1
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
2
|
Şeker Ş, Aral D, Elçin AE, Yaşar Murat E. Biomimetic mineralization of platelet lysate/oxidized dextran cryogel as a macroporous 3D composite scaffold for bone repair. Biomed Mater 2024; 19:025006. [PMID: 38194711 DOI: 10.1088/1748-605x/ad1c9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Scaffold development approaches using autologous sources for tissue repair are of great importance in obtaining bio-active/-compatible constructs. Platelet-rich plasma (PRP) containing various growth factors and platelet lysate (PL) derived from PRP are autologous products that have the potential to accelerate the tissue repair response by inducing a transient inflammatory event. Considering the regenerative capacity of PRP and PL, PRP/PL-based scaffolds are thought to hold great promise for tissue engineering as a natural source of autologous growth factors and a provider of mechanical support for cells. Here, a bio-mineralized PRP-based scaffold was developed using oxidized dextran (OD) and evaluated for future application in bone tissue engineering. Prepared PL/OD scaffolds were incubated in simulated body fluid (SBF) for 7, 14 and 21 d periods. Mineralized PL/OD scaffolds were characterized using Fourier transform infrared spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, porosity and compression tests. SEM and energy-dispersive x-ray spectroscopy analyses revealed mineral accumulation on the PL/OD scaffold as a result of SBF incubation.In vitrocytotoxicity andin vitrohemolysis tests revealed that the scaffolds were non-toxic and hemocompatible. Additionally, human osteoblasts (hOBs) exhibited good attachment and spreading behavior on the scaffolds and maintained their viability throughout the culture period. The alkaline phosphatase activity assay and calcium release results revealed that PL/OD scaffolds preserved the osteogenic properties of hOBs. Overall, findings suggest that mineralized PL/OD scaffold may be a promising scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Şükran Şeker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Dilara Aral
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Elçin Yaşar Murat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
3
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
4
|
Ko YB, Park YH, MubarakAli D, Lee SY, Kim JW. Synthesis of antibacterial hydroxypropyl methylcellulose and silver nanoparticle biocomposites via solution plasma using silver electrodes. Carbohydr Polym 2023; 302:120341. [PMID: 36604041 DOI: 10.1016/j.carbpol.2022.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
The biocomposites of hydroxypropyl methylcellulose (HPMC)/silver nanoparticles (AgNPs) were synthesized using the solution plasma process (SPP). HPMC/AgNPs were synthesized in 1-5 % HPMC solutions using silver electrodes. UV-Vis spectroscopy showed a peak near 400 nm and the peak increased as the concentration of HPMC and discharge time increased. FTIR analysis indicated no change in the chemical structure of the HPMC based biocomposites. Spherical shaped AgNPs with size ranges about 2-18 nm and well dispersed in the porous HPMC matrices with fringed edges were observed by TEM and SEM/EDS analyses. The synthesized biocomposites were found to be thermo-stable by TGA analysis. The inhibition zones of bacterial growth formed by the HPMC/AgNPs biocomposites were in the range of 8-14.3 mm; minimal inhibition concentrations, in the range of 10-15 μg·mL-1 for Gram-negative bacteria; 25-30 μg·mL-1 for Gram-positive bacteria. The biocomposites were non-toxic to the HEK293 cells up to 125 μg·mL-1. The results indicated that the synthesis of antibacterial agents in the HPMC matrix using silver electrodes via SPP would be an efficient and safe way for the development of biopolymer based antimicrobials and wound healing biomaterials.
