1
|
Madej JP, Graczyk S, Bobrek K, Bajzert J, Gaweł A. Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens. Poult Sci 2024; 103:103366. [PMID: 38183879 PMCID: PMC10809208 DOI: 10.1016/j.psj.2023.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks' access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Stanisław Graczyk
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Kamila Bobrek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Andrzej Gaweł
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland.
| |
Collapse
|
2
|
Effects of late incubation temperature and moment of first post-hatch feed access on neonatal broiler development, temperature preference, and stress response. Poult Sci 2022; 101:102088. [PMID: 36055023 PMCID: PMC9449862 DOI: 10.1016/j.psj.2022.102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Early life experiences are known to be of great importance for later life. For instance, exposure to stress during early life can increase fearfulness at later age. In broilers, delayed feeding after hatch may cause metabolic stress. Besides, delayed feeding after hatch may affect neonatal broiler development and thermogenesis and consequently preferred ambient temperature. Moreover, these effects of feeding strategy may be dependent on late incubation temperature. To study this, eggs (n = 1,338) from a 54-wk-old Ross broiler breeder flock were incubated at 37.8°C (control) or 36.7°C (lower) eggshell temperature (EST) during late incubation (≥ embryonic d 17). At hatch, two feeding strategies were applied (direct access (early feeding) or 51 to 54 h delayed access (delayed feeding)). Broilers (n = 960) were equally divided over 32 pens and grown for 3 wk. Stress was assessed by determination of corticosterone in blood at 0 h, 48 h, 96 h and d 21 after hatch. Fearfulness was assessed by tonic immobility at d 13. Temperature preference was assessed at d 2 and d 12. Broiler development was determined at 0 h, 48 h, and 96 h after hatch. There was no EST × feeding strategy interaction for any parameter (P ≥ 0.07). Early feeding resulted in a 2.5× lower plasma corticosterone concentration at 48 h (P < 0.01) and a 2.2°C and 2.0°C lower preference temperature for d 2 and d 12 respectively (P = 0.01) compared to delayed feeding. Tonic immobility was not affected. In conclusion, early feeding reduces exposure to stress in the short term and stimulates thermoregulatory ability of broilers in the longer term.
Collapse
|
3
|
Broiler resilience to colibacillosis is affected by incubation temperature and post-hatch feeding strategy. Poult Sci 2022; 101:102092. [PMID: 36055025 PMCID: PMC9449851 DOI: 10.1016/j.psj.2022.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Colibacillosis is a poultry disease that negatively affects welfare and causes economic losses. Treatment with antibiotics raises concerns on antimicrobial resistance. Consequently, alternative approaches to enhance poultry resilience are needed. Access to feed and water directly after hatch (early feeding) may enhance resilience at later ages. Additionally, a high eggshell temperature (EST) during mid incubation may improve chick quality at hatch, supporting potential positive effects of early feeding. Effects of EST [37.8°C (control) or 38.9°C (higher)] during mid-incubation (embryo days 7–14) and feeding strategy (early feeding or 48 h delayed feeding) were tested in a 2 × 2 factorial arrangement. At hatch, ~ 1,800 broilers were divided over 36 pens and grown for 6 wk. At d 8 post hatch, avian pathogenic E. coli (APEC) was inoculated intratracheally as model to investigate broiler resilience against respiratory diseases. Incidence and severity of colibacillosis, local infection, and systemic infection were assessed at 6 moments between 3 h and 7 d postinoculation. Broilers were weighed daily during 13 d postinoculation and weekly thereafter. At higher EST, early feeding resulted in higher incidence of systemic infection compared to delayed feeding whereas at control EST, systemic infection was not different between feeding strategies. Regardless of EST, early compared to delayed feeding resulted in lower incidence of local infection, fewer BW deviations, and higher growth until d 35. In conclusion, early feeding could be considered as a strategy to enhance broiler resilience, but only when EST is not too high.
