1
|
Cui Y, Leong WH, Liu CF, Xia K, Feng X, Gergely C, Liu RB, Li Q. Revealing Capillarity in AFM Indentation of Cells by Nanodiamond-Based Nonlocal Deformation Sensing. NANO LETTERS 2022; 22:3889-3896. [PMID: 35507005 DOI: 10.1021/acs.nanolett.1c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.
Collapse
Affiliation(s)
- Yue Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weng-Hang Leong
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chu-Feng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kangwei Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xi Feng
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Csilla Gergely
- Laboratoire Charles Coulomb, University of Montpellierr, CNRS, Montpellier, 34095, France
| | - Ren-Bao Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
2
|
Jung P, Zhou X, Iden S, Bischoff M, Qu B. T cell stiffness is enhanced upon formation of immunological synapse. eLife 2021; 10:66643. [PMID: 34313220 PMCID: PMC8360652 DOI: 10.7554/elife.66643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
T cells are activated by target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions. However, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~60 nm. Using primary human CD4+ T cells, we show that when T cells form IS with stimulating antibody-coated surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is enhanced both at the lamellipodia and on the cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell-body-stiffening, suggesting different regulatory mechanisms of IS-induced stiffening at the lamellipodia and the cell body.
Collapse
Affiliation(s)
- Philipp Jung
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Xiangda Zhou
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Iden
- Cell and Developmental Biology, School of Medicine, Center of Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
3
|
Quaroni L. Imaging and spectroscopy of domains of the cellular membrane by photothermal-induced resonance. Analyst 2020; 145:5940-5950. [PMID: 32706007 DOI: 10.1039/d0an00696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use photothermal induced resonance (PTIR) imaging and spectroscopy, in resonant and non-resonant mode, to study the cytoplasmic membrane and surface of intact cells. Non-resonant PTIR images apparently provide rich details of the cell surface. However, we show that non-resonant image contrast does not arise from the infrared absorption of surface molecules and is instead dominated by the mechanics of tip-sample contact. In contrast, spectra and images of the cellular surface can be selectively obtained by tuning the pulsing structure of the laser to restrict thermal wave penetration to the surface layer. Resonant PTIR images reveal surface structures and domains that range in size from about 20 nm to 1 μm and are associated with the cytoplasmic membrane and its proximity. Resonant PTIR spectra of the cell surface are qualitatively comparable to far-field IR spectra and provide the first selective measurement of the IR absorption spectrum of the cellular membrane of an intact cell. In resonant PTIR images, signal intensity, and therefore contrast, can be ascribed to a variety of factors, including mechanical, thermodynamic and spectroscopic properties of the cellular surface. While PTIR images are difficult to interpret in terms of spectroscopic absorption, they are easy to collect and provide unique contrast mechanisms without any exogenous labelling. As such they provide a new paradigm in cellular imaging and membrane biology and can be used to address a range of critical questions, from the nature of membrane lipid domains to the mechanism of pathogen infection of a host cell.
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Kékicheff P, Contal C. Cationic-Surfactant-Coated Mica Surfaces below the Critical Micellar Concentration: 1. Patchy Structures As Revealed by Peak Force Tapping AFM Mode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3087-3107. [PMID: 30691263 DOI: 10.1021/acs.langmuir.8b03781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The morphology and structure of the self-assembled surfactant aggregates at the solid-liquid interface remain controversial. For the well-studied system of cationic cetyltrimethylammonium bromide (C16TAB) adsorbed onto the opposite negatively charged, atomically smooth mica surface, a variety of surface aggregates have been previously reported: AFM imaging pointing to cylinders and surface micelles as opposed to mono/bilayer-like structures revealed by neutron and X-ray reflectometry, NMR, spectroscopic techniques, and numerical simulations. To reconcile with the latter results, we revisit the morphometry of the C16TAB-coated mica surfaces using the recent peak force tapping (PFT-AFM) mode that allows fragile structures to be imaged with the lowest possible applied force. The evolution of the structural organization at the mica-water interface is investigated above the Krafft boundary over a wide concentration range (from 1/1000 to 2 cmc) after long equilibration times to ensure thermodynamic equilibrium. A complex but fairly complete picture has emerged: At very low concentrations, the C16TAB surfactants adsorb as isolated molecules before forming small clusters. Above 1/140 cmc, monolayer-like stripes are formed. As the concentration is increased, a connected network of these patches progressively covers the mica substrate. Above 1/80 cmc, bilayer-like patches build on top of the underlying monolayer, and ultimately a complete bilayer (at about half the cmc) covers the entire mica substrate. Thanks to the less invasive PFT-AFM imaging mode, our observations not only agree with the theoretical predictions and numerical simulations but also reconcile, at last, the direct observations by means of the AFM imaging technique with the results obtained with other techniques.
