. The UGSs of the ISEcp1-blaCTX-M transposition unit of the 501 ESBL-producing E. coli isolates were amplified by barcode-adaptor-ligation-mediated PCR and analyzed using the Nanopore sequencer. The obtained sequence information was used to classify the UGSs of the ISEcp1-blaCTX-M transposition unit. From the 501 ESBL-producing E. coli isolates, 502 UGSs were obtained, which were classified into 85 UGS types based on the sequence. ISEcp1 of 359 (71.5%) of the 502 UGSs was disrupted by gene insertion, and ISEcp1-blaCTX-M transposition unit of most (87.1%) of the determined UGSs was confirmed as plasmidic. Only 6 (7.1%) of the 85 UGS types were common to both countries. Our results indicated that many different UGSs of ISEcp1-blaCTX-M transposition units were detected in Indonesia and Vietnam; hence, we suggest that structurally different kinds of plasmids harboring blaCTX-M were separately distributed in the two countries.
Collapse
Affiliation(s)
- Fikri S Widyatama
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nobuyoshi Yagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rosantia Sarassari
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiro Shirakawa
- Department of Organ Therapeutics, Division of Urology, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of International Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Danh Tuyen Le
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Mai Huong Thi Bui
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Kuntaman Kuntaman
- Department of Clinical Microbiology, Dr Soetomo Hospital - Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
7
|
Truong DTQ, Hounmanou YMG, Dang STT, Olsen JE, Truong GTH, Tran NT, Scheutz F, Dalsgaard A. Genetic Comparison of ESBL-Producing Escherichia coli from Workers and Pigs at Vietnamese Pig Farms. Antibiotics (Basel) 2021; 10:1165. [PMID: 34680746 PMCID: PMC8532784 DOI: 10.3390/antibiotics10101165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
We analyzed and compared genomes of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli from pigs and pig farm workers at 116 farms in Vietnam. Analyses revealed the presence of blaCTX-M-55, blaCTX-M-27, blaCTX-M-15, blaCTX-M-14, blaCTX-M-3, blaCTX-M-65, blaCTX-M-24, blaDHA-1, and blaCMY2 in both hosts. Most strains from pigs contained quinolones (qnr) and colistin resistance genes (mcr-1 and mcr-3). Isolates predominantly harbored more than one plasmid replicon and some harbored plasmid replicons on the same contigs as the ESBL genes. Five strains from farm workers of ST38 (2), ST69 (1), and ST1722 (2) were classified as either uropathogenic E. coli (UPECHM)/extraintestinal pathogenic E. coli (ExPECJJ) or UPECHM, and the remaining were genetically distinct commensals. A high heterogeneity was found among the ESBL-producing E. coli from pigs and workers, with most isolates belonging to unrelated phylogroups, serogroups, and sequence types with >4046 Single-Nucleotide Polymorphisms-(SNPs). In comparing the genomes of pig isolates to those from humans, it appeared that ESBL-producing E. coli in workers did not predominantly originate from pigs but were rather host-specific. Nevertheless, the occurrence of ESBL-producing E. coli carrying plasmid-mediated colistin and quinolone resistance genes in pigs could represent a potential source for horizontal transmission to humans through food rather than direct contact.
Collapse
Affiliation(s)
- Duong Thi Quy Truong
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | | | - Son Thi Thanh Dang
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| | - Giang Thi Huong Truong
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - Nhat Thi Tran
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - Flemming Scheutz
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen S, Denmark;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| |
Collapse
|
8
|
Sharma L, Nagpal R, Jackson CR, Patel D, Singh P. Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. Sci Rep 2021; 11:3356. [PMID: 33558614 PMCID: PMC7870836 DOI: 10.1038/s41598-021-82823-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation.
Collapse
Affiliation(s)
- Laxmi Sharma
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Ravinder Nagpal
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Charlene R. Jackson
- grid.463419.d0000 0001 0946 3608Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture Agricultural Research Service, Athens, GA USA
| | - Dhruv Patel
- grid.255986.50000 0004 0472 0419Department of Biological Sciences, Florida State University, Tallahassee, FL USA
| | - Prashant Singh
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
9
|
Assessment of the Presence of Resistance Genes Detected from the Environment and Selected Food Products in Benin. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:8420590. [PMID: 33613674 PMCID: PMC7878073 DOI: 10.1155/2021/8420590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022]
Abstract
Gram-negative bacilli can spread from the environment and through food products. This study aimed to characterize ESBL production and virulence genes from multidrug-resistant Gram-negative bacilli isolated from specimen collected from the environment, kitchen, and food products. A total of 130 samples were collected at local markets in seven different communities in Benin (Abomey-Calavi, Ouidah, Bohicon, Abomey, Parakou, Djougou, and Grand-Popo). Samples were cultured on McConkey and ChromID™ ESBL agar plates. The isolates were identified by the API 20E gallery. An antibiotic susceptibility test was carried out, and the detection of ESBL production and virulence-associated genes was carried out by Polymerase Chain Reaction (PCR). The data collected was coded and analyzed using GraphPad prism 7 software and Excel. The software R was used to calculate the correlation coefficient between the results of the detection of ESBL+ on agar and by the effect of the double synergy. The results showed that sixty-three (63) bacterial strains were isolated from the 130 samples, of which the dominant species was Chryseomonas luteola (10/63). The kitchen samples were the most contaminated with 36.50%. More than 40% of the isolates were resistant to at least three different classes of antibiotics. Also, blaSHV gene was detected in 33.33% (21/63) of the isolates and in all isolates of Pseudomonas aeruginosa (5/5%). 11.11% (7/63) of isolates were virulent with dominance of the fimH gene, especially with Escherichia coli (83.33%). The kitchen samples showed a high prevalence of ESBL-producing strains with fimH gene. This raises the problem of non-compliance with hygiene rules in community cooking and food handling.
