1
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
2
|
Ippolitov D, Arreza L, Munir MN, Hombach-Klonisch S. Brain Microvascular Pericytes—More than Bystanders in Breast Cancer Brain Metastasis. Cells 2022; 11:cells11081263. [PMID: 35455945 PMCID: PMC9028330 DOI: 10.3390/cells11081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in the brain metastatic process.
Collapse
Affiliation(s)
- Danyyl Ippolitov
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Leanne Arreza
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Maliha Nuzhat Munir
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
- Department of Pathology, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
- Correspondence:
| |
Collapse
|
3
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
4
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Lozzi B, Huang TW, Sardar D, Huang AYS, Deneen B. Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. Front Neurosci 2020; 14:61. [PMID: 32153350 PMCID: PMC7046629 DOI: 10.3389/fnins.2020.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and perform a myriad of vital functions, however, the nature of their diversity remains a longstanding question in neuroscience. Using transcription factor motif discovery analysis on region-specific gene signatures from astrocytes we uncovered universal and region-specific transcription factor expression profiles. This analysis revealed that motifs for Nuclear Factor-I (NFI) are present in genes enriched in astrocytes from all regions, with NFIB and NFIX exhibiting pan-astrocyte expression in the olfactory bulb, hippocampus, cortex, and brainstem. Further analysis into region-specific motif patterns, identified Nkx3-1, Stat4, Pgr, and Nkx6-1 as prospective region-specific transcription factors. Validation studies revealed that Nkx6-1 is exclusively expressed in astrocytes in the brainstem and associates with the promoters of several brainstem specific target genes. These studies illustrate the presence of multiple transcriptional layers in astrocytes across diverse brain regions and provide a new entry point for examining how astrocyte diversity is specified and maintained.
Collapse
Affiliation(s)
- Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Jure I, De Nicola AF, Labombarda F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen Res 2019; 14:2029-2034. [PMID: 31397329 PMCID: PMC6788243 DOI: 10.4103/1673-5374.262570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new role has emerged for progesterone after discovering its potent actions away from reproduction in both the central and the peripheral nervous system. The aim of the present report is to discuss progesterone’s mechanisms of action involved in myelination, remyelination and neuroinflammation. The pivotal role of the classic progesterone receptor is described and evidence is compiled about progesterone’s direct effects on oligodendrocyte linage and its indirect effects on oligodendrocyte precursor cell differentiation by decreasing the neuroinflammatory environment.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Liu X, Liu H, Xu S, Tang Z, Xia W, Cheng Z, Li W, Jin Y. Spinal translocator protein alleviates chronic neuropathic pain behavior and modulates spinal astrocyte-neuronal function in rats with L5 spinal nerve ligation model. Pain 2016; 157:103-116. [PMID: 26307860 DOI: 10.1097/j.pain.0000000000000339] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies reported the translocator protein (TSPO) to play critical roles in several kinds of neurological diseases including the inflammatory and neuropathic pain. However, the precise mechanism remains unclear. This study was undertaken to explore the distribution and possible mechanism of spinal TSPO against chronic neuropathic pain (CNP) in a rat model of L5 spinal nerve ligation (SNL). Our results showed that TSPO was upregulated in a time-related manner in the spinal dorsal horn after SNL. Spinal TSPO was predominately expressed in astrocytes. A single intrathecal injection of TSPO agonist Ro5-4864, but not TSPO antagonist PK11195, alleviated the mechanical allodynia in a dose-dependent manner. A single intraspinal injection of TSPO overexpression lentivirus (LV-TSPO), but not TSPO inhibited lentivirus (LV-shTSPO), also relieved the development of CNP. Intrathecal administration of 2 μg Ro5-4864 on day 3 induced a significant increase of TSPO protein content at the early stage (days 5-7) while inhibited the TSPO activation during the chronic period (days 14-21) compared with the control group. Ro5-4864 suppressed the astrocytes and p-JNK1 activation and decreased the CXCL1 expression in both in vivo and in vitro studies. Ro5-4864 also attenuated the spinal CXCR2 and p-ERK expressions. These results suggested that early upregulation of TSPO could elicit potent analgesic effects against CNP, which might be partly attributed to the inhibition of CXCL1-CXCR2-dependent astrocyte-to-neuron signaling and central sensitization. TSPO signaling pathway may present a novel strategy for the treatment of CNP.