Collapse
Affiliation(s)
- Patrick Kékicheff
- Université de Strasbourg, CNRS Institut Charles Sadron , 23 rue du Loess , 67034 Strasbourg Cedex 2, France
| | - Christophe Contal
- Université de Strasbourg, CNRS Institut Charles Sadron , 23 rue du Loess , 67034 Strasbourg Cedex 2, France
| |
Collapse
|
5
|
Wang N, Zhang M, Chang Y, Niu N, Guan Y, Ye M, Li C, Tang J. Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy. Talanta 2018; 191:461-468. [PMID: 30262086 DOI: 10.1016/j.talanta.2018.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process during which cells lose their characteristic structure and biochemical properties then adopt typical features of a mesenchymal phenotype. Alterations in the morphology, structure, and mechanical properties of cells during EMT are associated with a series of pathological processes. In this work, atomic force microscopy (AFM) is used for investigating effects of TGF-β1 on morphology and mechanical properties of living bladder cancer cells (T24) during EMT for the first time. High-resolution topography and Young's modulus images of T24 living cell are obtained simultaneously. The results show that TGF-β1 is able to induce EMT, leading to the increased F-actin stress fibers and much higher Young's modulus values of T24 living cells. It reveals that the cytoskeletal-associated cell architecture is closely related to the mechanical dynamics of T24 cells during EMT. This work provides new insights into the changes of cell morphology and mechanical properties during EMT. It enables us to gain a deeper understanding of the growth, development and metastasis of the bladder cancer cell therefore it is of great significance for studying the pathological mechanism of cells at single-cell level.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yaqing Chang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Ye
- Bruker (Beijing) Scientific Technology Co., Ltd, Shanghai 200233, PR China
| | - Chen Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
6
|
Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep 2016; 6:37268. [PMID: 27853300 PMCID: PMC5112533 DOI: 10.1038/srep37268] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/27/2016] [Indexed: 01/14/2023] Open
Abstract
Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM.
Collapse
|
7
|
Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE. PeakForce Tapping resolves individual microvilli on living cells. J Mol Recognit 2016; 29:95-101. [PMID: 26414320 PMCID: PMC5054848 DOI: 10.1002/jmr.2510] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany
| | - Izhar Medalsy
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Shuiqing Hu
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Andrea L Slade
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - James E Shaw
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| |
Collapse
|
8
|
Ciasca G, Papi M, Di Claudio S, Chiarpotto M, Palmieri V, Maulucci G, Nocca G, Rossi C, De Spirito M. Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level. NANOSCALE 2015; 7:17030-17037. [PMID: 26415744 DOI: 10.1039/c5nr03145a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to pass through the microcirculation, red blood cells (RBCs) need to undergo extensive deformations and to recover the original shape. This extreme deformability is altered by various pathological conditions. On the other hand, an altered RBC deformability can have major effects on blood flow and can lead to pathological implications. The study of the viscoelastic response of red blood cells to mechanical stimuli is crucial to fully understand deformability changes under pathological conditions. However, the typical erythrocyte biconcave shape hints to a complex and intrinsically heterogeneous mechanical response that must be investigated by using probes at the nanoscale level. In this work, the local viscoelastic behaviour of healthy and pathological red blood cells was probed by Atomic Force Microscopy (AFM). Our results clearly show that the RBC stiffness is not spatially homogeneous, suggesting a strong correlation with the erythrocyte biconcave shape. Moreover, our nanoscale mapping highlights the key role played by viscous forces, demonstrating that RBCs do not behave as pure elastic bodies. The fundamental role played by viscous forces is further strengthened by the comparison between healthy and pathological (diabetes mellitus) RBCs. It is well known that pathological RBCs are usually stiffer than the healthy ones. Our measures unveil a more complex scenario according to which the difference between normal and pathological red blood cells does not merely lie in their stiffness but also in a different dynamical response to external stimuli that is governed by viscous forces.
Collapse
Affiliation(s)
- G Ciasca
- Instituto di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K. Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 2015; 107:1082-1089. [PMID: 25185544 DOI: 10.1016/j.bpj.2014.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022] Open
Abstract
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.
