1
|
Kashobwe L, Sadrabadi F, Brunken L, Coelho ACMF, Sandanger TM, Braeuning A, Buhrke T, Öberg M, Hamers T, Leonards PEG. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Toxicology 2024; 506:153862. [PMID: 38866127 DOI: 10.1016/j.tox.2024.153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industrial and consumer products. They have gained attention due to their ubiquitous occurrence in the environment and potential for adverse effects on human health, often linked to immune suppression, hepatotoxicity, and altered cholesterol metabolism. This study aimed to explore the impact of ten individual PFAS, 3 H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP/Adona), ammonium perfluoro-(2-methyl-3-oxahexanoate) (HFPO-DA/GenX), perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) on the lipid metabolism in human hepatocyte-like cells (HepaRG). These cells were exposed to different concentrations of PFAS ranging from 10 µM to 5000 µM. Lipids were extracted and analyzed using liquid chromatography coupled with mass spectrometry (LC- MS-QTOF). PFOS at 10 µM and PFOA at 25 µM increased the levels of ceramide (Cer), diacylglycerol (DAG), N-acylethanolamine (NAE), phosphatidylcholine (PC), and triacylglycerol (TAG) lipids, while PMPP/Adona, HFPO-DA/GenX, PFBA, PFBS, PFHxA, and PFHxS decreased the levels of these lipids. Furthermore, PFOA and PFOS markedly reduced the levels of palmitic acid (FA 16.0). The present study shows distinct concentration-dependent effects of PFAS on various lipid species, shedding light on the implications of PFAS for essential cellular functions. Our study revealed that the investigated legacy PFAS (PFOS, PFOA, PFBA, PFDA, PFHxA, PFHxS, and PFNA) and alternative PFAS (PMPP/Adona, HFPO-DA/GenX and PFBS) can potentially disrupt lipid homeostasis and metabolism in hepatic cells. This research offers a comprehensive insight into the impacts of legacy and alternative PFAS on lipid composition in HepaRG cells.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lars Brunken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Carolina M F Coelho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Chaudron Y, Boyer C, Marmonier C, Plourde M, Vachon A, Delplanque B, Taouis M, Pifferi F. A vegetable fat-based diet delays psychomotor and cognitive development compared with maternal dairy fat intake in infant gray mouse lemurs. Commun Biol 2024; 7:609. [PMID: 38769408 PMCID: PMC11106064 DOI: 10.1038/s42003-024-06255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Dairy fat has a unique lipid profile; it is rich in short- and medium-chain saturated fatty acids that induce ketone production and has a balanced ω6/ω3 ratio that promotes cognitive development in early life. Moreover, the high consumption of vegetable oils in pregnant and lactating women raises concerns regarding the quality of lipids provided to offspring. Here, we investigate maternal dairy fat intake during gestation and lactation in a highly valuable primate model for infant nutritional studies, the gray mouse lemur (Microcebus murinus). Two experimental diets are provided to gestant mouse lemurs: a dairy fat-based (DF) or vegetable fat-based diet (VF). The psychomotor performance of neonates is tested during their first 30 days. Across all tasks, we observe more successful neonates born to mothers fed a DF diet. A greater rate of falls is observed in 8-day-old VF neonates, which is associated with delayed psychomotor development. Our findings suggest the potential benefits of lipids originating from a lactovegetarian diet compared with those originating from a vegan diet for the psychomotor development of neonates.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| | - Constance Boyer
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Corinne Marmonier
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
| | - Bernadette Delplanque
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Mohammed Taouis
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Fabien Pifferi
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
3
|
El-Zenary AS, Ying Y, Michael Hulet R, Harvatine KJ, Elkin RG. Effect of lowering the amount of dietary linoleic acid on tissue omega-3 fatty acid contents of broilers fed supplemental flaxseed oil from 18 to 35 days of age. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
4
|
Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019; 11:nu11092200. [PMID: 31547352 PMCID: PMC6769731 DOI: 10.3390/nu11092200] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Lifestyle is a key modifiable risk factor involved in the manifestation of metabolic syndrome and, in particular, diet plays a pivotal role in its prevention and development. Current dietary guidelines discourage the consumption of saturated fat and dietary sources rich in saturated fat, such as dairy products, despite data suggesting that full-fat dairy consumption is protective against metabolic syndrome. This narrative review assessed the recent epidemiological and clinical research that examined the consumption of dairy-derived saturated fatty acids (SFA) on metabolic syndrome risk. In addition, this review evaluated studies of individual SFA to gain insight into the potential mechanisms at play with intake of a diet enriched with these dairy-derived fatty acids. This work underscores that SFA are a heterogenous class of fatty acids that can differ considerably in their biological activity within the body depending on their length and specific chemical structure. In summary, previous work on the impact of dairy-derived SFA consumption on disease risk suggests that there is currently insufficient evidence to support current dietary guidelines which consolidate all dietary SFA into a single group of nutrients whose consumption should be reduced, regardless of dietary source, food matrix, and composition.