Collapse
Affiliation(s)
- Xiaoming Liu
- Pain Management Center, Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China Laboratory of Medical Neurobiology, School of Basic Medical Science, Nanjing University of Traditional Chinese Medicine, Nanjing, China School of Bio-medical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
9
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
10
|
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Mol Neurobiol 2016:10.1007/s12035-015-9651-y. [PMID: 26746666 PMCID: PMC4938789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/17/2015] [Indexed: 02/28/2024]
Abstract
Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15 mg/kg) or vehicle at 1 h followed by subcutaneous injections at 6, 24, and 48 h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China.
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Mol Neurobiol 2016. [PMID: 26746666 DOI: 10.1007/s12035-015-9651-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15 mg/kg) or vehicle at 1 h followed by subcutaneous injections at 6, 24, and 48 h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China.
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Pei JC, Liu CM, Lai WS. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci 2014; 8:126. [PMID: 24782733 PMCID: PMC3995064 DOI: 10.3389/fnbeh.2014.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neuregulin 1 (NRG1) might be involved in the neurodevelopment, neural plasticity, GABAergic neurotransmission, and pathogenesis of schizophrenia. NRG1 is abundantly expressed in the hippocampus, and emerging studies have begun to reveal the link between NRG1 signaling and cognitive deficits in schizophrenic patients. Because the transmembrane domain of NRG1 is vital for both forward and reverse signaling cascades, new Nrg1-deficient mice that carry a truncation of the transmembrane domain of the Nrg1 gene were characterized and used in this study to test a NRG1 loss-of-function hypothesis for schizophrenia. Both male and female Nrg1 heterozygous mutant mice and their wild-type littermates were used in a series of 4 experiments to characterize the impact of Nrg1 on behavioral phenotypes and to determine the importance of Nrg1 in the regulation of hippocampal neuromorphology and local GABAergic interneurons. First, a comprehensive battery of behavioral tasks indicated that male Nrg1-deficient mice exhibited significant impairments in cognitive functions. Second, pharmacological challenges were conducted and revealed that Nrg1 haploinsufficiency altered GABAergic activity in males. Third, although no genotype-specific neuromorphological alterations were found in the hippocampal CA1 pyramidal neurons, significant reductions in the hippocampal expressions of GAD67 and parvalbumin were revealed in the Nrg1-deficient males. Fourth, chronic treatment with valproate rescued the observed behavioral deficits and hippocampal GAD67 reduction in Nrg1-deficient males. Collectively, these results indicate the potential therapeutic effect of valproate and the importance of Nrg1 in the regulation of cognitive functions and hippocampal GABAergic interneurons, especially in males.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Laboratory of Integrated Neuroscience and Ethology, Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital Taipei, Taiwan
| | - Wen-Sung Lai
- Laboratory of Integrated Neuroscience and Ethology, Department of Psychology, National Taiwan University Taipei, Taiwan ; Graduate Institute of Brain and Mind Sciences, National Taiwan University Taipei, Taiwan ; Neurobiology and Cognitive Science Center, National Taiwan University Taipei, Taiwan
| |
Collapse
|
13
|
Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S. Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur J Neurosci 2013; 38:2693-715. [PMID: 23758598 DOI: 10.1111/ejn.12268] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/14/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) results in degeneration of oligodendrocytes that leads to demyelination and axonal dysfunction. Replacement of oligodendrocytes is impaired after SCI, owing to the improper endogenous differentiation and maturation of myelinating oligodendrocytes. Here, we report that SCI-induced dysregulation of neuregulin-1 (Nrg-1)-ErbB signaling may underlie the poor replacement of oligodendrocytes. Nrg-1 and its receptors, ErbB-2, ErbB-3, and ErbB-4, play essential roles in several aspects of oligodendrocyte development and physiology. In rats with SCI, we demonstrate that the Nrg-1 level is dramatically reduced at 1 day after injury, with no restoration at later time-points. Our characterisation shows that Nrg-1 is mainly expressed by neurons, axons and oligodendrocytes in the adult spinal cord, and the robust and lasting decrease in its level following SCI reflects the permanent loss of these cells. Neural precursor cells (NPCs) residing in the spinal cord ependyma express ErbB receptors, suggesting that they are responsive to Nrg-1 availability. In vitro, exogenous Nrg-1 enhanced the proliferation and differentiation of spinal NPCs into oligodendrocytes while reducing astrocyte differentiation. In rats with SCI, recombinant human Nrg-1β1 treatment resulted in a significant increase in the number of new oligodendrocytes and the preservation of existing ones after injury. Nrg-1β1 administration also enhanced axonal preservation and attenuated astrogliosis, tumor necrosis factor-α release and tissue degeneration after SCI. The positive effects of Nrg-1β1 treatment were reversed by inhibiting its receptors. Collectively, our data provide strong evidence to suggest an impact of Nrg-1-ErbB signaling on endogenous oligodendrocyte replacement and maintenance in the adult injured spinal cord, and its potential as a therapeutic target for SCI.
