2
|
Kwon T, Chandimali N, Lee DH, Son Y, Yoon SB, Lee JR, Lee S, Kim KJ, Lee SY, Kim SY, Jo YJ, Kim M, Park BJ, Lee JK, Jeong DK, Kim JS. Potential Applications of Non-thermal Plasma in Animal Husbandry to Improve Infrastructure. In Vivo 2019; 33:999-1010. [PMID: 31280188 PMCID: PMC6689345 DOI: 10.21873/invivo.11569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
Infrastructure in animal husbandry refers to fundamental facilities and services necessary for better living conditions of animals and its economy to function through better productivity. Mainly, infrastructure can be divided into two categories: hard infrastructure and soft infrastructure. Physical infrastructure, such as buildings, roads, and water supplying systems, belongs to hard infrastructure. Soft infrastructure includes services which are required to maintain economic, health, cultural and social standards of animal husbandry. Therefore, the proper management of infrastructure in animal husbandry is necessary for animal welfare and its economy. Among various technologies to improve the quality of infrastructure, non-thermal plasma (NTP) technology is an effectively applicable technology in different stages of animal husbandry. NTP is mainly helpful in maintaining better health conditions of animals in several ways via decontamination from microorganisms present in air, water, food, instruments and surfaces of animal farming systems. Furthermore, NTP is used in the treatment of waste water, vaccine production, wound healing in animals, odor-free ventilation, and packaging of animal food or animal products. This review summarizes the recent studies of NTP which can be related to the infrastructure in animal husbandry.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Nisansala Chandimali
- Immunotherapy Convergence Research Center,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yeonghoon Son
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ja-Rang Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sangil Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ki Jin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sang-Yong Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Se-Yong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Minseong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Byoung-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jun-Ki Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Tres A, Muzofa FM, Vilarrasa E, Guardiola F, Codony R. Re‐esterified oils from palm acid oil do not alter pork fatty acid composition. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alba Tres
- Department of Nutrition and Food Science—XaRTA—INSAUniversitat de BarcelonaBarcelonaSpain
| | - Farayi Martin Muzofa
- Department of Nutrition and Food Science—XaRTA—INSAUniversitat de BarcelonaBarcelonaSpain
| | - Ester Vilarrasa
- Department of Animal and Food Science, Facultat de Veterinària, Animal Nutrition and Welfare Service (SNiBA)Universitat Autònoma de BarcelonaBellaterraBarcelonaSpain
| | - Francesc Guardiola
- Department of Nutrition and Food Science—XaRTA—INSAUniversitat de BarcelonaBarcelonaSpain
| | - Rafael Codony
- Department of Nutrition and Food Science—XaRTA—INSAUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
5
|
Use of re-esterified palm oils, differing in their acylglycerol structure, in fattening pig diets. Animal 2015; 9:1662-71. [PMID: 26133484 DOI: 10.1017/s175173111500107x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Re-esterified oils are new fat sources obtained from the chemical esterification of acid oils with glycerol (both economically interesting by-products from oil refining and biodiesel industries, respectively). The different fatty acid (FA) positional distribution and acylglycerol composition of re-esterified oils may enhance the apparent absorption of saturated fatty acids (SFA) and, therefore, their overall nutritive value, which might lead to an increased deposition of SFA. The aim of the present study was to investigate the potential use of re-esterified palm oils, in comparison with their corresponding acid and native oils in fattening pig diets, studying their effects on fatty acid apparent absorption, acylglycerol and free fatty acid (FFA) composition of feces, growth performance, carcass-fat depots and fatty acid composition of backfat. Seventy-two crossbred boars and gilts (average weight of 24.7 ± 2.55 kg) were blocked by initial BW (nine blocks of BW for each gender), housed in adjacent individual boxes, and fed one of the four dietary treatments, which were the result of a basal diet supplemented with 4% (as-fed basis) of native palm oil (PN), acid palm oil (PA), re-esterified palm oil low in mono- and diacylglycerols (PEL), or re-esterified palm oil high in mono- and diacylglycerols (PEH). Regarding results from the digestibility balance, PA and PN showed similar apparent absorption coefficients (P>0.05), despite the high, FFA content of the former. However, re-esterified palm oils (both PEL and PEH) showed a higher apparent absorption of total FA than did their corresponding native and acid oils (P0.05). We conclude that re-esterified oils are interesting fat sources to be considered in fattening pigs.
Collapse
|