1
|
Zhu X, Zhao X, Wang Z, Xie X, Wang J, Liang J, Liu Z, Deng T, Yang B, Guo J. Preparation of a Biomimetic Poly-Phosphatidylserine Monolithic Column for Immobilized Artificial Membrane Chromatography. J Sep Sci 2025; 48:e70120. [PMID: 40114441 DOI: 10.1002/jssc.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
The pharmacokinetic properties of drugs are significantly influenced by their interactions with cell membranes. Phosphatidylserine (PS) as one of the crucial membrane phospholipids is present abundantly in biological cells. In this study, a PS-mimicking phospholipid membrane polymer monolithic column was developed using the synthetic compound 2-methylacryloxydodecyl phosphatidylserine (MDPS). The physicochemical properties and chromatographic performance of the poly(MDPS-co-ethylene dimethacrylate (EDMA)) monolithic column were evaluated through scanning electron microscopy (SEM) and nano-high-performance liquid chromatography (HPLC). The retention mechanism was investigated by eluting the acidic, neutral, and basic compounds under the same gradient conditions, and the performance of the poly(MDPS-co-EDMA) monolithic column was compared with that of a poly(12-methacryloyl n-dodecylphosphocholine (MDPC)-co-EDMA) monolithic column. The poly(MDPS-co-EDMA) column demonstrated effective separation capabilities for small peptides, protein enzymatic hydrolysis polypeptides, and pharmaceutical compounds. Furthermore, the column was also employed to predict the blood-brain barrier (BBB) permeability of drugs, and the correlation coefficient of 0.73 indicates the promising potential of poly(MDPS-co-EDMA) monolithic column for predicting the ability of drugs to cross the BBB.
Collapse
Affiliation(s)
- Xueyan Zhu
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xianglong Zhao
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
- School of Medicine, Foshan University, Foshan, People's Republic of China
| | - Zhongkang Wang
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xiaoyuan Xie
- School of Medicine, Foshan University, Foshan, People's Republic of China
| | - Jincai Wang
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, People's Republic of China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Whole Process Quality Control and Analysis of Lingnan Traditional Chinese Medicine, Foshan University, Foshan, People's Republic of China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Whole Process Quality Control and Analysis of Lingnan Traditional Chinese Medicine, Foshan University, Foshan, People's Republic of China
| | - Bin Yang
- School of Medicine, Foshan University, Foshan, People's Republic of China
| | - Jialiang Guo
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
- School of Medicine, Foshan University, Foshan, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Whole Process Quality Control and Analysis of Lingnan Traditional Chinese Medicine, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
2
|
Niyonshuti II, Jayaraj S, Jiang W, Mudalige T. A Robust Chromatographic Method for Drug Release profiling of liposomal doxorubicin HCl. J Pharm Sci 2024; 113:2837-2842. [PMID: 38857642 DOI: 10.1016/j.xphs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Liposomes are excellent drug delivery vehicles for chemotherapeutics as they may change the pharmacokinetics of therapeutic compounds, resulting in altered tissues distribution, and in some cases, reduced cytotoxicity and enhanced distribution and efficacy of the active pharmaceutical ingredient (API) at target tissues. Drug release profiles of liposomal formulations are crucial to support equivalence evaluation and quality control in pre- and post-approval stages. We developed an automated chromatographic method for quantifying the drug release profile of liposomal formulations containing doxorubicin to overcome the shortcomings of currently available methods. The newly developed method employs nanoparticle exclusion chromatography (nPEC), using a monolithic silica column coated with polyvinylpyrrolidone to separate the released drug from liposomal encapsulated drug. We evaluated the effects of pH, temperature, and ammonium formate concentration on the drug release rate. The optimized release buffer consisting of 5 % sucrose, 20 mM l-histidine, and 200 mM ammonium formate was selected for the drug release profiling of five liposomal formulations at 47 °C. The drug release profiles of five liposomal doxorubicin formulations were similar. Our automated method requires very small amounts of the sample and provides release profiles with high sensitivity and accuracy. In addition, this method can be applied to other liposomal products to allow for simple, fast, and accurate analysis of in vitro drug release profiling.