Collapse
|
5
|
Mahmoudi R, Ghareghani M, Zibara K, Tajali Ardakani M, Jand Y, Azari H, Nikbakht J, Ghanbari A. Alyssum homolocarpum seed oil (AHSO), containing natural alpha linolenic acid, stearic acid, myristic acid and β-sitosterol, increases proliferation and differentiation of neural stem cells in vitro. Altern Ther Health Med 2019; 19:113. [PMID: 31159797 PMCID: PMC6547481 DOI: 10.1186/s12906-019-2518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Background Embryonic neural stem cells (eNSCs) are immature precursors of the central nervous system (CNS), with self-renewal and multipotential differentiation capacities. These are regulated by endogenous and exogenous factors such as alpha-linolenic acid (ALA), a plant-based essential omega-3 polyunsaturated fatty acid. Methods In this study, we investigated the effects of various concentrations of Alyssum homolocarpum seed oil (AHSO), containing natural ALA, stearic acid (SA), myristic acid (MA), and β-sitosterol, on proliferation and differentiation of eNSCs, in comparison to controls and to synthetic pure ALA. Results Treatment with natural AHSO (25 to 75 μM), similar to synthetic ALA, caused a significant ~ 2-fold increase in eNCSs viability, in comparison to controls. To confirm this proliferative activity, treatment of NSCs with 50 or 75 μM AHSO resulted in a significant increase in mRNA levels of notch1, hes-1 and Ki-67and NICD protein expression, in comparison to controls. Moreover, AHSO administration significantly increased the differentiation of eNSCs toward astrocytes (GFAP+) and oligodendrocytes (MBP+) in a dose dependent manner and was more potent than ALA, at similar concentrations, in comparison to controls. Indeed, only high concentrations of 100 μM AHSO, but not ALA, caused a significant increase in the frequency of neurons (β-III Tubulin+). Conclusion Our data demonstrated that AHSO, a rich source of ALA containing also other beneficial fatty acids, increased the proliferation and stimulated the differentiation of eNSCs. We suggest that AHSO’s effects are caused by β-sitosterol, SA and MA, present within this oil. AHSO could be used in diet to prevent neurodevelopmental syndromes, cognitive decline during aging, and various psychiatric disorders.
Collapse
|
6
|
Drouin G, Guillocheau E, Catheline D, Baudry C, Le Ruyet P, Rioux V, Legrand P. Impact of n-3 Docosapentaenoic Acid Supplementation on Fatty Acid Composition in Rat Differs Depending upon Tissues and Is Influenced by the Presence of Dairy Lipids in the Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9976-9988. [PMID: 30056717 DOI: 10.1021/acs.jafc.8b03069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The n-3 docosapentaenoic acid (n-3 DPA) could be a novel source of n-3 long-chain polyunsaturated fatty acids (LCPUFA) with beneficial physiological effects. Following the supplementation of 0.5% purified n-3 DPA for 3 weeks from weaning, the n-3 DPA content increased in one-half of the 18 studied tissues (from +50% to +110%, p < 0.05) and mostly affected the spleen, lung, heart, liver, and bone marrow. The n-3 DPA was slightly converted into DHA (+20% in affected tissues, p < 0.05) and mostly retroconverted into EPA (35-46% of n-3 DPA intake in liver and kidney) showing an increased content of these LCPUFA in specific tissues. The partial incorporation of dairy lipids in the diet for 6 weeks increased overall n-3 PUFA status and brain DHA status. Furthermore, the n-3 DPA supplementation and dairy lipids had an additive effect on the increase of n-3 PUFA tissue contents. Moreover, n-3 DPA supplementation decreased plasma cholesterol.
Collapse
Affiliation(s)
- Gaetan Drouin
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Etienne Guillocheau
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | | | | | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| |
Collapse
|
7
|
Drouin G, Catheline D, Sinquin A, Baudry C, Le Ruyet P, Rioux V, Legrand P. Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. Front Nutr 2018; 5:42. [PMID: 29876354 PMCID: PMC5974923 DOI: 10.3389/fnut.2018.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina.