Collapse
|
4
|
Delay of Feed Post-Hatch Causes Changes in Expression of Immune-Related Genes and Their Correlation with Components of Gut Microbiota, but Does Not Affect Protein Expression. Animals (Basel) 2022; 12:ani12101316. [PMID: 35625162 PMCID: PMC9138158 DOI: 10.3390/ani12101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
Simple Summary Newly hatched chicks do not have access to feed until between 48 and 72 h post-hatch based on standard practices in the poultry industry. How these practices affect the chicken’s immune system in not well understood. In this study, we investigated the effect of a delay in access to feed for 48 h in newly hatched chicks on the expression of various immune-related genes in the ileum and analyzed the correlation between these genes and the components of the ileal microbiota. The results suggest that several immune-related genes were affected by delayed access to feed and the age of the birds; however, these changes were transient, occurring mostly within 48 h of the return of birds to feed. In the correlation analysis between gene expression and components of the ileal microbiota, an increased number of significant correlations between immune-related genes and the genera Clostridium, Enterococcus, and the species Clostridium perfringens suggests a perturbation of the immune response and ileal microbiota in response to lack of feed immediately post-hatch. These results point out the complexity of the interplay between microbiota and the immune response and will help further explain the negative effects of delay in access to feed on production parameters in chickens. Abstract Because the delay of feed post-hatch (PH) has been associated with negative growth parameters, the aim of the current study was to determine the effect of delayed access to feed in broiler chicks on the expression of immune-related genes and select proteins. In addition, an analysis of the correlation between gene expression and components of the gut microbiota was carried out. Ross 708 eggs were incubated and hatched, and hatchlings were divided into FED and NONFED groups. The NONFED birds did not have access to feed until 48 h PH, while FED birds were given feed immediately PH. The ileum from both groups (n = 6 per group) was sampled at embryonic day 19 (e19) and day 0 (wet chicks), and 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Quantitative PCR (qPCR) was carried out to measure the expression of avian interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-18, transforming growth factor (TGF-β), toll-like receptor (TLR)2, TLR4, interferon (IFN)-β, IFN-γ, and avian β-defensins (AvBD) I, 2, 3, 5, 6, 7, 8, 9, and 10. Protein expression of IL-10, IL-1β, IL-8, and IL-18 were measured using ELISAs. A correlation analysis was carried out to determine whether any significant association existed between immune gene expression and components of the ileal luminal and mucosal microbiota. Expression of several immune-related genes (TGF-β, TLR4, IFN-γ, IL-1β, IL-4, IL-6, and AvBDs 8 and 9) were significantly affected by the interaction between feed status and age. The effects were transient and occurred between 48 and 96 h PH. The rest of the genes and four proteins were significantly affected by age, with a decrease in expression noted over time. Correlation analysis indicated that stronger correlations exist among gene expression and microbiota in NONFED birds. The data presented here indicates that delay in feed PH can affect genes encoding components of the immune system. Additionally, the correlation analysis between immune gene expression and microbiota components indicates that a delay in feed has a significant effect on the interaction between the immune system and the microbiota.
Collapse
|
5
|
Wijnen HJ, van der Pol CW, van Roovert-Reijrink IAM, De Smet J, Lammers A, Kemp B, van den Brand H, Molenaar R. Low Incubation Temperature During Late Incubation and Early Feeding Affect Broiler Resilience to Necrotic Enteritis in Later Life. Front Vet Sci 2021; 8:784869. [PMID: 34970618 PMCID: PMC8713642 DOI: 10.3389/fvets.2021.784869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
Resilient animals can cope with environmental disturbances in life with minimal loss of function. Resilience can be enhanced by optimizing early-life conditions. In poultry, eggshell temperature (EST) during incubation and early feeding are two early-life conditions that are found to alter neonatal chick quality as well as immune response in later life. However, whether these early-life conditions affect disease resilience of chickens at later ages has never been studied yet. Hence, we studied the effects of EST [(37.8°C (control) or 36.7°C (lower)] during late incubation (≥embryonic days 17-19.5) and feeding strategy after hatch [immediately (early feeding) or 51-54 h delayed (delayed feeding)] on later-life broiler resilience in a 2 × 2 factorial arrangement. At hatch, 960 broilers of both sexes from a 54-week-old Ross breeder flock were equally divided over 32 pens (eight replicate pens per treatment combination) and grown for 6 weeks. Necrotic enteritis was induced by a single inoculation of Eimeria spp. at d 21 and repeated Clostridium perfringens inoculation (3×/d) during d 21-25. Mortality and body weight (BW) gain were measured daily during d 21-35 as indicators of resilience. Additionally, disease morbidity was assessed (gut lesions, dysbacteriosis, shedding of oocysts, footpad dermatitis, and natural antibody levels in blood). Results showed a lack of interaction between EST and feeding strategy for the vast majority of the variables. A lower EST resulted in lower BW gain at d 5 and 8 post Eimeria inoculation (P = 0.02) and more Eimeria maxima oocysts in feces at d 8 post Eimeria inoculation compared to control EST (P < 0.01). Early feeding tended to lower mortality compared to delayed feeding (P = 0.06), but BW gain was not affected by feeding strategy. Morbidity characteristics were hardly affected by EST or feeding strategy. In conclusion, a few indications were found that a lower EST during late incubation as well as delayed feeding after hatch may each impair later-life resilience to necrotic enteritis. However, these findings were not manifested consistently in all parameters that were measured, and conclusions are drawn with some restraint.
