1
|
Mahouachi M, Mathlouthi N, Saïdi C, Atti N. The effect of increasing extruded linseed level on nutrient digestibility, growth, carcass characteristics, and non-carcass components of lambs from two genotypes. Trop Anim Health Prod 2023; 56:1. [PMID: 38047944 DOI: 10.1007/s11250-023-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
This research aimed to study the effect of extruded linseed level on digestibility, growth, carcass, and non-carcass components of two genotypes' lambs. For this, 36 lambs, with an average body weight (BW) of 21.3 ± 3.4 for Queue Fine de l'Ouest (QF) and 17.8 ± 2.9 kg for the cross QF × D'man (QF × D), were randomly divided into three groups of 12 lambs each (six per genotype) in a 12-week experiment. Sheep in each group received individually oat hay ad libitum and one of three concentrates containing 0% (control), 15% (L15), and 30% (L30) of extruded linseed on a dry matter basis. All concentrates were isocaloric and iso-nitrogenic. In the last 2 weeks, digestibility was measured, and then all lambs were slaughtered. The increasing level of extruded linseed did not affect hay and total dry matter (DM) intake as well as nutrient digestibility, except the neutral detergent fiber (NDF) digestibility which was significantly (P < 0.05) reduced by the diet treatment (66.4, 57.8, and 53.0% for C, L15, and L30, respectively). In addition, the different linseed levels resulted in similar average daily gain, final BW, carcass traits, and non-carcass components except the rumen and liver weights which were significantly (P < 0.05) reduced by the increasing linseed level. However, the addition of extruded linseed improved (P < 0.05) the weight of the heart. The carcass tissular composition was not affected by the dietary treatment guarding a similar proportion of muscle, bone, and fat. However, the growth performance and carcass traits were higher for cross QF × D than QF lambs. In addition, the carcasses were leaner (less fat and more muscle) for the cross genotype (P < 0.05) than the pure QF breed. It was concluded that extruded linseed can be used in lamb diet without adverse effects on growth performance and carcass components. Furthermore, the cross could be planned given it resulted in higher growth and better carcass composition.
Collapse
Affiliation(s)
- M Mahouachi
- Ecole Supérieure d'Agriculture du Kef, Le Kef, Laboratoire "Appui À La Durabilité Des Systèmes de Production Agricole Dans Les Régions du Nord-Ouest", University of Jendouba, Jendouba, Tunisia.
| | - N Mathlouthi
- Ecole Supérieure d'Agriculture du Kef, Le Kef, Laboratoire "Appui À La Durabilité Des Systèmes de Production Agricole Dans Les Régions du Nord-Ouest", University of Jendouba, Jendouba, Tunisia
| | - C Saïdi
- Office d'élevage Et Des Pâturages (OEP), Tunis, Tunisia
| | - N Atti
- INRA-Tunisie, Laboratoire de Productions Animales Et Fourragères, Rue HédiKarray, 2080 Ariana, University of Carthage, Tunis, Tunisia
| |
Collapse
|
2
|
Rocchetti G, Ghilardelli F, Carboni E, Atzori AS, Masoero F, Gallo A. Milk metabolome reveals pyrimidine and its degradation products as the discriminant markers of different corn silage-based nutritional strategies. J Dairy Sci 2022; 105:8650-8663. [PMID: 36175222 DOI: 10.3168/jds.2022-21903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to evaluate the effect of 6 different feeding systems (based on corn silage as the main ingredient) on the chemical composition of milk and to highlight the potential of untargeted metabolomics to find discriminant marker compounds of different nutritional strategies. Interestingly, the multivariate statistical analysis discriminated milk samples mainly according to the high-moisture ear corn (HMC) included in the diet formulation. Overall, the most discriminant compounds, identified as a function of the HMC, belonged to AA (10 compounds), peptides (71 compounds), pyrimidines (38 compounds), purines (15 compounds), and pyridines (14 compounds). The discriminant milk metabolites were found to significantly explain the metabolic pathways of pyrimidines and vitamin B6. Interestingly, pathway analyses revealed that the inclusion of HMC in the diet formulation strongly affected the pyrimidine metabolism in milk, determining a significant up-accumulation of pyrimidine degradation products, such as 3-ureidopropionic acid, 3-ureidoisobutyric acid, and 3-aminoisobutyric acid. Also, some pyrimidine intermediates (such as l-aspartic acid, N-carbamoyl-l-aspartic acid, and orotic acid) were found to possess a high discrimination degree. Additionally, our findings suggested that the inclusion of alfalfa silage in the diet formulation was potentially correlated with the vitamin B6 metabolism in milk, being 4-pyridoxic acid (a pyridoxal phosphate degradation product) the most significant and up-accumulated compound. Taken together, the accumulation trends of different marker compounds revealed that both pyrimidine intermediates and degradation products are potential marker compounds of HMC-based diets, likely involving a complex metabolism of microbial nitrogen based on total splanchnic fluxes from the rumen to mammary gland in dairy cows. Also, our findings highlight the potential of untargeted metabolomics in both foodomics and foodomics-based studies involving dairy products.