Collapse
Affiliation(s)
- Gaetan Drouin
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Annaëlle Sinquin
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | | | | | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| |
Collapse
|
8
|
Elkin RG, Kukorowski AN, Ying Y, Harvatine KJ. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil. Lipids 2018; 53:235-249. [PMID: 29569243 DOI: 10.1002/lipd.12016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexandra N Kukorowski
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun Ying
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Guthrie G, Kulkarni M, Vlaardingerbroek H, Stoll B, Ng K, Martin C, Belmont J, Hadsell D, Heird W, Newgard CB, Olutoye O, van Goudoever J, Lauridsen C, He X, Schuchman EH, Burrin D. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions. J Lipid Res 2016; 57:1696-711. [PMID: 27474222 DOI: 10.1194/jlr.m069526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 12/26/2022] Open
Abstract
We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid groups showed differential organ growth versus ENT piglets; whole body growth rate was lowest in IL piglets, yet there were no differences in either energy expenditure or (13)C-palmitate oxidation. Plasma homeostatic model assessment of insulin resistance demonstrated insulin resistance in IL, but not OV or SL, compared with ENT. The fatty acid and acyl-CoA content of the liver, muscle, brain, and plasma fatty acids reflected the composition of the dietary lipids administered. Free carnitine and acylcarnitine (ACT) levels were markedly reduced in the PN groups compared with ENT piglets. Genes associated with oxidative stress and inflammation were increased, whereas those associated with alternative pathways of fatty acid oxidation were decreased in all PN groups. Our results show that new generation lipid emulsions directly enrich tissue fatty acids, especially in the brain, and lead to improved growth and insulin sensitivity compared with a soybean lipid emulsion. In all total PN groups, carnitine levels are limiting to the formation of ACTs and gene expression reflects the stress of excess lipid on liver function.
Collapse
Affiliation(s)
- Gregory Guthrie
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Madhulika Kulkarni
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Hester Vlaardingerbroek
- Department of Pediatrics, Emma Children's Hospital-Academisch Medisch Centrum, Amsterdam, The Netherlands
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Kenneth Ng
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Camilia Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - John Belmont
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Darryl Hadsell
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - William Heird
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Oluyinka Olutoye
- Texas Children's Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Johannes van Goudoever
- Department of Pediatrics, Emma Children's Hospital-Academisch Medisch Centrum, Amsterdam, The Netherlands Department of Pediatrics, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | | | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
10
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
11
|
Beneficial impact of a mix of dairy fat with rapeseed oil on n-6 and n-3 PUFA metabolism in the rat: A small enrichment in dietary alpha-linolenic acid greatly increases its conversion to DHA in the liver. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. Animal 2012; 6:262-70. [DOI: 10.1017/s1751731111001479] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Legrand P, Beauchamp E, Catheline D, Pédrono F, Rioux V. Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids 2010; 45:975-86. [PMID: 20924709 DOI: 10.1007/s11745-010-3481-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022]
Abstract
This study investigates the effect of various dietary saturated fatty acid (SFA) profiles on plasma lipid parameters and tissue fatty acid composition in rats. The experiment was designed to monitor polyunsaturated fatty acids (PUFA) levels, while examining different amounts and types of SFA. Four isocaloric diets were prepared, containing 10-11 mol% of fatty acids (FA) as linoleic acid (LNA) and 2.5 mol% as α-linolenic acid (ALA), leading to an identical and well-balanced LNA/ALA ratio. The initial rapeseed oil/corn oil mixture providing ALA and LNA was enriched with olive oil to prepare the olive oil diet. The butterfat diet was supplemented with butterfat, containing short-chain SFA (C4:0-C10:0, 17 mol% of FA), lauric acid (C12:0, 3.2 mol%), myristic acid (C14:0, 10.5 mol%) and palmitic acid (C16:0, 14.5 mol%). The saturates diet was supplemented with trilaurin, trimyristin and tripalmitin to obtain the same level of lauric, myristic and palmitic acids as the butterfat diet, without the short-chain SFA. The trimyristin diet was enriched with trimyristin only. The results showed that the butterfat diet contributed to specific effects, compared to the olive oil diet and the saturates and trimyristin diets: a decrease in plasma total, LDL- and HDL-cholesterol, higher tissue storage of ALA and LNA, and a higher level of (n-3) highly unsaturated fatty acids in some tissues. This study supports the hypothesis that in diets with identical well-balanced LNA/ALA ratios, short chain SFA may decrease circulating cholesterol and increase tissue polyunsaturated fatty acid content in the rat.