Collapse
Affiliation(s)
- Peter Loskill
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Pedro M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Antibiotic-induced modifications of the stiffness of bacterial membranes. J Microbiol Methods 2013; 93:80-4. [DOI: 10.1016/j.mimet.2013.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 11/23/2022]
|
11
|
Roduit C, Longo G, Benmessaoud I, Volterra A, Saha B, Dietler G, Kasas S. Stiffness tomography exploration of living and fixed macrophages. J Mol Recognit 2012; 25:241-6. [DOI: 10.1002/jmr.2184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C. Roduit
- Département de Biologie Cellulaire et de Morphologie; Université de Lausanne; CH-1015; Lausanne; Switzerland
| | - G. Longo
- Institut de Physique des Systèmes Biologiques; École Polytechnique Fédérale de Lausanne (EPFL); CH-1015; Lausanne; Switzerland
| | - I. Benmessaoud
- Institut de Physique des Systèmes Biologiques; École Polytechnique Fédérale de Lausanne (EPFL); CH-1015; Lausanne; Switzerland
| | - A. Volterra
- Département de Biologie Cellulaire et de Morphologie; Université de Lausanne; CH-1015; Lausanne; Switzerland
| | - B. Saha
- National Centre for Cell Science; Ganeshkhind; Pune; 411007; India
| | - G. Dietler
- Institut de Physique des Systèmes Biologiques; École Polytechnique Fédérale de Lausanne (EPFL); CH-1015; Lausanne; Switzerland
| | | |
Collapse
|
12
|
Longo G, Rio LM, Roduit C, Trampuz A, Bizzini A, Dietler G, Kasas S. Force volume and stiffness tomography investigation on the dynamics of stiff material under bacterial membranes. J Mol Recognit 2012; 25:278-84. [DOI: 10.1002/jmr.2171] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Giovanni Longo
- Laboratory of Physics of Living Matter; EPFL; Lausanne; Switzerland
| | - Laura Marques Rio
- Infectious Diseases Service, Department of Medicine; University Hospital Lausanne (CHUV); Lausanne; Switzerland
| | - Charles Roduit
- Laboratory of Physics of Living Matter; EPFL; Lausanne; Switzerland
| | - Andrej Trampuz
- Infectious Diseases Service, Department of Medicine; University Hospital Lausanne (CHUV); Lausanne; Switzerland
| | | | - Giovanni Dietler
- Laboratory of Physics of Living Matter; EPFL; Lausanne; Switzerland
| | - Sandor Kasas
- Laboratory of Physics of Living Matter; EPFL; Lausanne; Switzerland
| |
Collapse
|
13
|
Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012; 178:1-7. [PMID: 22369932 DOI: 10.1016/j.jsb.2012.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 12/29/2022]
Abstract
The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype.
Collapse
Affiliation(s)
- Celine Heu
- University of Franche-Comte, Laboratoire de Biologie Cellulaire, EA4268, FED4234, UFR des Sciences Medicales & Pharmaceutiques, 19 rue Ambroise Pare, 25030 Besancon cedex, France.
| | | | | | | |
Collapse
|
14
|
Herruzo ET, Garcia R. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2012; 3:198-206. [PMID: 22496992 PMCID: PMC3323908 DOI: 10.3762/bjnano.3.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/03/2012] [Indexed: 05/23/2023]
Abstract
Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip-surface forces such as the Lennard-Jones and Derjaguin-Muller-Toporov forces.