Collapse
Affiliation(s)
- Isabelle I Niyonshuti
- Arkansas Laboratory, Office of Regulatory Affairs, Office of Regulatory Science, U.S Food and Drug Administration, Jefferson, AR 72079, United States
| | - Savithra Jayaraj
- Arkansas Laboratory, Office of Regulatory Affairs, Office of Regulatory Science, U.S Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, Office of Regulatory Science, U.S Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
3
|
Kozakiewicz-Latała M, Marciniak D, Krajewska K, Złocińska A, Prusik K, Karolewicz B, Nartowski KP, Pudło W. Hierarchical Macro-Mesoporous Silica Monolithic Tablets as a Novel Dose-Structure-Dependent Delivery System for the Release of Confined Dexketoprofen. Mol Pharm 2023; 20:641-649. [PMID: 36533661 PMCID: PMC9811460 DOI: 10.1021/acs.molpharmaceut.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study reports the application of hierarchical porous monoliths as carriers for controlled and dose-adjustable release of model pharmaceutical (dexketoprofen, DEX). The synthesis and detailed characterization of the hierarchical porous scaffolds are provided before and after the adsorption of three doses of DEX─a widely used nonsteroidal anti-inflammatory drug. The drug incorporated in the mesopores of silica was stabilized in an amorphous state, while the presence of macropores provided sufficient space for drug crystallization as we demonstrated via a combination of powder X-ray diffraction, differential scanning calorimetry, and imaging techniques (scanning electron microscopy and EDX analysis). Drug release from silica matrices was tested, and a mechanistic model of this release based on the Fick diffusion equation was proposed. The hierarchical structure of the carrier, due to the presence of micrometric macropores and nanometric mesopores, turned out to be critical for the control of the drug phase and drug release from the monoliths. It was found that at low drug content, the presence of an amorphous component in the pores promoted the rapid release of the drug, while at higher drug contents, the presence of macropores favored the crystallization of DEX, which naturally slowed down its release. Both the hierarchical porous structure and the control of the drug phase (amorphous and/or crystalline) were proven important for adjustable (fast or prolonged) release kinetics, desirable for effective pharmacotherapy and patient compliance. Therefore, the developed materials may serve as a versatile formulation platform for the smart manipulation of drug release kinetics.
Collapse
Affiliation(s)
- Marta Kozakiewicz-Latała
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Dominik Marciniak
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Karolina Krajewska
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Adrianna Złocińska
- Laboratory
of Elemental Analysis Structural Research, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Krystian Prusik
- Institute
of Materials Engineering, University of
Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzow40-007, Poland,Silesian
Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzow40-007, Poland
| | - Bożena Karolewicz
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Karol P. Nartowski
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland,
| | - Wojciech Pudło
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice44-100, Poland,
| |
Collapse
|
4
|
Wang Y, Yao M, Sims CE, Allbritton NL. Monolithic Silica Microbands Enable Thin-Layer Chromatography Analysis of Single Cells. Anal Chem 2022; 94:13489-13497. [PMID: 36121711 PMCID: PMC9789895 DOI: 10.1021/acs.analchem.2c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A picoliter thin-layer chromatography (pTLC) platform was developed for analyzing extremely miniature specimens, such as assay of the contents of a single cell of 1 picoliter volume. The pTLC chip consisted of an array of microscale bands made from highly porous monolithic silica designed to accept picoliter-scale volume samples. pTLC bands were fabricated by combining sol-gel chemistry and microfabrication technology. The width (60-80 μm) and depth (13 μm) of each band is comparable to the size of single cells and acted to reduce the lateral diffusion and confine the movement of compounds along the microbands. Ultrasmall volumes (tens of pL) of model fluorescent compounds were spotted onto the microband by a piezoelectric microdispenser and successfully separated by pTLC. The separation resolution and analyte migration were dependent on the macropore size (ranging from 0.3 to 2.3 μm), which was adjustable by changing the porogen concentration during the sol-gel process. For a 0.3 μm macropore size, attomoles of analyte were detectable by fluorescence using standard microscopy methods. The separation resolution, theoretical plate number, and separation times ranged from 1.3 to 2.1, 4 to 357, and 2 to 8 min, respectively, for the chosen model biological lipids. To demonstrate the capability of pTLC for separating analytes from single mammalian cells, cells loaded with fluorescent lipophilic dyes or sphingosine kinase reporter were spotted on microbands, and the single-cell contents separated by pTLC were detected from their fluorescence. These results demonstrate the potential of pTLC for applications in many areas where miniature specimens and high-throughput parallel analyses are needed.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Ming Yao