Collapse
|
10
|
Nguyen MN, Hoang HTT, Xavier BB, Lammens C, Le HT, Hoang NTB, Nguyen ST, Pham NT, Goossens H, Dang AD, Malhotra-Kumar S. Prospective One Health genetic surveillance in Vietnam identifies distinct bla CTX-M-harbouring Escherichia coli in food-chain and human-derived samples. Clin Microbiol Infect 2021; 27:1515.e1-1515.e8. [PMID: 33476808 DOI: 10.1016/j.cmi.2021.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVES We performed a One Health surveillance in Hanoi-a region with a high-density human population and livestock production, and a recognized hotspot of animal-associated antimicrobial resistance (AMR)-to study the contribution of blaCTX-M-carrying Escherichia coli and plasmids from food-animal sources in causing human community-acquired urinary tract infections (CA-UTIs). METHODS During 2014-2015, 9090 samples were collected from CA-UTI patients (urine, n = 8564), pigs/chickens from farms and slaughterhouses (faeces, carcasses, n = 448), and from the slaughterhouse environment (surface swabs, water, n = 78). E. coli was identified in 2084 samples. Extended-spectrum β-lactamase (ESBL) production was confirmed in 235 and blaCTX-M in 198 strains by PCR with short-read plasmid sequencing. Fourteen strains were long-read sequenced to enable plasmid reconstruction. RESULTS The majority of the ESBL-producing E. coli strains harboured blaCTX-M (n = 198/235, 84%). High clonal diversity (48 sequence types, STs) and distinct, dominant STs in human sources (ST1193, n = 38/137; ST131, n = 30/137) and non-human sources (ST155, n = 25/61) indicated lack of clonal transmission between habitats. Eight blaCTX-M variants were identified; five were present in at least two sample sources. Human and food-animal strains did not show similar plasmids carrying shared blaCTX-M genes. However, IS6 elements flanking ISEcp1-blaCTX-M-orf477/IS903B structures were common across habitats. CONCLUSIONS In this study, animal-associated blaCTX-ME. coli strains or blaCTX-M plasmids were not direct sources of CA-UTIs or ESBL resistance in humans, respectively, suggesting evolutionary bottlenecks to their adaptation to a new host species. Presence of common IS6 elements flanking blaCTX-M variants in different plasmid backbones, however, highlighted the potential of these transposable elements for AMR transmission either within or across habitats.
Collapse
Affiliation(s)
- Minh Ngoc Nguyen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Hai Thanh Le
- Vietnam National Children's Hospital, Hanoi, Viet Nam
| | | | | | - Ngoc Thi Pham
- National Institute of Veterinary Research, Hanoi, Viet Nam
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Anh Duc Dang
- Vietnam National Children's Hospital, Hanoi, Viet Nam
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Shafiq M, Huang J, Ur Rahman S, Shah JM, Chen L, Gao Y, Wang M, Wang L. High incidence of multidrug-resistant Escherichia coli coharboring mcr-1 and bla CTX-M-15 recovered from pigs. Infect Drug Resist 2019; 12:2135-2149. [PMID: 31410033 PMCID: PMC6643958 DOI: 10.2147/idr.s209473] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The coexistence of mobile colistin (COL)-resistant gene mcr-1 with extended-spectrum beta-lactamase (ESBL) gene in Escherichia coli has become a serious threat globally. The aim of this study was to investigate the increasing resistance to COL and in particular its coexistence with ESBL-producing E. coli recovered from pig farms in China. MATERIALS AND METHODS E. coli were isolated from 14 pig farms in Jiangsu China. Susceptibility testing was identified by micro-dilution method. PCR assay and nucleotide sequencing were used to detect COL-resistant genes, mcr-1 to -5, as well as ESBL genes, bla CTX-M, bla SHV and bla TEM. Conjugation experiment, plasmid replicon typing of the multidrug resistance (MDR), S1-PFGE and DNA southern hybridization were performed to study the transferability of these genes. RESULTS Overall, 275 E. coli isolates were recovered from a total of 432 cloacal and nasal swabs. More than 90% of the isolates were MDR, of which 70.18% were resistant to COL. Of these 275 isolates, mcr-1 was identified as the most predominant gene carried by 71.63% (197/275) of isolates, 39.59% (78/197) of the isolates were harboring both mcr-1 and ESBL genes (bla CTX-M, bla SHV and bla TEM). ESBL genotyping showed that bla CTX-M was the most predominant ESBL (68.49%) followed by bla SHV (16.4%) and bla TEM (15%). Sequencing revealed that the most common variants of bla CTX-M identified were, bla CTX-M-15 (69%), bla CTX-M-55 (29%) and bla CTX-M-1 (1.8%). IncHI2, IncFIB, IncFIC, IncN and IncX4 were found to be the most common Inc-types found both in donors and in transconjugants and were associated with the transfer of the mcr-1 and ESBL encoding genes. Six strains carried a total of five different plasmids: approximately 97-, 130-, 160-, 227- and 242-kb plasmids. CONCLUSION The coexistence of the mcr-1- and bla CTX-M-15-carrying isolates displaying high MDR, recovered from E. coli of pig origin, is a major concern for both humans and veterinary medicine.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Jinhu Huang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Section Microbiology, Abdul Wali Khan University, Mardan, KP, Pakistan