Collapse
Affiliation(s)
- Yu-Been Ko
- Department of Bioengineering and NanoBio Engineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - Yoon-Hee Park
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India; Research Center for Bio Material and Process Development, Incheon National University, Incheon 22012, Republic of Korea; Department of Material Engineering, Korea Aerospace University, Goyang, Republic of Korea
| | - Sang-Yul Lee
- Department of Material Engineering, Korea Aerospace University, Goyang, Republic of Korea
| | - Jung-Wan Kim
- Department of Bioengineering and NanoBio Engineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Material and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
5
|
Zheng G, Ma HW, Xiang GH, He GL, Cai HC, Dai ZH, Chen YL, Lin Y, Xu HZ, Ni WF, Xu C, Liu HX, Wang XY. Bone-targeting delivery of platelet lysate exosomes ameliorates glucocorticoid-induced osteoporosis by enhancing bone-vessel coupling. J Nanobiotechnology 2022; 20:220. [PMID: 36310171 PMCID: PMC9620632 DOI: 10.1186/s12951-022-01400-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.
Collapse
Affiliation(s)
- Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hai-Wei Ma
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Guang-Heng Xiang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Han-Chen Cai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yan-Lin Chen
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang Province, China
| | - Yan Lin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hua-Zi Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Wen-Fei Ni
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Cong Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Hai-Xiao Liu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Xiang-Yang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
6
|
Daikuara LY, Yue Z, Skropeta D, Wallace GG. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomater 2021; 123:286-297. [PMID: 33476829 DOI: 10.1016/j.actbio.2021.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin methacryloyl (GelMA) (PLGMA) for the fabrication of a multifunctional 3D printed dermal equivalent. This bioink meets the essential requirements of printability in terms of rheological properties and shape fidelity. Moreover, its mechanical properties can be readily tuned to achieve stiffness that is equivalent to native skin tissue. Biologically relevant factors were successfully released in a sustainable manner for up to two weeks of study. The bioavailability of those factors was demonstrated by high cell viability, good cell attachment and improved proliferation of printed dermal fibroblasts. Furthermore, growth factors upregulated ECM synthesis and deposition by dermal fibroblasts after two weeks of culture.
Collapse
|
7
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
8
|
Tang Q, Lim T, Shen LY, Zheng G, Wei XJ, Zhang CQ, Zhu ZZ. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application. Biomaterials 2020; 268:120605. [PMID: 33360073 DOI: 10.1016/j.biomaterials.2020.120605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
Platelet lysate (PL) as a cost-effective cocktail of growth factors is an emerging ingredient in regenerative medicine, especially in cartilage tissue engineering. However, most studies fail to pay attention to PL's intrinsic characteristics and incorporate it directly with scaffolds or hydrogels by simple mixture. Currently, the particle size distribution of PL was determined to be scattered. Directly introducing PL into a thermosensitive poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PLEL) hydrogel disturbed its sol-gel transition. Electrostatic self-assembly heparin (Hep) and ε-poly-l-lysine (EPL) nanoparticles (NPs) were fabricated to improve the dispersity of PL. Such PL-NPs-incorporated PLEL gels retained the initial gelling capacity and showed a long-term PL-releasing ability. Moreover, the PL-loaded composite hydrogels inhibited the inflammatory response and dedifferentiation of IL-1β-induced chondrocytes. For in vivo applications, the PLEL@PL-NPs system ameliorated the early cartilage degeneration and promoted cartilage repair in the late stage of osteoarthritis. RNA sequencing analysis indicated that PL's protective effects might be associated with modulating hyaluronan synthase 1 (HAS-1) expression. Taken together, these results suggest that well-dispersed PL by Hep/EPL NPs is a preferable approach for its incorporation into hydrogels and the constructed PLEL@PL-NPs system is a promising cell-free and stepwise treatment option for cartilage tissue engineering.
