1
|
Starr MC, Barreto E, Charlton J, Vega M, Brophy PD, Ray Bignall ON, Sutherland SM, Menon S, Devarajan P, Akcan Arikan A, Basu R, Goldstein S, Soranno DE. Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference. Pediatr Nephrol 2024; 39:941-953. [PMID: 37792076 PMCID: PMC10817846 DOI: 10.1007/s00467-023-06154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite this progress, gaps remain in our understanding of the pathobiology of pediatric AKI. METHODS During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for opportunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and opportunities for advancement in research was discussed, and recommendations were summarized. RESULTS Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-clinical to epidemiological scientists must work in concert together and that results must be shared with the community we serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development as a biological variable on AKI incidence, severity, and outcomes. CONCLUSIONS Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to advance the field of pediatric AKI via multidisciplinary translational research.
Collapse
Affiliation(s)
- Michelle C Starr
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
- Pediatric and Adolescent Comparative Effectiveness Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Molly Vega
- Renal and Apheresis Services, Texas Children's Hospital, Houston, TX, USA
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - O N Ray Bignall
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rajit Basu
- Department of Pediatrics, Division of Critical Care, Northwestern University, Chicago, IL, USA
| | - Stuart Goldstein
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Danielle E Soranno
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Bioengineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Mocanu A, Bogos RA, Lazaruc TI, Trandafir LM, Lupu VV, Ioniuc I, Alecsa M, Ivanov A, Lupu A, Starcea IM. Exploring a Complex Interplay: Kidney-Gut Axis in Pediatric Chronic Kidney Disease. Nutrients 2023; 15:3609. [PMID: 37630799 PMCID: PMC10457891 DOI: 10.3390/nu15163609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The human intestinal microbiota is a highly intricate structure with a crucial role in promoting health and preventing disease. It consists of diverse microbial communities that inhabit the gut and contribute to essential functions such as food digestion, nutrient synthesis, and immune system development. The composition and function of the gut microbiota are influenced by a variety of factors, including diet, host genetics, and environmental features. In pediatric patients, the gut microbiota is particularly dynamic and vulnerable to disruption from endogenous and exogenous factors. Recent research has focused on understanding the interaction between the gut and kidneys. In individuals with chronic kidney disease, there is often a significant disturbance in the gut microbiota. This imbalance can be attributed to factors like increased levels of harmful toxins from the gut entering the bloodstream, inflammation, and oxidative stress. This review looks at what is known about the link between a child's gut-kidney axis, how dysbiosis, or an imbalance in the microbiome, affects chronic kidney disease, and what treatments, both pharmaceutical and non-pharmaceutical, are available for this condition.
Collapse
Affiliation(s)
- Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tudor Ilie Lazaruc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mirabela Alecsa
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Ivanov
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| |
Collapse
|
3
|
Alkhalefah A, Eyre HJ, Hussain R, Glazier JD, Ashton N. Impact of maternal intermittent fasting during pregnancy on cardiovascular, metabolic and renal function in adult rat offspring. PLoS One 2022; 17:e0258372. [PMID: 35271586 PMCID: PMC8912128 DOI: 10.1371/journal.pone.0258372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pregnant Muslim women are exempt from fasting during Ramadan; however a majority are reported to fast. The impact of this form of maternal intermittent fasting (IF) on fetal development and offspring health is not well defined. Using a rat model, we have shown previously that maternal IF results in fetal growth restriction accompanied by changes in placental nutrient transport function. The aim of this study was to assess cardiovascular, metabolic and renal function in adult offspring of IF-exposed dams. Food was withheld from Wistar rats from 17:00 to 09:00 daily throughout pregnancy; controls had ad libitum access to food. Birth weight was unaffected; however male IF pups grew more slowly up to 10 weeks of age (P < 0.01) whereas IF females matched their control counterparts. Systolic blood pressure (SBP), glucose tolerance and basal renal function at 14 weeks were not affected by IF exposure. When offered saline solutions (0.9–2.1%) to drink, females showed a greater salt preference than males (P < 0.01); however there were no differences between dietary groups. A separate group of pups was weaned onto a 4% NaCl diet. SBP increased in IF pups sooner, at 7 weeks (P < 0.01), than controls which became hypertensive from 10 weeks. Renal function did not appear to differ; however markers of renal injury were elevated in IF males (P < 0.05). Maternal IF does not affect resting cardiovascular, metabolic and renal function; but when challenged by dietary salt load male IF offspring are more prone to renal injury.