Collapse
Affiliation(s)
- Marie-Krystel Gauthier
- Departments of Physiology and Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
14
|
Karl T, Arnold JC. What does a mouse tell us about neuregulin 1-cannabis interactions? Front Cell Neurosci 2013; 7:18. [PMID: 23447438 PMCID: PMC3581817 DOI: 10.3389/fncel.2013.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/10/2013] [Indexed: 12/23/2022] Open
Abstract
The link between cannabis and psychosis has been debated although there is substantial epidemiological evidence showing that cannabis increases the risk of psychosis. It has been hypothesized that schizophrenia patients carrying particular risk genes might be more sensitive to the psychosis-inducing effects of cannabis than other patients and healthy test subjects. Here we review the effects of cannabinoids on a mutant mouse model for the schizophrenia candidate gene neuregulin 1 (Nrg1). The studies suggest a complex interaction between cannabis and Nrg1: the neuro-behavioral effects of cannabinoids were different in Nrg1 mutant and control mice and depended on exposure time, sex, and age of test animals. This research provides the first evidence of complex cannabis-Nrg1 interactions suggesting Nrg1 as a prime target for future clinical investigations. Furthermore, it highlights that animal model research can broaden our understanding of the complex multi-factorial etiology of schizophrenia. Finally, the findings are important to preventive psychiatry: if the genes that confer genetic vulnerability to cannabis-induced psychosis were identified patients at-high risk could be forewarned of the potential dangers of cannabis abuse.
Collapse
Affiliation(s)
- Tim Karl
- Neuroscience Research Australia Randwick, NSW, Australia ; Schizophrenia Research Institute Darlinghurst, NSW, Australia ; School of Medical Sciences, University of New South Wales NSW, Australia
| | | |
Collapse
|
15
|
Ferando I, Mody I. GABAAreceptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia 2012; 53 Suppl 9:89-101. [DOI: 10.1111/epi.12038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Wang CC, Chen PS, Hsu CW, Wu SJ, Lin CT, Gean PW. Valproic acid mediates the synaptic excitatory/inhibitory balance through astrocytes--a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:111-20. [PMID: 22343008 DOI: 10.1016/j.pnpbp.2012.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/30/2022]
Abstract
Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and inhibitory synapse formation.
Collapse
Affiliation(s)
- Chao-Chuan Wang
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
18
|
Hussain R, El-Etr M, Gaci O, Rakotomamonjy J, Macklin WB, Kumar N, Sitruk-Ware R, Schumacher M, Ghoumari AM. Progesterone and Nestorone facilitate axon remyelination: a role for progesterone receptors. Endocrinology 2011; 152:3820-31. [PMID: 21828184 PMCID: PMC6285137 DOI: 10.1210/en.2011-1219] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enhancing the endogenous capacity of myelin repair is a major therapeutic challenge in demyelinating diseases such as multiple sclerosis. We found that progesterone and the synthetic 19-norprogesterone derivative 16-methylene-17α-acetoxy-19-norpregn-4-ene-3,20-dione (Nestorone) promote the remyelination of axons by oligodendrocytes after lysolecithin-induced demyelination in organotypic cultures of cerebellar slices taken from postnatal rats or mice. The intracellular progesterone receptors (PR) mediate the proremyelinating actions of Nestorone, because they are not observed in slices from PR knockout mice. Notably, Nestorone was less efficient in heterozygous mice, expressing reduced levels of PR, suggesting PR haploinsufficiency in myelin repair. Using mice expressing the enhanced green fluorescent protein (EGFP) under the control of the proteolipid gene promoter, we showed that both progesterone and Nestorone strongly increased the reappearance of cells of the oligodendroglial lineage in the demyelinated slices. In contrast to Nestorone, the pregnane derivative medroxyprogesterone acetate had no effect. The increase in oligodendroglial cells by Nestorone resulted from enhanced NG2(+) and Olig2(+) oligodendrocyte progenitor cell (OPC) recruitment. In cocultures of lysolecithin-demyelinated cerebellar slices from wild-type mice apposed to brain stem slices of proteolipid gene promoter-EGFP mice, Nestorone stimulated the migration of OPC towards demyelinated axons. In this coculture paradigm, Nestorone indeed markedly increased the number of EGFP(+) cells migrating into the demyelinated cerebellar slices. Our results show that Nestorone stimulates the recruitment and maturation of OPC, two steps which are limiting for efficient myelin repair. They may thus open new perspectives for the use of progestins, which selectively target PR, to promote the endogenous regeneration of myelin.
