1
|
Zhang F, Jin C, Wang X, Yan H, Tan H, Gao C. Dietary supplementation with pioglitazone hydrochloride and l-carnosine improves the growth performance, muscle fatty acid profiles and shelf life of yellow-feathered broiler chickens. ACTA ACUST UNITED AC 2020; 7:168-175. [PMID: 33997345 PMCID: PMC8110847 DOI: 10.1016/j.aninu.2020.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The present study aimed to investigate the effects of dietary pioglitazone hydrochloride (PGZ) and l-carnosine (LC) supplementation on the growth performance, meat quality, antioxidant status, and meat shelf life of yellow-feathered broiler chickens. Five hundred broiler chickens were randomly assigned into 4 experimental diets using a 2 × 2 factorial arrangement with 2 PGZ supplemental levels (0 and 15 mg/kg) and 2 LC supplemental levels (0 and 400 mg/kg) in basal diets for 28 d. The feed-to-gain ratio decreased whereas the average daily gain increased with PGZ supplementation. Greater dressing percentages, contents of intramuscular fat (IMF) in breast and thigh muscles, C18:3n-6, C18:1n-9 and monounsaturated fatty acid (MUFA) percentages of thigh muscle were observed with PGZ addition. Additionally, significant synergistic effects between PGZ and LC on the C18:1n-9 and MUFA contents were found. Supplementation with LC decreased drip loss, cooking loss and total volatile basic nitrogen, and increased the redness (a∗) value, the superoxide dismutase and glutathione peroxidase activities in thigh muscles. Moreover, the malondialdehyde content decreased when diets were supplemented with LC, and there was a synergistic effect between PGZ and LC. Additionally, the mRNA abundance of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ), PPARγ co-activator 1α and fatty acid-binding protein 3, increased with PGZ supplementation, and relevant antioxidation genes, such as nuclear factor erythroid-2-related factor 2 and superoxide dismutase 1, were enhanced with LC supplementation. In conclusion, the results indicated that the supplementation of PGZ and LC could improve the growth performance, antioxidant ability, IMF content, and meat shelf life of yellow-feathered broiler chickens.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huize Tan
- WENS Foodstuff Group Co., Ltd, Yunfu, 527400, Guangdong, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
2
|
Co-dependence of genotype and dietary protein intake to affect expression on amino acid/peptide transporters in porcine skeletal muscle. Amino Acids 2015; 48:75-90. [PMID: 26255284 DOI: 10.1007/s00726-015-2066-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
A total of 96 barrows (48 pure-bred Bama mini-pigs representing fatty genotype, and 48 Landrace pigs representing lean genotype) were randomly assigned to either a low- or adequate-protein treatment diet. The experimental period commenced at 5 weeks of age and extended to the finishing period. After euthanasia, blood and skeletal muscle samples were collected from pigs at the nursery, growing, and finishing phases. Our results indicate that the concentrations of free AAs in the plasma and muscle decreased as the age of the pigs increased. In addition, a strain × growth phase interaction (P < 0.05) was observed for the free AA pool in the plasma and muscle. The low-protein diet upregulated (P < 0.05) the mRNA levels for T1R1/T1R3 involved in glutamate binding, but downregulated (P < 0.05) the mRNA levels for PAT1, PAT2, and ASCT2, which transport neutral AAs into muscles. Bama mini-pigs had higher (P < 0.05) mRNA levels for LAT1, SNAT2, and EAAC1, but a lower (P < 0.05) mRNA level for PepT1, compared with Landrace pigs. Collectively, our findings indicate that adequate provision of dietary protein plays an important role in regulating profiles of free AA pools and expression of key AA/peptide transporters/transceptors in a genotype- and tissue-specific manner.
