1
|
Uyanga VA, Sun L, Liu Y, Zhang M, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Effects of arginine replacement with L-citrulline on the arginine/nitric oxide metabolism in chickens: An animal model without urea cycle. J Anim Sci Biotechnol 2023; 14:9. [PMID: 36721201 PMCID: PMC9890773 DOI: 10.1186/s40104-022-00817-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study examined the efficacy of L-citrulline supplementation on the arginine/nitric oxide metabolism, and intestinal functions of broilers during arginine deficiency. A total of 288 day-old Arbor Acre broilers were randomly assigned to either an arginine deficient basal diet (NC diet), NC diet + 0.50% L-arginine (PC diet), or NC diet + 0.50% L-citrulline (NCL diet). Production performance was recorded, and at 21 days old, chickens were euthanized for tissue collection. RESULTS The dietary treatments did not affect the growth performance of broilers (P > 0.05), although NC diet increased the plasma alanine aminotransferase, urate, and several amino acids, except arginine (P < 0.05). In contrast, NCL diet elevated the arginine and ornithine concentration higher than NC diet, and it increased the plasma citrulline greater than the PC diet (P < 0.05). The nitric oxide concentration in the kidney and liver tissues, along with the plasma and liver eNOS activities were promoted by NCL diet higher than PC diet (P < 0.05). In the liver, the activities of arginase 1, ASS, and ASL, as well as, the gene expression of iNOS and OTC were induced by PC diet greater than NC diet (P < 0.05). In the kidney, the arginase 1, ASS and ASL enzymes were also increased by PC diet significantly higher than the NC and NCL diets. Comparatively, the kidney had higher abundance of nNOS, ASS, ARG2, and OTC genes than the liver tissue (P < 0.05). In addition, NCL diet upregulated (P < 0.05) the mRNA expression of intestinal nutrient transporters (EAAT3 and PEPT1), tight junction proteins (Claudin 1 and Occludin), and intestinal mucosal defense (MUC2 and pIgR). The intestinal morphology revealed that both PC and NCL diets improved (P < 0.05) the ileal VH/CD ratio and the jejunal VH and VH/CD ratio compared to the NC fed broilers. CONCLUSION This study revealed that NCL diet supported arginine metabolism, nitric oxide synthesis, and promoted the intestinal function of broilers. Thus, L-citrulline may serve as a partial arginine replacement in broiler's diet without detrimental impacts on the performance, arginine metabolism and gut health of chickens.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Lijing Sun
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Yu Liu
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Meiming Zhang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Jingpeng Zhao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Xiaojuan Wang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Hongchao Jiao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Okanlawon M. Onagbesan
- grid.448723.eDepartment of Animal Physiology, Federal University of Agriculture, Ogun State, Abeokuta P.M.B, 2240 Nigeria
| | - Hai Lin
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| |
Collapse
|
2
|
Severe riboflavin deficiency induces alterations in the hepatic proteome of starter Pekin ducks. Br J Nutr 2017; 118:641-650. [PMID: 29185933 DOI: 10.1017/s0007114517002641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Suboptimal vitamin B2 status is encountered globally. Riboflavin deficiency depresses growth and results in a fatty liver. The underlying mechanisms remain to be established and an overview of molecular alterations is lacking. We investigated hepatic proteome changes induced by riboflavin deficiency to explain its effects on growth and hepatic lipid metabolism. In all, 360 1-d-old Pekin ducks were divided into three groups of 120 birds each, with twelve replicates and ten birds per replicate. For 21 d, the ducks were fed ad libitum a control diet (CAL), a riboflavin-deficient diet (RD) or were pair-fed with the control diet to the mean daily intake of the RD group (CPF). When comparing RD with CAL and CPF, growth depression, liver enlargement, liver lipid accumulation and enhanced liver SFA (C6 : 0, C12 : 0, C16 : 0, C18 : 0) were observed. In RD, thirty-two proteins were enhanced and thirty-one diminished (>1·5-fold) compared with CAL and CPF. Selected proteins were confirmed by Western blotting. The diminished proteins are mainly involved in fatty acid β-oxidation and the mitochondrial electron transport chain (ETC), whereas the enhanced proteins are mainly involved in TAG and cholesterol biosynthesis. RD causes liver lipid accumulation and growth depression probably by impairing fatty acid β-oxidation and ETC. These findings contribute to our understanding of the mechanisms of liver lipid metabolic disorders due to RD.