Collapse
Affiliation(s)
- G Rocchetti
- Department of Animal Science, Food and Nutrition (DiANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition (DiANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Carboni
- Department of Animal Science, Food and Nutrition (DiANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A S Atzori
- Department of Agriculture Science, University of Sassari, 07100 Sassari, Italy
| | - F Masoero
- Department of Animal Science, Food and Nutrition (DiANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Gallo
- Department of Animal Science, Food and Nutrition (DiANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
3
|
Brisson V, Girard CL, Metcalf JA, Castagnino DS, Dijkstra J, Ellis JL. Meta-analysis of apparent ruminal synthesis and postruminal flow of B vitamins in dairy cows. J Dairy Sci 2022; 105:7399-7415. [PMID: 35879170 DOI: 10.3168/jds.2021-21656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
As milk production has significantly increased over the past decade(s), existing estimates of the B-vitamin needs of the modern dairy cow are currently being reconsidered, as suboptimal B-vitamin supply may affect metabolic efficiency. At the same time, however, "true" (i.e., biologically active forms, excluding nonfunctional analogs) B-vitamin supply also cannot be adequately estimated by dietary intake, as the rumen microbiota has been shown to play a significant role in synthesis and utilization of B vitamins. Given their complex impact on the metabolism of dairy cows, incorporating these key nutrients into the next generation of mathematical models could help to better predict animal production and performance. Therefore, the purpose of this study was to generate hypotheses of regulation in the absence of supplemental B vitamins by creating empirical models, through a meta-analysis, to describe true B-vitamin supply to the cow (postruminal flow, PRF) and apparent ruminal synthesis (ARS). The database used for this meta-analysis consisted of 340 individual cow observations from 15 studies with 16 experiments, where diet and postruminal digesta samples were (post hoc) analyzed for content of B vitamins (B1, B2, B3, B6, B9, B12). Equations of univariate and multivariate linear form were considered. Models describing ARS considered dry matter intake (DMI, kg/d), B-vitamin dietary concentration [mg/kg of dry matter (DM)] and rumen-level variables such as rumen digestible neutral detergent fiber (NDF) and starch (g/kg of DM), total volatile fatty acids (VFA, mM), acetate, propionate, butyrate, and valerate molar proportions (% of VFA), mean pH, and fractional rates of degradation of NDF and starch (%/h). Models describing PRF considered dietary-level driving variables such as DMI, B-vitamin dietary concentration (mg/kg of DM), starch and crude protein (g/kg of DM) and forage NDF (g/kg of DM). Equations developed were required to contain all significant slope parameters and contained no significant collinearity between driving variables. Concordance correlation coefficient was used to evaluate the models on the developmental data set due to data scarcity. Overall, modeling ARS yielded better-performing models compared with modeling PRF, and DMI was included in all prediction equations as a scalar variable. The B-vitamin dietary concentration had a negative effect on the ARS of B1, B2, B3, and B6 but increased the PRF of B2 and B9. The rumen digestible NDF concentration had a negative effect on the ARS of B2, B3, and B6, whereas rumen digestible starch concentration had a negative effect on the ARS of B1 and a positive effect on the ARS of B9. In the best prediction models, the dietary starch increased PRF of B1, B2, and B9 but decreased PRF of B12. The equations developed may be used to better understand the effect of diet and ruminal environment on the true supply of B vitamins to the dairy cow and stimulate the development of better-defined requirements in the future.