Collapse
|
3
|
Duan J, Yin J, Ren W, Liu T, Cui Z, Huang X, Wu L, Kim SW, Liu G, Wu X, Wu G, Li T, Yin Y. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 2015; 48:53-64. [PMID: 26255283 DOI: 10.1007/s00726-015-2065-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
This study was to evaluate the protective roles of L-glutamate (Glu) and L-aspartate (Asp) in weaned piglets challenged with H2O2. Forty weaned piglets were assigned randomly into one of five groups (8 piglets/group): (1) control group (NC) in which pigs were fed a corn- and soybean meal-based diet and received intraperitoneal administration of saline; (2) H2O2 group (PC) in which pigs were fed the basal diet and received intraperitoneal administration of 10 % H2O2 (1 ml/kg body weight once on days 8 and repeated on day 11); (3) PC + Glu group (PG) in which pigs were fed the basal diet supplemented with 2.0 % Glu before intraperitoneal administration of 10 % H2O2; (4) PC + Asp group (PA) in which pigs were fed the basal diet supplemented with 1.0 % Asp before intraperitoneal administration of 10 % H2O2; (5) PC + Glu + Asp group (PGA) in which pigs were fed the basal diet supplemented with 2.0 % Glu plus 1.0 % Asp before intraperitoneal administration of 10 % H2O2. Measured parameters included daily feed intake (DFI), average daily gain (ADG), feed conversion rate (FCR), and serum anti-oxidative enzyme activities (catalase, superoxide dismutase, glutathione peroxidase-1), serum malondialdehyde and H2O2 concentrations, serum amino acid (AA) profiles, and intestinal expression of AA transporters. Dietary supplementation with Glu, Asp or their combination attenuated the decreases in DFI, ADG and feed efficiency, the increase in oxidative stress, the alterations of serum AA concentrations, and the changed expression of intestinal AA transporters in H2O2-challenged piglets. Thus, dietary supplementation with Glu or Asp alleviates growth suppression and oxidative stress, while restoring serum the amino acid pool in H2O2-challenged piglets.
Collapse
Affiliation(s)
- Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Ting Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhijie Cui
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Li Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xi Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,Changsha Lvye Biotechnology Limited Company Academician Expert Workstation, Changsha, 410128, Hunan, China. .,Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangzhou, 510663, Guangdong, China. .,Guangdong Hinapharm Group Academician Workstation for Biological Feed and Feed Additives and Animal Intestinal Health, Guangzhou, 511400, Guangdong, China.
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,School of Biology, Hunan Normal Univesity, Changsha, 410018, Hunan, China.
| |
Collapse
|
4
|
Chen X, Feng Y, Yang WJ, Shu G, Jiang QY, Wang XQ. Effects of dietary thiazolidinedione supplementation on growth performance, intramuscular fat and related genes mRNA abundance in the longissimus dorsi muscle of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1012-20. [PMID: 25049880 PMCID: PMC4093500 DOI: 10.5713/ajas.2012.12722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023]
Abstract
The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White×Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White×Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of PPARγ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.
Collapse
Affiliation(s)
- X Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Y Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - W J Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - G Shu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Q Y Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - X Q Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 2011; 42:2111-9. [PMID: 21638020 PMCID: PMC3351605 DOI: 10.1007/s00726-011-0948-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 05/04/2011] [Indexed: 11/08/2022]
Abstract
Placental vascular formation and blood flow are crucial for fetal survival, growth and development, and arginine regulates vascular development and function. This study determined the effects of dietary arginine or N-carbamylglutamate (NCG) supplementation during late gestation of sows on the microRNAs, vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) expression in umbilical vein. Twenty-seven landrace × large white sows at day (d) 90 of gestation were assigned randomly to three groups and fed the following diets: a control diet and the control diet supplemented with 1.0% l-arginine or 0.10% NCG. Umbilical vein of fetuses with body weight around 2.0 kg (oversized), 1.5 kg (normal) and 0.6 kg (intrauterine growth restriction, IUGR) were obtained immediately after farrowing for miR-15b, miR-16, miR-221, miR-222, VEGFA and eNOS real-time PCR analysis. Compared with the control diets, dietary Arg or NCG supplementation enhanced the reproductive performance of sows, significantly increased (P < 0.05) plasma arginine and decreased plasma VEGF and eNOS (P < 0.05). The miR-15b expression in the umbilical vein was higher (P < 0.05) in the NCG-supplemented group than in the control group. There was a trend in that the miR-222 expression in the umbilical vein of the oversized fetuses was higher (0.05 < P < 0.1) than in the normal and IUGR fetuses. The expression of eNOS in both Arg-supplemented and NCG-supplemented group were lower (P < 0.05) than in the control group. The expression of VEGFA was higher (P < 0.05) in the NCG-supplemented group than in the Arg-supplemented and the control group. Meanwhile, the expression of VEGFA of the oversized fetuses was higher (P < 0.05) than the normal and IUGR fetuses. In conclusion, this study demonstrated that dietary Arg or NCG supplementation may affect microRNAs (miR-15b, miR-222) targeting VEGFA and eNOS gene expressions in umbilical vein, so as to regulate the function and volume of the umbilical vein, provide more nutrients and oxygen from the maternal to the fetus tissue for fetal development and survival, and enhance the reproductive performance of sows.
Collapse
|