Collapse
Affiliation(s)
- Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Thou Lim
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Li-Yan Shen
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi Road, 325027 Wenzhou, China
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi Road, 325027 Wenzhou, China
| | - Xiao-Juan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
9
|
Moisley KM, El‐Jawhari JJ, Owston H, Tronci G, Russell SJ, Jones EA, Giannoudis PV. Optimising proliferation and migration of mesenchymal stem cells using platelet products: A rational approach to bone regeneration. J Orthop Res 2019; 37:1329-1338. [PMID: 30816585 PMCID: PMC7065095 DOI: 10.1002/jor.24261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
This study investigates how mesenchymal stem cell's (MSCs) proliferation and migration abilities are influenced by various platelet products (PP). Donor-matched, clinical-, and control laboratory-standard PPs were generated and assessed based on their platelet and leukocyte concentrations. Bone marrow derived MSCs were exposed to these PP to quantify their effect on in vitro MSC proliferation and migration. An adapted colony forming unit fibroblast (CFU-F) assay was carried out on bone marrow aspirate using clinical-standard PP-loaded electrospun poly(ϵ-caprolactone) (PCL) membrane to mimic future clinical applications to contain bone defects. Clinical-standard PP had lower platelet (2.5 fold, p < 0.0001) and higher leukocyte (14.1 fold, p < 0.0001) concentrations compared to laboratory-standard PP. It induced suboptimal MSC proliferation compared to laboratory-standard PP and fetal calf serum (FCS). All PP induced significantly more MSC migration than FCS up to 24 h. The removal of leukocytes from PP had no effect on MSC proliferation or migration. The PP-loaded membranes successfully supported MSC colony formation. This study indicates that platelet concentrations in PP impact MSC proliferation more than the presence of leukocytes, whilst MSC migration in response to PP is not influenced by platelet or leukocyte numbers. Clinical-standard PP could be applied alongside manufactured membranes in the future treatment of bone reconstruction. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:1329-1338, 2019.
Collapse
Affiliation(s)
- Katrina M. Moisley
- Leeds Institute of Rheumatic and Musculoskeletal MedicineSt James's University HospitalLeedsEngland
- IMBE Faculty of Medical EngineeringLeeds UniversityLeedsEngland
| | - Jehan J. El‐Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal MedicineSt James's University HospitalLeedsEngland
- Faculty of Medicine, Department of Clinical PathologyMansoura UniversityMansouraEgypt
| | - Heather Owston
- Leeds Institute of Rheumatic and Musculoskeletal MedicineSt James's University HospitalLeedsEngland
- IMBE Faculty of Medical EngineeringLeeds UniversityLeedsEngland
| | - Giuseppe Tronci
- Textile Materials and Technology, School of DesignUniversity of LeedsLeedsEngland
| | - Stephen J. Russell
- Textile Materials and Technology, School of DesignUniversity of LeedsLeedsEngland
| | - Elena A. Jones
- Leeds Institute of Rheumatic and Musculoskeletal MedicineSt James's University HospitalLeedsEngland
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic SurgeryLeeds General InfirmaryLeedsEngland
- NIHR Leeds Biomedical Research UnitChapel Allerton HospitalLeedsEngland
| |
Collapse
|
10
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
11
|
Davoodbasha MA, Saravanakumar K, Abdulkader AM, Lee SY, Kim JW. Synthesis of Biocompatible Cellulose-Coated Nanoceria with pH-Dependent Antioxidant Property. ACS APPLIED BIO MATERIALS 2019; 2:1792-1801. [DOI: 10.1021/acsabm.8b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mubarak Ali Davoodbasha
- School of Life Sciences, BSA Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Akbarsha Mohammad Abdulkader
- Mahatma Gandhi-Doerenkamp Center for Alternatives to Use of Animals in Life Science Education (MGDC), Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Research Division, National College (Autonomous),, Bharathidasan University, Tiruchirappalli 620021, Tamil Nadu, India
| | - Sang-Yul Lee
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Jung-Wan Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| |
Collapse
|
12
|
Santos SC, Sigurjonsson ÓE, Custódio CA, Mano JF. Blood Plasma Derivatives for Tissue Engineering and Regenerative Medicine Therapies. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:454-462. [PMID: 29737237 PMCID: PMC6443031 DOI: 10.1089/ten.teb.2018.0008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-rich plasma (PRP) and its derivatives have been investigated and applied in regenerative medicine. The use of PRP as a supplement of cell culture media has consistently shown to potentiate stem cell proliferation, migration, and differentiation. In addition, the clinical utility of PRP is supported by evidence that PRP contains high concentrations of growth factors (GFs) and proteins which contribute to the regenerative process. PRP based therapies are cost effective and also benefit from the accessibility and safety of using the patient's own GFs. In the last years, a great development has been witnessed on PRP based biomaterials, with both structural and functional purposes. In this study we overview the most relevant PRP applications encompassing PRP based materials for tissue engineering and regenerative medicine. This review also summarizes the challenges in the fields of tissue engineering and regenerative medicine and provides a perspective on future directions.