Collapse
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 2012, 65 rue de Saint-Brieuc, CS 84215, 35042, Rennes Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Rioux V, Pédrono F, Legrand P. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:1-8. [PMID: 20920594 DOI: 10.1016/j.bbalip.2010.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), usually accounts for small amounts (0.5%-1% weight of total fatty acids) in animal tissues. Since it is a relatively rare molecule in the cells, the specific properties and functional roles of myristic acid have not been fully studied and described. Like other dietary saturated fatty acids (palmitic acid, lauric acid), this fatty acid is usually associated with negative consequences for human health. Indeed, in industrialized countries, its excessive consumption correlates with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of myristoyl-CoA is its ability to be covalently linked to the N-terminal glycine residue of eukaryotic and viral proteins. This reaction is called N-terminal myristoylation. Through the myristoylation of hundreds of substrate proteins, myristic acid can activate many physiological pathways. This review deals with these potentially activated pathways. It focuses on the following emerging findings on the biological ability of myristic acid to regulate the activity of mammalian desaturases: (i) recent findings have described it as a regulator of the Δ4-desaturation of dihydroceramide to ceramide; (ii) studies have demonstrated that it is an activator of the Δ6-desaturation of polyunsaturated fatty acids; and (iii) myristic acid itself is a substrate of some fatty acid desaturases. This article discusses several topics, such as the myristoylation of the dihydroceramide Δ4-desaturase, the myristoylation of the NADH-cytochrome b5 reductase which is part of the whole desaturase complex, and other putative mechanisms.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 2012, Rennes, France.
| | | | | |
Collapse
|
15
|
Knoch B, Barnett MPG, Cooney J, McNabb WC, Barraclough D, Laing W, Roy NC. Dietary oleic acid as a control fatty acid for polyunsaturated fatty acid intervention studies: a transcriptomics and proteomics investigation using interleukin-10 gene-deficient mice. Biotechnol J 2010; 5:1226-40. [PMID: 20872728 DOI: 10.1002/biot.201000066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 01/22/2023]
Abstract
Oleic acid (OA) has been used as a control fatty acid in dietary polyunsaturated fatty acid (PUFA) intervention studies due to its lack of effect on eiconasoid biosynthesis. Since the effect of OA as a control fatty acid has not yet been investigated for transcriptomics and proteomics studies, this study aimed to test whether colonic transcriptome and proteome profiles associated with colitis development in mice fed a linoleic acid-rich corn oil-AIN-76A diet (Il10(-/-) compared to C57 mice) where similar to those of OA-fed Il10(-/-) compared to C57 mice (genotype comparison). A close clustering of colonic gene and protein expression profiles between the mice fed the AIN-76A or OA diet was observed. Inflammation-induced regulatory processes associated with cellular and humoral immune responses, cellular stress response and metabolic processes related to energy utilization were identified in Il10(-/-) compared to C57 mice fed either diet. Thus OA was considered as a suitable control unsaturated fatty acid for use in multi-omics PUFA studies. The second aim of this study was to test the effect of an OA-enriched AIN-76A diet compared to a linoleic acid-rich corn oil-AIN-76A diet on colonic transcriptome and proteome changes within Il10(-/-) or C57 mice (diet comparison). Overall, there was a limited concordance observed between measureable transcriptomics and proteomics profiles for genotype and diet comparisons. This underlines the importance and validity of a systems biology approach to understand the effects of diet on gene expression as a function of the genotype.
Collapse
Affiliation(s)
- Bianca Knoch
- Agri-Foods & Health, Food & Textiles Group, AgResearch, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
16
|
Beauchamp E, Rioux V, Legrand P. [New regulatory and signal functions for myristic acid]. Med Sci (Paris) 2009; 25:57-63. [PMID: 19154695 DOI: 10.1051/medsci/200925157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myristic acid is a 14 carbon saturated fatty acid, which is mostly found in milk fat. In industrialized countries, its excessive consumption is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of this fatty acid is its ability to acylate proteins, a reaction which is called N-terminal myristoylation. This article describes various examples of important cellular regulations where the intervention of myristic acid is proven. Modulations of the cellular concentration of this fatty acid and its associated myristoylation function might be used as regulators of these metabolic pathways.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes-INRA USC 2012, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| | | | | |
Collapse
|