Collapse
Affiliation(s)
- Hendrikus J. Wijnen
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Research Department, HatchTech B.V., Veenendaal, Netherlands
| | | | | | - Joren De Smet
- Clinical Research Organization, Poulpharm BVBA, Izegem, Belgium
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Roos Molenaar
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Hollemans MS, de Vries Reilingh G, de Vries S, Parmentier HK, Lammers A. Effects of early nutrition and sanitary conditions on antibody levels in early and later life of broiler chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103954. [PMID: 33309542 DOI: 10.1016/j.dci.2020.103954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Immune maturation of broiler chickens may be affected by management, such as early life feeding strategy (early versus delayed nutrition) or by low or high sanitary conditions (LSC versus HSC). We compared systemic maternal (MAb), natural (NAb), natural auto- (NAAb), and antigen specific antibody (SpAb) levels (IgM, IgY) between broilers (n = 48 per treatment) that received early (EN) or delayed nutrition for 72 h (DN) housed in either low (LSC) or high sanitary conditions (HSC) between 7 and 35 d of age. We found minimal interactions between feeding strategy and sanitary conditions. At 7 d of age, broilers receiving EN compared with DN, had elevated levels of IgM binding keyhole limpet hemocyanin (KLH), phosphoryl-conjugated ovalbumin (PC-OVA), and muramyl dipeptide (MDP), whereas effects of feeding strategy diminished at later ages. In LSC compared with HSC broilers, levels of NAb agglutinating RRBC and sheep red blood cells (SRBC) were already elevated from 14 d of age onwards. At 33 d of age, antibody levels (NAb, NAAb, anti-LPS, anti-MDP) were all elevated in LSC, compared with HSC broilers, for both IgM and IgY, but not IgM against KLH. Western blotting revealed different binding patterns of NAAb against chicken liver homogenate, which may indicate that the NAAb repertoire is affected by antigenic pressure. Our data suggest that antibody levels are affected for an important part by environmental conditions (feeding strategy and sanitary conditions), but minimally by their interaction. However, it remains to be further studied whether the enhanced levels of antibodies as initiated by EN and LSC contribute to enhanced resistance to infectious diseases.
Collapse
Affiliation(s)
- M S Hollemans
- Coppens Diervoeding B.V, PO Box 79, NL-5700AB, Helmond, the Netherlands; Adaptation Physiology Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands; Animal Nutrition Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands.
| | - G de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands
| | - S de Vries
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands
| | - H K Parmentier
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands
| | - A Lammers
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, NL-6700AH, Wageningen, the Netherlands
| |
Collapse
|
7
|
Hollemans MS, Reilingh GDV, de Vries S, Parmentier HK, Lammers A. Effects of Early Nutrition and Sanitary Conditions on Oral Tolerance and Antibody Responses in Broiler Chickens. Vet Sci 2020; 7:vetsci7040148. [PMID: 33019533 PMCID: PMC7711661 DOI: 10.3390/vetsci7040148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023] Open
Abstract
Greater antigenic exposure might accelerate activation and maturation of the humoral immune system. After hatch, commercial broiler chickens can have early (EN) or delayed (DN) access to nutrition, up to 72 h after hatch. The immune system of EN versus DN broilers is likely more exposed to antigens after hatch. This might contribute to activation and maturation of the immune system, but might also influence the development of oral tolerance, thereby altering later life antibody responses. We studied antibody (IgM, IgY, IgA) responses between 21 and 42 d of age in fast-growing EN and DN broilers, kept under low (LSC) or high sanitary conditions (HSC). In a first experiment (n = 51 broilers), we tested whether early oral exposure to bovine serum albumin (BSA) affected later life antibody responses towards BSA and a novel antigen-rabbit γ-globulin (RGG), under HSC. In a second experiment, a total of 480 EN and DN broilers were housed under either LSC or HSC, and we studied antibody responses against both BSA and RGG (n = 48 broilers per treatment) and growth performance. Broilers kept under LSC versus HSC, had higher antibody levels and their growth performance was severely depressed. Interactions between feeding strategy (EN versus DN) and sanitary conditions, or main effects of feeding strategy, on natural and specific antibody levels, and growth performance were not observed. Levels of IgA were elevated in EN versus DN broilers, in experiment I and in batch 2 of experiment II, but not in the other batches of experiment II. We concluded that EN versus DN contributes minimally to the regulation of antibody responses, irrespective of antigenic pressure in the rearing environment.