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Billotto LS, Marcus RK. Comparative Analysis of Trilobal Capillary‐Channeled Polymer Fiber Columns with Superficially Porous and Monolithic Phases Towards Reversed‐Phase Protein Separations. J Sep Sci 2022; 45:3811-3826. [DOI: 10.1002/jssc.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Lacey S. Billotto
- Department of Chemistry Biosystems Research Complex Clemson University
| | - R. Kenneth Marcus
- Department of Chemistry Biosystems Research Complex Clemson University
| |
Collapse
|
6
|
Dembek M, Szumski M, Bocian S, Buszewski B. Optimization of the packing process of microcolumns with the embedded phosphodiester stationary phases. J Sep Sci 2022; 45:3310-3318. [PMID: 35665599 DOI: 10.1002/jssc.202200389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/07/2022]
Abstract
The development of new home-made stationary phases involves their packaging procedure and is crucial to obtain satisfactory working parameters. The parameter that illustrates the quality of the packed bed is its efficiency measured as the height equivalent to the theoretical plate. According to the Van Deemetr's equation, it depends on three factors, but only one of them, eddy diffusion, does not depend on the linear flow velocity. Therefore, in order to obtain it as low as possible, it is necessary to focus on a good filling of the column. Among many parameters affecting the quality of column packing, in our work we have focused on the choice of slurry solvent. Novel stationary phases with an embedded phosphodiester group were investigated. The suspensions in 16 solvents and solvent mixtures were studied for their stability, aggregation, sedimentation and viscosity comparison. The efficiency of the packed microcolumns and its comparison was determined by chromatographic analyses using a polar (thymidine) and a non-polar compound (naphthalene). The results obtained led to the conclusion that for these stationary phases, the best slurry solvent is the one that aggregates the phase while maintaining stability and having high viscosity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mikołaj Dembek
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University
| | - Szymon Bocian
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University
| |
Collapse
|
7
|
Eco-Friendly Separation of Antihyperlipidemic Combination Using UHPLC Particle-Packed and Monolithic Columns by Applying Green Analytical Chemistry Principles. SEPARATIONS 2021. [DOI: 10.3390/separations8120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Efficient separation of pharmaceuticals and metabolites with the adequate resolution is a key factor in choosing the most suitable chromatographic method. For quality control, the analysis time is a key factor, especially in pharmacokinetic studies. High back pressure is considered as one of the most important factors in chromatography’s flow control, especially in UHPLC. The separation of the anti-hyperlipidemic mixtures was carried out using two columns: a column silica-based particle packed UHPLC and a monolithic column. The systematic suitability of the two columns was compared for the separation of Fenofibrate, its active metabolite, Fenofibric acid and Pravastatin using Atorvastatin as an internal standard. Separation on both columns was obtained using ethanol: buffer potassium dihydrogen orthophosphate pH = 3 (adjusted with orthophosphoric acid) (75:25 v/v) as mobile phase and flow rate 0.8 mL/min. The analytes’ peak detection was achieved by using a PDA detector at 287 nm, 214 nm, 236 nm, and 250 nm for Fenofibrate, Fenofibric acid, Pravastatin, and Atorvastatin, respectively. Reduction of back-pressure was achieved with the monolithic column, where the analytes could be completely separated in less than 1.5 min at a flow rate of 5 mL/min. The principles of Green Analytical Chemistry (GAC) were followed throughout the developed method using environmentally safe solvents.
Collapse
|
8
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
9
|
Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021; 26:molecules26175241. [PMID: 34500675 PMCID: PMC8434329 DOI: 10.3390/molecules26175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.
Collapse
|
10
|
Tsuge K, Lim LW, Takeuchi T. Separation of Inorganic Anions Using an 18-Crown-6-ether-modified Organic Polymer Monolithic Stationary Phase in Capillary Ion Chromatography. ANAL SCI 2021; 37:845-850. [PMID: 33041306 DOI: 10.2116/analsci.20p279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a monolithic organic polymer stationary phase was modified using 18-crown-6-ether for use in capillary ion chromatography. Its use in the separation of inorganic anions was investigated. The monolithic stationary phase was obtained by chemically bonding 2-aminomethyl-18-crown-6-ether to a polymer skeleton comprising glycidyl methacrylate and ethylene glycol dimethacrylate. The optimum level of the loading of 2-aminomethyl-18-crown-6-ether onto the stationary phase was investigated. The resulting stationary phase was used to investigate the influence of the eluent cation, the concentration of the eluent, and the pH of the eluent on the separation of inorganic anions.