Collapse
Affiliation(s)
- Rashad Hussain
- Unité Mixte de Recherche 788 Institut National de la Santé et de la Recherche Médicale and University Paris-Sud 11, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Freese C, Garratt AN, Fahrenholz F, Endres K. The effects of alpha-secretase ADAM10 on the proteolysis of neuregulin-1. FEBS J 2009; 276:1568-80. [PMID: 19220854 DOI: 10.1111/j.1742-4658.2009.06889.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although ADAM10 is a major alpha-secretase involved in non-amyloidogenic processing of the amyloid precursor protein, several additional substrates have been identified, most of them in vitro. Thus, therapeutical approaches for the prevention of Alzheimer's disease by upregulation of this metalloproteinase may have severe side effects. In the present study, we examined whether the ErbB receptor ligand neuregulin-1, which is essential for myelination and other important neuronal functions, is cleaved by ADAM10. Studies with beta- and gamma-secretase inhibitors, as well as with the metalloproteinase inhibitor GM6001, revealed an inhibition of neuregulin-1 processing in human astroglioma cell line U373; however, specific RNA interference-induced knockdown of ADAM10 remained without effect. In vivo investigations of mice overexpressing either ADAM10 or dominant negative ADAM10 showed unaltered cleavage of neuregulin-1 compared to wild-type animals. As a consequence, the myelin sheath thickness of peripheral nerves was unaffected in mice with altered ADAM10 activity. Thus, although the beta-secretase BACE-1 acts as a neuregulin-1 sheddase, ADAM10 does not lead to altered neuregulin-1 processing either in cell culture or in vivo. Adverse reactions of an ADAM10-based therapy of Alzheimer's disease due to neuregulin-1 cleavage are therefore unlikely.
Collapse
Affiliation(s)
- Christian Freese
- Institute of Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
20
|
Cao L, Tanga FY, Deleo JA. The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience 2008; 158:896-903. [PMID: 18976692 DOI: 10.1016/j.neuroscience.2008.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/01/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
We have previously demonstrated that CNS toll-like receptor 4 (TLR4) plays a key role in the development of behavioral hypersensitivity in a rodent model of neuropathic pain, spinal nerve L5 transection (L5Tx). TLR4 is a well-known receptor for lipopolysaccharide (LPS) in innate immune responses. In the current study, we further investigated the role of CD14, an accessory molecule in the LPS-TLR4 signaling pathway, in the development of L5Tx-induced neuropathic pain. CD14 knockout (KO) mice displayed significantly decreased behavioral sensitivity (mechanical allodynia and thermal hyperalgesia) as early as day 1 post-L5Tx, indicating a nociceptive role of CD14. By flow cytometric analyses, we observed significantly elevated microglial surface CD14 expression in the ipsilateral lumbar spinal cord 3 days post-L5Tx, as well as remarkable increases in microglial size (via forward scatter (FSC)) and granularity (via side scatter (SSC)). Further, intrathecal injection of soluble CD14 induced significantly greater mechanical hypersensitivity in wild type (C3H/HeN) mice compared with TLR4-deficient (C3H/HeJ) mice. Together, these data demonstrate that CD14 plays a contributing role in TLR4-dependent nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- L Cao
- Department of Anesthesiology, HB 7125, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
21
|
LaCroix-Fralish ML. Sex-specific pain modulation: The growth factor, neuregulin-1, as a pro-nociceptive cytokine. Neurosci Lett 2008; 437:184-7. [DOI: 10.1016/j.neulet.2008.02.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|