Collapse
Affiliation(s)
- SC Santos
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ólafur Eysteinn Sigurjonsson
- 1) The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101 Reykjavik, Iceland 2) School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101 Reykjavik
| | - Catarina Almeida Custódio
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Filipe Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Mendes BB, Gómez-Florit M, Babo PS, Domingues RM, Reis RL, Gomes ME. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv Drug Deliv Rev 2018; 129:376-393. [PMID: 29288732 DOI: 10.1016/j.addr.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Blood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms. Herein, we highlight recent trends on the use biomaterials to protect, sequester and deliver these pools of biomolecules in tissue engineering and regenerative medicine approaches. Particular emphasis is given to strategies that enable to control their spatiotemporal delivery and improve the selectivity of presentation profiles of the biomolecules derived from blood derivatives rich in platelets. Finally, we discussed possible directions for biomaterials design to potentiate the aimed regenerative effects of blood derivatives and achieve efficient therapies.
Collapse
|
14
|
Xin X, Guan YX, Yao SJ. Sustained release of dexamethasone from drug-loading PLGA scaffolds with specific pore structure fabricated by supercritical CO2
foaming. J Appl Polym Sci 2018. [DOI: 10.1002/app.46207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Xin
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shan-Jing Yao
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
15
|
Sousa MP, Mano JF, d’Ischia M, Ruiz-Molina D. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics (Basel) 2017; 2:19. [PMID: 30842970 PMCID: PMC6352653 DOI: 10.3390/biomimetics2040019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel's foot contain 3,4-dihydroxy-l-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet-visible (UV-vis) spectroscopy and nuclear magnetic resonance (NMR) techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D) or three-dimensional (3D) systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL) technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN). The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.
Collapse
Affiliation(s)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | | | | |
Collapse
|
16
|
Abstract
Wound healing is one of the most complex processes that our bodies must perform. While our ability to repair wounds is often taken for granted, conditions such as diabetes, obesity, or simply old age can significantly impair this process. With the incidence of all three predicted to continue growing into the foreseeable future, there is an increasing push to develop strategies that facilitate healing. Biomaterials are an attractive approach for modulating all aspects of repair, and have the potential to steer the healing process towards regeneration. In this review, we will cover recent advances in developing biomaterials that actively modulate the process of wound healing, and will provide insight into how biomaterials can be used to simultaneously rewire multiple phases of the repair process.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
17
|
Liang H, Sheng F, Zhou B, Pei Y, Li B, Li J. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. Int J Biol Macromol 2017; 102:218-224. [PMID: 28392386 DOI: 10.1016/j.ijbiomac.2017.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/16/2023]
Abstract
In this study, negatively charged phosvitin (PV) and positively charged chitosan (CS) were alternately deposited on negatively charged cellulose mats via layer-by-layer (LBL) self-assembly technique. Morphologies of the LBL films coating mats were observed by scanning electron microscope (SEM). Afterwards, in vitro biomimetic mineralization was carried out through incubation of the fibrous mats in a simulated body fluid (SBF) solution for different time. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. In addition, the cell culture experiment demonstrated that the scaffolds with the LBL structured films were of good cell compatibility for MC3T3-E1 cells. Moreover, the cell proliferation was affected by the number of deposition layers and the composition of outer-most layer. Confocal laser scanning microscopy (CLSM) and SEM imaging revealed a good performance of cell adhesion and spreading of MC3T3-E1 cells on the surface of biocomposite scaffold. So CS/PV nanofibrous mats were satisfactory for the composite to be used in bioapplications.