Collapse
Affiliation(s)
- Elena T Herruzo
- IMM-Instituto de Microelectrónica de Madrid (CSIC). C Isaac Newton 8, 28760 Madrid, Spain
| | - Ricardo Garcia
- IMM-Instituto de Microelectrónica de Madrid (CSIC). C Isaac Newton 8, 28760 Madrid, Spain
| |
Collapse
|
15
|
Pletikapić G, Berquand A, Radić TM, Svetličić V. QUANTITATIVE NANOMECHANICAL MAPPING OF MARINE DIATOM IN SEAWATER USING PEAK FORCE TAPPING ATOMIC FORCE MICROSCOPY(1). JOURNAL OF PHYCOLOGY 2012; 48:174-85. [PMID: 27009662 DOI: 10.1111/j.1529-8817.2011.01093.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is generally accepted that a diatom cell wall is characterized by a siliceous skeleton covered by an organic envelope essentially composed of polysaccharides and proteins. Understanding of how the organic component is associated with the silica structure provides an important insight into the biomineralization process and patterning on the cellular level. Using a novel atomic force microscopy (AFM) imaging technique (Peak Force Tapping), we characterized nanomechanical properties (elasticity and deformation) of a weakly silicified marine diatom Cylindrotheca closterium (Ehrenb.) Reimann et J. C. Lewin (strain CCNA1). The nanomechanical properties were measured over the entire cell surface in seawater at a resolution that was not achieved previously. The fibulae were the stiffest (200 MPa) and the least deformable (only 1 nm). Girdle band region appeared as a series of parallel stripes characterized by two sets of values of Young's modulus and deformation: one for silica stripes (43.7 Mpa, 3.7 nm) and the other between the stripes (21.3 MPa, 13.4 nm). The valve region was complex with average values of Young's modulus (29.8 MPa) and deformation (10.2 nm) with high standard deviations. After acid treatment, we identified 15 nm sized silica spheres in the valve region connecting raphe with the girdle bands. The silica spheres were neither fused together nor forming a nanopattern. A cell wall model is proposed with individual silica nanoparticles incorporated in an organic matrix. Such organization of girdle band and valve regions enables the high flexibility needed for movement and adaptation to different environments while maintaining the integrity of the cell.
Collapse
Affiliation(s)
- Galja Pletikapić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, CroatiaBruker Nano GmbH, Mannheim 68165, GermanyDivision for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Alexandre Berquand
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, CroatiaBruker Nano GmbH, Mannheim 68165, GermanyDivision for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Tea Mišić Radić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, CroatiaBruker Nano GmbH, Mannheim 68165, GermanyDivision for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Vesna Svetličić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, CroatiaBruker Nano GmbH, Mannheim 68165, GermanyDivision for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia
| |
Collapse
|
16
|
Thickness profiling of formaldehyde-fixed cells by transmission-through-dye microscopy. Biotechniques 2011; 50:389-96. [PMID: 21781039 DOI: 10.2144/000113684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/26/2011] [Indexed: 11/23/2022] Open
Abstract
Conventional light microscopy techniques are poorly suited for imaging the vertical cell dimension. This can be accomplished using transmission-through-dye (TTD) imaging, in which cell thickness is directly converted into image intensity in the presence of extracellular dye with strong absorption. We have previously described applications of TTD to living cells using the dye Acid Blue 9 (AB9) to generate contrast. In this work, we investigated the possibility of extending TTD to chemically fixed cells. This would depend on preservation of cell impermeability to the dye; by using a method based on fluorescence quenching, we found that formaldehyde-fixed cells remain impermeable to AB9. Fixation enables imaging of cell surfaces in the presence of high concentrations of AB9, bringing the vertical resolution to several nanometers per pixel; that is at least an order of magnitude better than resolution achievable with live cells. TTD images collected with high-NA objectives are often contaminated by Becke lines resulting from intracellular organelles, and we show how to distinguish them from features on the cell surface. Quantification of cell thickness and volume on fixed cells is also possible during the early stages of fixation; this can be useful, for example, for measuring volume kinetics following rapid introduction of a stimulus.
Collapse
|
17
|
Caplan J, Niethammer M, Taylor RM, Czymmek KJ. The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional. Curr Opin Struct Biol 2011; 21:686-93. [PMID: 21782417 DOI: 10.1016/j.sbi.2011.06.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
Abstract
Correlative microscopy is a sophisticated approach that combines the capabilities of typically separate, but powerful microscopy platforms: often including, but not limited, to conventional light, confocal and super-resolution microscopy, atomic force microscopy, transmission and scanning electron microscopy, magnetic resonance imaging and micro/nano CT (computed tomography). When targeting rare or specific events within large populations or tissues, correlative microscopy is increasingly being recognized as the method of choice. Furthermore, this multi-modal assimilation of technologies provides complementary and often unique information, such as internal and external spatial, structural, biochemical and biophysical details from the same targeted sample. The development of a continuous stream of cutting-edge applications, probes, preparation methodologies, hardware and software developments will enable realization of the full potential of correlative microscopy.
Collapse
Affiliation(s)
- Jeffrey Caplan
- Delaware Biotechnology Institute Bio-Imaging Center, University of Delaware, Newark, DE 19711, United States
| | | | | | | |
Collapse
|