Collapse
Affiliation(s)
- Alaa Alkhalefah
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Heather J. Eyre
- Divison of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rezwana Hussain
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, Li L, Ma Z, Pan Q, Qiao Z, Chen K. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med 2021; 22:950. [PMID: 34335892 PMCID: PMC8290466 DOI: 10.3892/etm.2021.10382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Collapse
Affiliation(s)
- Jianbo Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Experimental Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Wen Ai
- Department of Cardiology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Linhao Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zilin Qiao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kan Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
5
|
Alkhalefah A, Dunn WB, Allwood JW, Parry KL, Houghton FD, Ashton N, Glazier JD. Maternal intermittent fasting during pregnancy induces fetal growth restriction and down-regulated placental system A amino acid transport in the rat. Clin Sci (Lond) 2021; 135:1445-1466. [PMID: 34008846 DOI: 10.1042/cs20210137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
During Ramadan, many pregnant Muslim women fast between dawn and sunset. Although the impacts of prolonged maternal intermittent fasting (IF) on fetal growth and placental function are under-researched, reported effects include reduced placental weight and birth weight. In the present study, pregnant Wistar rats were used to model repeated cycles of IF on fetal development and placental function and to examine sex-specific effects. In the IF group, food was withdrawn daily from 17:00 to 09:00 over 21 days of gestation, while the control group received food ad libitum. Both groups had free water access. IF dams consumed less food, had significantly reduced weight compared with controls, with reduced plasma glucose and amino acids. Both fetal sexes were significantly lighter in the IF group with reduced fetal plasma amino acids. Placental weights and morphology were unchanged. The profile of placental metabolites was altered in the IF group with sex-specific responses evident. Transplacental flux of 14C-methylaminoisobutyric acid (14C-MeAIB), a system A amino acid transporter substrate, was significantly reduced in both fetal sexes in the IF group. Sodium-dependent 14C-MeAIB uptake into isolated placental plasma membrane vesicles was unchanged. The gene expression of system A transporter Slc38a1, Slc38a2 and Slc38a4 was up-regulated in IF male placentas only. No changes were observed in placental SNAT1 and SNAT2 protein expression. Maternal IF results in detrimental impacts on maternal physiology and fetal development with changes in the placental and fetal metabolite profiles. Reduced placental system A transporter activity may be responsible for fetal growth restriction in both sexes.
Collapse
Affiliation(s)
- Alaa Alkhalefah
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, St. Mary's Hospital, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, U.K
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, U.K
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, U.K
| | - James W Allwood
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kate L Parry
- Centre for Human Development, Stem Cells and Regeneration, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells and Regeneration, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, U.K
| | - Jocelyn D Glazier
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, U.K
| |
Collapse
|
6
|
Alshamrani A, Aldahmash W, Falodah F, Arafah M, Harrath AH, Alwasel S. Long-Term but Not Short-Term Maternal Fasting Reduces Nephron Number and Alters the Glomerular Filtration Barrier in Rat Offspring. Life (Basel) 2021; 11:life11040318. [PMID: 33917410 PMCID: PMC8067523 DOI: 10.3390/life11040318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
The present study examined the effects of maternal Ramadan-type fasting during selected days in the first, second, or third trimester, or during the entire pregnancy, on the kidney structure of male rat offspring. Pregnant rats were provided with food ad libitum during pregnancy (control group, C), or they were exposed to 16 h of fasting/day for three consecutive days in the middle of the first (FT1), second (FT2), or third trimester (FT3), or during whole pregnancy (FWP). Our results showed that dams in the FWP group demonstrated lower food intake and body weight during gestation. Litter size was unaltered by fasting in all groups; however, litter weight was significantly reduced only in the FWP group. Nephron number was decreased in the FWP group, but it remained unchanged in the other fasting groups. The ultrastructure of the glomerular filtration barrier indicated that the kidneys of offspring of the FWP group demonstrated wider diameters of fenestrations and filtration slits and smaller diameters of basement membranes. This was reflected by a significant increase in proteinuria in FWP only. These results suggest that, unlike with short-term fasting, which seems to be safe, maternal long-term fasting induces structural changes that were non-reversible, and that may contribute to impaired renal function, leading to chronic diseases in later life.
Collapse
Affiliation(s)
- Abdullah Alshamrani
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (W.A.); (F.F.); (A.H.H.)
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (W.A.); (F.F.); (A.H.H.)
| | - Fawaz Falodah
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (W.A.); (F.F.); (A.H.H.)
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (W.A.); (F.F.); (A.H.H.)
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (W.A.); (F.F.); (A.H.H.)
- Correspondence:
| |
Collapse
|
7
|
Charlton JR, Baldelomar EJ, Hyatt DM, Bennett KM. Nephron number and its determinants: a 2020 update. Pediatr Nephrol 2021; 36:797-807. [PMID: 32350665 PMCID: PMC7606355 DOI: 10.1007/s00467-020-04534-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Studies of human nephron number have been conducted for well over a century and have uncovered a large variability in nephron number. However, the mechanisms influencing nephron endowment and loss, along with the etiology for the wide range among individuals are largely unknown. Advances in imaging technology have allowed investigators to revisit the principles of renal structure and physiology and their roles in the progression of kidney disease. Here, we will review the latest data on the influences impacting nephron number, innovations made over the last 6 years to understand and integrate renal structure and function, and new developments in the tools used to count nephrons in vivo.
Collapse
Affiliation(s)
- Jennifer R. Charlton
- University of Virginia School of Medicine, Department of Pediatrics, Division of Nephrology, Charlottesville, VA, USA
| | - Edwin J. Baldelomar
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| | - Dylan M. Hyatt
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Kevin M. Bennett
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| |
Collapse
|