Collapse
Affiliation(s)
- Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Feng Sheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, The College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Bin Zhou
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai 201306, China
| | - Yaqiong Pei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
18
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Oliveira SM, Pirraco RP, Marques AP, Santo VE, Gomes ME, Reis RL, Mano JF. Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomater 2016; 32:129-137. [PMID: 26708711 DOI: 10.1016/j.actbio.2015.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. STATEMENT OF SIGNIFICANCE The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures.
Collapse
Affiliation(s)
- Sara M Oliveira
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Vítor E Santo
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| |
Collapse
|
20
|
Altaie A, Owston H, Jones E. Use of platelet lysate for bone regeneration - are we ready for clinical translation? World J Stem Cells 2016; 8:47-55. [PMID: 26981170 PMCID: PMC4766250 DOI: 10.4252/wjsc.v8.i2.47] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/14/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.
Collapse
Affiliation(s)
- Ala Altaie
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Heather Owston
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Elena Jones
- Ala Altaie, Heather Owston, Elena Jones, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
21
|
Fontana F, Mori M, Riva F, Mäkilä E, Liu D, Salonen J, Nicoletti G, Hirvonen J, Caramella C, Santos HA. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:988-996. [PMID: 26652045 DOI: 10.1021/acsami.5b10950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | | | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | | | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| |
Collapse
|
22
|
Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:592-604. [DOI: 10.1016/j.msec.2015.05.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 02/01/2023]
|
23
|
Combined additive manufacturing approaches in tissue engineering. Acta Biomater 2015; 24:1-11. [PMID: 26134665 DOI: 10.1016/j.actbio.2015.06.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.
Collapse
|
24
|
Oliveira SM, Reis RL, Mano JF. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnol Adv 2015; 33:842-55. [PMID: 26025038 DOI: 10.1016/j.biotechadv.2015.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Abstract
The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review.
Collapse
Affiliation(s)
- Sara M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal.
| |
Collapse
|
25
|
Govindaraj D, Rajan M, Munusamy MA, Balakumaran MD, Kalaichelvan PT. Osteoblast compatibility of minerals substituted hydroxyapatite reinforced poly(sorbitol sebacate adipate) nanocomposites for bone tissue application. RSC Adv 2015. [DOI: 10.1039/c5ra02419f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The main focus of this investigation is to explore novel minerals (M) substituted hydroxyapatite (M-HAP) as reinforcing agents to strengthen poly(sorbitol sebacate adipate) (PSSA), a biodegradable polymer for soft and hard tissue applications.
Collapse
Affiliation(s)
- Dharman Govindaraj
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Mariappan Rajan
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Murugan A. Munusamy
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | | | | |
Collapse
|
26
|
Davoodbasha M, Lee SY, Kim SC, Kim JW. One-step synthesis of cellulose/silver nanobiocomposites using a solution plasma process and characterization of their broad spectrum antimicrobial efficacy. RSC Adv 2015. [DOI: 10.1039/c5ra02367j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellulose/AgNP biocomposites were synthesized using SPP and assessed for their antimicrobial activity against several human pathogens.
Collapse
Affiliation(s)
- MubarakAli Davoodbasha
- Division of Bioengineering
- College of Life Science and Bioengineering
- Incheon National University
- Republic of Korea
- Center for Surface Technology and Applications
| | - Sang-Yul Lee
- Center for Surface Technology and Applications
- Department of Materials Engineering
- Korea Aerospace University
- Republic of Korea
| | - Seong-Cheol Kim
- Center for Surface Technology and Applications
- Department of Materials Engineering
- Korea Aerospace University
- Republic of Korea
| | - Jung-Wan Kim
- Division of Bioengineering
- College of Life Science and Bioengineering
- Incheon National University
- Republic of Korea
- Center for Surface Technology and Applications
| |
Collapse
|