Collapse
Affiliation(s)
- Maarten S. Hollemans
- Coppens Diervoeding B.V., P.O. Box 79, NL-5700AB Helmond, The Netherlands
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
- Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands;
- Correspondence:
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| | - Sonja de Vries
- Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands;
| | - Henk K. Parmentier
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| | - Aart Lammers
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| |
Collapse
|
8
|
Liu T, Tang J, Feng F. Medium-chain α-monoglycerides improves productive performance and egg quality in aged hens associated with gut microbiota modulation. Poult Sci 2020; 99:7122-7132. [PMID: 33248629 PMCID: PMC7704951 DOI: 10.1016/j.psj.2020.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to evaluate the effects of medium-chain α-monoglycerides (MG) on productive performance, egg quality, serum biochemical indices, and gut microbiota in laying hens. A total of 252 40-wk-old Hy-Line Brown laying hens were randomly allotted into two groups (21 hens per replicate, 6 replicates per group) and fed with a basal diet (CON group) or a basal diet containing 300 mg/kg of MG (MG300 group). The eggs laid were recorded daily on a replicate basis, and egg quality was measured at 48, 56, and 64 wk of age. At the end of this trial, three randomly selected hens from each replicate were slaughtered, and the serum and cecal digesta were collected for analysis of serum biochemical indices and sex hormones and gut microbiota composition determination. The results revealed that the laying rate was significantly (P < 0.05) increased in the MG300 group, and the feed conversion ratio was decreased (P < 0.01) during 40–64 wk of age. The eggshell strength at 56 wk of age and eggshell thickness at 56 and 64 wk of age were significantly (P < 0.05) increased in the MG300 group. In addition, dietary MG significantly (P < 0.05) increased levels of serum follicle-stimulating hormone, luteinizing hormone, estradiol, glucose, Ca, serum total cholesterol, triglycerides, and high-density lipoprotein cholesterol, but decreased the lipopolysaccharide level. Notably, MG supplementation increased (P < 0.05) the relative abundance of genera Lachnospiraceae_NK4A136_group, Romboutsia, Syntrophomonas, Victivallis, Ruminiclostridium_6, and Family_XIII_UCG_001 (P < 0.01) and simultaneously decreased the abundances of Proteobacteria, Faecalibacterium, Alistipes, Cerasicoccus, Schlegelella, and Treponema_2. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the serum biochemical indices and sex hormone. In summary, the present study revealed that dietary supplementation with MG can improve productive performance and egg quality by modulating gut microbiota, suggested that MG may act as an efficient feed supplement in aged hens.
Collapse
Affiliation(s)
- Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Jun Tang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
9
|
Çenesiz AA, Çiftci İ. Modulatory effects of medium chain fatty acids in poultry nutrition and health. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1739595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- A. A. Çenesiz
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - İ. Çiftci
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Lamot DM, Stegeman JA, Smidt H. Take care of the environment: housing conditions affect the interplay of nutritional interventions and intestinal microbiota in broiler chickens. Anim Microbiome 2019; 1:10. [PMID: 33499936 PMCID: PMC7807522 DOI: 10.1186/s42523-019-0009-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background The intestinal microbiota is shaped by many interactions between microorganisms, host, diet, and the environment. Exposure to microorganisms present in the environment, and exchange of microorganisms between hosts sharing the same environment, can influence intestinal microbiota of individuals, but how this affects microbiota studies is poorly understood. We investigated the effects of experimental housing circumstances on intestinal microbiota composition in broiler chickens, and how these effects may influence the capacity to determine diet related effects in a nutrition experiment. A cross-sectional experiment was conducted simultaneously in a feed research facility with mesh panels between pens (Housing condition 1, H1), in an extensively cleaned stable with floor pens with solid wooden panels (H2), and in isolators (H3). In H1 and H2 different distances between pens were created to assess gut microbiota exchange between pens. Feed with and without a blend of medium-chain fatty acids (MCFA) was used to create differences in cecal microbiota between pens or isolators within the same housing condition. Male one-day-old Ross broiler chickens (n = 370) were randomly distributed across H1, H2, and H3. After 35 days cecal microbiota composition was assessed by 16S ribosomal RNA gene amplicon sequencing. Metabolic functioning of cecal content was assessed based on high-performance liquid chromatography. Results Microbial alpha diversity was not affected in broilers fed +MCFA in H1 but was increased in H2 and H3. Based on weighted UniFrac distances, the nutritional intervention explained 10%, whereas housing condition explained 28% of cecal microbiota variation between all broilers. The effect size of the nutritional intervention varied within housing conditions between 11, 27, and 13% for H1, H2, and H3. Furthermore, performance and metabolic output were significantly different between housing conditions. The distance between pens within H1 and H2 did not influence the percentage of shared genera or operational taxonomic units (OTUs). Conclusions The cecal microbiota of broilers was modifiable by a nutritional intervention, but the housing condition affected microbiota composition and functionality stronger than the diet intervention. Consequently, for interpretation of intestinal microbiota studies in poultry it is essential to be aware of the potentially large impact of housing conditions on the obtained results. Electronic supplementary material The online version of this article (10.1186/s42523-019-0009-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jannigje G Kers
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Francisca C Velkers
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - David M Lamot
- Cargill Animal Nutrition Innovation Center, Velddriel, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
11
|
Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet Immunol Immunopathol 2018; 201:1-11. [DOI: 10.1016/j.vetimm.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|