Collapse
Affiliation(s)
- V Brisson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - C L Girard
- Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 1Z3, Canada
| | - J A Metcalf
- Trouw Nutrition Canada, Guelph, ON, N1G 4T2, Canada
| | | | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - J L Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
4
|
Brede J, Peukert M, Egert B, Breves G, Brede M. Long-Term Mootral Application Impacts Methane Production and the Microbial Community in the Rumen Simulation Technique System. Front Microbiol 2021; 12:691502. [PMID: 34690944 PMCID: PMC8531547 DOI: 10.3389/fmicb.2021.691502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methane emissions by ruminants contribute to global warming and result in a loss of dietary energy for the animals. One possibility of reducing methane emissions is by dietary strategies. In the present trial, we investigated the long-term effects of Mootral, a feed additive consisting of garlic powder (Allium sativum) and bitter orange extracts (Citrus aurantium), on fermentation parameters and the microbial community in the rumen simulation technique (RUSITEC) system. The experiment lasted 38 days and was divided into three phases: an equilibration period of 7 days, a baseline period (BL) of 3 days, and experimental period (EP) of 28 days. Twelve fermentation vessels were divided into three groups (n = 4): control (CON), short-term (ST), and long-term (LT) application. From day 11 to day 27, 1.7 g of Mootral was added to the ST vessels; LT vessels received 1.7 g of Mootral daily for the entire EP. With the onset of Mootral application, methane production was significantly reduced in both groups until day 18. Thereafter, the production rate returned to the initial quantity. Furthermore, the short chain fatty acid fermentation profile was significantly altered by Mootral application; the molar proportion of acetate decreased, while the proportions of propionate and butyrate increased. Metabolomic analysis revealed further changes in metabolite concentrations associated with the Mootral supplementation period. The methyl coenzyme-M reductase gene copy number was reduced in the liquid and solid phase, whereas the treatment did not affect the abundance of bacteria. At the end of the BL, Methanomicrobia was the most abundant archaeal class. Mootral supplementation induced an increase in the relative abundance of Methanomassiliicoccales and a reduction in the relative abundance of Methanomicrobia, however, this effect was transient. Abundances of bacterial families were only marginally altered by the treatment. In conclusion, Mootral has the transient ability to reduce methane production significantly due to a selective effect on archaea numbers and archaeal community composition with little effect on the bacterial community.
Collapse
Affiliation(s)
- Johanna Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manuela Peukert
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Melanie Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
5
|
Girard CL, Graulet B. Methods and approaches to estimate B vitamin status in dairy cows: Knowledge, gaps and advances. Methods 2020; 186:52-58. [PMID: 32485230 DOI: 10.1016/j.ymeth.2020.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
Clinical symptoms of B vitamin deficiency are rarely observed in ruminants because these vitamins are synthesized by the rumen microbiota. However, over the last decades, numerous reports of beneficial effects on production and metabolic efficiency of dairy cows have been published supporting that, under some conditions, B vitamin subclinical deficiency is present in these animals. Due to their roles as coenzymes or cofactors in major metabolic pathways, an adequate supply in B vitamins is critical to optimize metabolic efficiency. Nowadays, taking into account the growing interest for the Smart Farming concept, fulfilling ruminant requirements for B vitamins according to their physiological stage under different feeding management cannot be neglected. In dairy cows, B vitamin supply is greatly dependent of the activity of the ruminal microbiota. Indeed, the amount of vitamins reaching the small intestine is dependent of the utilization of the vitamins provided by the diet and their synthesis by the microorganisms present in the rumen. The two major challenges faced to determine B vitamin status of ruminants are the difficulty to estimate B vitamin supply due to the lack of knowledge on factors driving the fate of B vitamins in the digestive tract, especially in the rumen, and the choice and thresholds of biomarkers reflecting adequately the animal status. The present paper aims to present the actual state of knowledge on the methodological approaches used to estimate B vitamin supply and status of ruminant and to point out future research orientations.
Collapse
Affiliation(s)
- C L Girard
- Agriculture et agroalimentaire Canada, Centre de recherche et développement de Sherbrooke, 2000 College, Sherbrooke J1M 0C8, Québec, Canada.
| | - B Graulet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|