Collapse
|
3
|
Lieboldt MA, Halle I, Frahm J, Schrader L, Weigend S, Preisinger R, Breves G, Dänicke S. Effects of Graded Dietary L-arginine Supply on Organ Growth in Four Genetically Diverse Layer Lines during Rearing Period. J Poult Sci 2016; 53:136-148. [PMID: 32908376 PMCID: PMC7477283 DOI: 10.2141/jpsa.0150131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022] Open
Abstract
Little information has been available about the influence of genetic background and dietary L-arginine (Arg) supply on organ growth of chickens. Therefore, the present study examined the effects of a graded ad libitum Arg supply providing 70, 100 and 200% of recommended Arg concentration on organ growth of female chickens from hatch to 18 weeks of age. The chickens derived from four layer lines of different phylogeny (white vs. brown) and laying performance (high vs. low). Based on residual feed and absolute body and organ weights recorded in six-week-intervals, feed consumption, changes of relative organ weights and allometric organ growth were compared between experimental groups. Surplus Arg caused higher feed intake than insufficient Arg (p<0.01) that induced growth depression in turn (p <0.05). During the entire trial chicken's heart, gizzard and liver decreased relatively to their body growth (p<0.001) and showed strong positive correlations among each other. On the contrary, proportions of pancreas and lymphoid organs increased until week 12 (p<0.001) and correlated positively among each other. Due to their opposite growth behaviour (p<0.001), internal organs were assigned to two separate groups. Furthermore, insufficient Arg induced larger proportions of bursa, gizzard and liver compared with a higher Arg supply (p<0.05). In contrast to less Arg containing diets, surplus Arg decreased relative spleen weights (p<0.01). The overall allometric evaluation of data indicated a precocious development of heart, liver, gizzard, pancreas and bursa independent of chicken's genetic and nutritional background. However, insufficient Arg retarded the maturation of spleen and thymus compared with an adequate Arg supply. In conclusion, the present results emphasised the essential function of Arg in layer performance, and indicated different sensitivities of internal organs rather to chicken's dietary Arg supply than to their genetic background.
Collapse
Affiliation(s)
- Marc-Alexander Lieboldt
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Ingrid Halle
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Dörnbergstraße 25-27, Celle 29223, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Höltystraße 10, Neustadt-Mariensee 31535, Germany
| | | | - Gerhard Breves
- Institute of Physiology, University of Veterinary Medicine, Bischofsholer Damm 15, Hannover 30173, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| |
Collapse
|
4
|
Effects of Long-term Graded L-arginine Supply on Growth Development, Egg Laying and Egg Quality in Four Genetically Diverse Purebred Layer Lines. J Poult Sci 2015; 53:8-21. [PMID: 32908358 PMCID: PMC7477245 DOI: 10.2141/jpsa.0150067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was conducted to examine effects of long-term graded L-arginine supply on growth development, egg laying and egg quality in four genetically diverse purebred layer lines. The study comprised a rearing trial from hatch to week 16 and a following laying performance trial from week 17 to 41. After hatch 150 one-day-old female chicks of each genotype were distributed to three diets. The experimental diets were equivalent to 70, 100 and 200% L-arginine of age-specific recommended level (National Research Council, 1994) and were offered ad libitum to chicks (hatch to week 7), pullets (week 8 to 16) and hens (week 17 to 41). However, hens' diets were quite low in crude protein. After a pre-laying period from week 17 to 21 thirty-six pullets of each group were used further in the laying performance trial. Independent of chicken's genetic background, insufficient L-arginine supply caused lower body weight, daily weight gain and daily feed intake during the rearing (p<0.001) and induced lower laying intensity and daily egg mass production in the laying period (p<0.05). Parameters fitted to Gompertz function suggested higher adult body weight in L-arginine supplemented birds compared to insufficient supplied ones (p<0.01). Groups fed with insufficient L-arginine reached age of maximum daily weight gain later and showed lowest maximum daily weight gain (p<0.001). As a consequence of limitations in dietary L-arginine and crude protein, high performing genotypes decreased strongly in body weight, daily feed intake and performance compared to the low performing genotypes. In conclusion, L-arginine modified the amount of weight gain and feed intake, especially in growing chicks and pullets independent of genetic background. The high performing hens were more nutritionally stressed than the low performing ones, because concentrations of dietary crude protein were relatively low.
Collapse
|