Collapse
Affiliation(s)
- Kenichi Tsuge
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Lee Wah Lim
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Toyohide Takeuchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| |
Collapse
|
11
|
Mehl A, Schwack W, Morlock GE. On-surface autosampling for liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1651:462334. [PMID: 34153734 DOI: 10.1016/j.chroma.2021.462334] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
An on-surface multi-purpose autosampler was built for liquid chromatography-mass spectrometry (LC-MS) based on the autoTLC-MS interface, taking advantage of open-source hard- and software developments as well as 3D printing. Termed autoTLC-LC-MS system, it is introduced for orthogonal hyphenation of normal phase high-performance thin-layer chromatography with reversed phase high-performance LC (HPLC) and high-resolution MS (HRMS). For verification of its functionality, a multi-class antibiotic mixture was applied as a calibration band pattern on an adsorbent layer and detected by the Bacillus subtilis bioassay. This effect-image was uploaded as a template in the updated TLC-MS_manager software. The clicked-on antibiotic zones were sequentially eluted without intervention from the planar counterpart (without bioassay) via a monolithic HPLC column into the HRMS system. For elution of antibiotics of 7 structural classes at 5 different calibration levels, the new on-surface autosampler achieved intra-day precisions of 2.1-14.1%, while inter-day precisions ranged 2.5-16.1% (all n = 3). The new hyphenation offers potential for planar sample clean-up prior to HPLC, concentration of liquid samples, increase of peak capacity and proof of peak purity or isomers. The integrated autoTLC-LC-MS system enabled high sample throughput, efficiency and reproducibility for the first time through fully automated TLC-LC-MS sequence operation. Its contact-closure signal functionality, versatile 3D printed planar sample holder and open-source software made it readily adjustable for new analytical tasks. Undoubtedly, any planar material can be investigated for leachables, such as textiles, foils, papers and other packagings, as well as planar biological samples for ingredients.
Collapse
Affiliation(s)
- Annabel Mehl
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Wolfgang Schwack
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
12
|
Kamei R, Hosomi T, Kanao E, Kanai M, Nagashima K, Takahashi T, Zhang G, Yasui T, Terao J, Otsuka K, Baba Y, Kubo T, Yanagida T. Rational Strategy for Space-Confined Seeded Growth of ZnO Nanowires in Meter-Long Microtubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16812-16819. [PMID: 33784465 DOI: 10.1021/acsami.0c22709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seeded crystal growths of nanostructures within confined spaces offer an interesting approach to design chemical reaction spaces with tailored inner surface properties. However, such crystal growth within confined spaces tends to be inherently difficult as the length increases as a result of confinement effects. Here, we demonstrate a space-confined seeded growth of ZnO nanowires within meter-long microtubes of 100 μm inner diameter with the aspect ratio of up to 10 000, which had been unattainable to previous methods of seeded crystal growths. ZnO nanowires could be grown via seeded hydrothermal crystal growth for relatively short microtubes below the length of 40 mm, while any ZnO nanostructures were not observable at all for longer microtubes above 60 mm with the aspect ratio of 600. Microstructural and mass spectrometric analysis revealed that a conventional seed layer formation using zinc acetate is unfeasible within the confined space of long microtubes as a result of the formation of detrimental residual Zn complex compounds. To overcome this space-confined issue, a flow-assisted seed layer formation is proposed. This flow-assisted method enables growth of spatially uniform ZnO nanowires via removing residual compounds even for 1 m long microtubes with the aspect ratio of up to 10 000. Finally, the applicably of ZnO-nanowire-decorated long microtubes for liquid-phase separations was demonstrated.
Collapse
Affiliation(s)
- Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Masaki Kanai
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takao Yasui
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshinobu Baba
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
13
|
Miyabe K. Simple Moment Analysis for a Kinetic Study of the Chromatographic Behavior of Spherical Particles and Silica Monoliths. ANAL SCI 2021; 37:593-598. [PMID: 33041310 DOI: 10.2116/analsci.20p331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple procedure of moment analysis was proposed for a kinetic study of the rate processes in the columns packed with full-porous spherical particles and silica monoliths. Previous chromatographic data measured in reversed-phase HPLC systems using Mightysil and Chromolith columns were analyzed by a simple moment analysis. The surface of the packing materials is chemically modified with octadecyl alkyl ligands. A mixture of methanol and water (80/20, v/v) and alkylbenzene homologous series (C6H5CnH2n+1, n = 0 - 7) were used as the mobile-phase solvent and sample probes, respectively. More detailed information about the experimental conditions is provided in Supporting Information. The values of the intra-stationary phase diffusivity (De) and the surface diffusion coefficient (Ds), derived by the simple moment analysis, were almost the same as those by the conventional moment analysis. The simple moment analysis is effective for quantitative studies of mass transfer in chromatographic systems. The previous chromatographic data were also analyzed by assuming external porosity (εe) as typical values, i.e., 0.40 for spherical particles and 0.70 for silica monoliths. The resulting values of De and Ds were of the same order of magnitude as those derived by using εe experimentally measured. Even if εe is assumed to be typical values, the simple moment analysis is effective for preliminary studies of the mass-transfer kinetics in the columns.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University
| |
Collapse
|
14
|
Advancements in the preparation and application of monolithic silica columns for efficient separation in liquid chromatography. Talanta 2021; 224:121777. [PMID: 33379011 DOI: 10.1016/j.talanta.2020.121777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Fast and efficient separation remains a big challenge in high performance liquid chromatography (HPLC). The need for higher efficiency and resolution in separation is constantly in demand. To achieve that, columns developed are rapidly moving towards having smaller particle sizes and internal diameters (i.d.). However, these parameters will lead to high back-pressure in the system and will burden the pumps of the HPLC instrument. To address this limitation, monolithic columns, especially silica-based monolithic columns have been introduced. These columns are being widely investigated for fast and efficient separation of a wide range of molecules. The present article describes the current methods developed to enhance the column efficiency of particle packed columns and how silica monolithic columns can act as an alternative in overcoming the low permeability of particle packed columns. The fundamental processes behind the fabrication of the monolith including the starting materials and the silica sol-gel process will be discussed. Different monolith derivatization and end-capping processes will be further elaborated and followed by highlights of the performance such monolithic columns in key applications in different fields with various types of matrices.