| | - Jan Mohammad Shah
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Li Chen
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Yi Gao
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Mengli Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Liping Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| |
Collapse
|
12
|
Yamamoto Y, Calvopina M, Izurieta R, Villacres I, Kawahara R, Sasaki M, Yamamoto M. Colistin-resistant Escherichia coli with mcr genes in the livestock of rural small-scale farms in Ecuador. BMC Res Notes 2019; 12:121. [PMID: 30832731 PMCID: PMC6399824 DOI: 10.1186/s13104-019-4144-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Objective Emergence and dissemination of colistin-resistant (Co-R) bacteria harboring mobile colistin resistance genes pose a threat for treatment of infections caused by multi-drug resistant bacteria. Although the worldwide spread of Co-R bacteria is known, the precise state of Co-R bacterial dissemination in livestock of Andean countries remains unclear. Therefore, we investigated mcr-containing Co-R Escherichia coli dissemination in livestock on small-scale farms in two socioecologically different regions of Ecuador: the Amazonian rain-forest and the Pacific Coast. Results Sixty-six rectal swab samples from 34 pigs and 32 chickens, from five farms in the two regions, were assessed for the dissemination of Co-R E. coli using the selective medium CHROMagar™ COL-APSE. mcr-containing Co-R E. coli were detected in the specimens at a high rate (47%; 31/66), but the detection rates of the two regions were not statistically different. Both chickens and pigs showed similar detection rates. All Co-R E. coli isolates harbored mcr-1. The minimum inhibitory concentrations of colistin were ≥ 8 mg/L, and 67.7% (21/31) of the Co-R isolates were multi-drug resistant. Pulsed-field gel electrophoresis revealed the limited relation between isolates. Thus, we revealed the high rate of widespread dissemination of Co-R bacteria in livestock regardless of the socioecological conditions in Ecuador.
Collapse
Affiliation(s)
- Yoshimasa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | - Ricardo Izurieta
- College of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Masahiro Sasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
13
|
Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2019; 2019:3862949. [PMID: 30906330 PMCID: PMC6397973 DOI: 10.1155/2019/3862949] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Waterborne Escherichia coli are a major reservoir of antimicrobial resistance (AMR), including but not limited to extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) mechanisms. This study quantified and described ESBL- and KPC-producing E. coli in Northern Colorado from sewer water, surface water, and influent and effluent wastewater treatment sources. Total detected bacteria and E. coli abundances, and the percentages that contain ESBL and/or KPC, were compared between water sources. Seventy E. coli isolates from the various waters had drug resistance validated with a panel of 17 antibiotics using a broth microdilution assay. The diverse drug resistance observed across E. coli isolates was further documented by polymerase chain reaction of common ESBL genes and functional relatedness by PhenePlate assay-generated dendrograms (n=70). The total E. coli abundance decreased through the water treatment process as expected, yet the percentages of E. coli harboring ESBL resistance were increased (1.70%) in surface water. Whole-genome sequencing analysis was completed for 185 AMR genes in wastewater E. coli isolates and confirmed the presence of diverse AMR gene classes (e.g., beta-lactams and efflux pumps) in isolate genomes. This study completed surveillance of AMR patterns in E. coli that reside in environmental water systems and suggests a role for integrating both phenotypic and genotypic profiling beyond ESBL and KPC mechanisms. AMR screening via multiple approaches may assist in the prevention of drug-resistant E. coli spread from waters to animals and humans.
Collapse
|