Collapse
|
15
|
McHale C, Soliven A, Schuster S. A simple approach for reversed phase column comparisons via the Tanaka test. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Nagase K, Kanazawa H. Temperature-responsive chromatography for bioseparations: A review. Anal Chim Acta 2020; 1138:191-212. [DOI: 10.1016/j.aca.2020.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
|
17
|
Sakata N, Takeda Y, Kotera M, Suzuki Y, Matsumoto A. Interfacial Structure Control and Three-Dimensional X-ray Imaging of an Epoxy Monolith Bonding System with Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10923-10932. [PMID: 32864969 DOI: 10.1021/acs.langmuir.0c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A monolith bonding system has a high reliability for dissimilar material bonding. The epoxy monolith layer fabricated on a substrate guarantees bond strength by the anchor effect, regardless of the compatibility of the used materials. Designing a high-performance monolith bonding system requires the suppression of an interfacial failure between the monolith and the substrate. In this study, silane and phosphine coupling agents containing amino and epoxy groups were used to construct a robust interfacial structure between the monolith and the substrates such as glass and metals. The internal and interfacial monolith structures were characterized by three-dimensional X-ray imaging as a nondestructive observation method in addition to the scanning electron microscopy of the sample cross sections. The modification of the substrate-monolith interface using the coupling agents improved the strength of dissimilar material bonding of the glass and metal substrates in combination with thermoplastic resins such as poly(ethylene terephthalate) and polycarbonate bisphenol-A.
Collapse
Affiliation(s)
- Nanako Sakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Takeda
- Core Technology Research Department, X-ray Research Laboratory, Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Masaru Kotera
- R&D Department, HOTMELT ADHESIVE Division, MORESCO Corporation, 5-5-3, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhito Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
18
|
Wang J, Ruan X, Qiu J, Liang H, Guo X, Yang H. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels. Polymers (Basel) 2020; 12:E2066. [PMID: 32932864 PMCID: PMC7569843 DOI: 10.3390/polym12092066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Hierarchically porous carbon aerogels (CAs) were prepared by organic condensation gelation method combined with atmospheric drying and pore-formation technology, followed by a carbonization process. With as-prepared CAs as substrate, the transition metal oxide nanoparticles loaded CAs composites (MnO2/Mn2O3@CA and Ni/NiO@CA) were achieved by means of liquid etching method combined with heat treatment, respectively. The catalyst, pore-forming agent and etching have important roles on the apparent density and pore structure of CAs. The hydrochloric acid (catalyst) significantly accelerates the gelation process and influences the size and distribution of macropores, whereas the addition of PEG2000 (pore-forming agent) and the etching of liquid solution leads to the formation of mesopore structure in CAs. Appropriate amounts of hydrochloric acid and PEG2000 allow the formation of hierarchically porous CAs with a BET surface area of 482.9 m2·g-1 and a macropore size of 11.3 μm. After etching and loading, the framework of CAs is etched to become a mesoporous structure, and the transition metal oxide nanoparticles can be uniformly loaded in CAs. These resultant composites have promising application in super capacitor, electrocatalysis, batteries and other fields.
Collapse
Affiliation(s)
- Jintian Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
| | - Xinyang Ruan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
| | - Jiahao Qiu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
| | - Hao Liang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
| | - Xingzhong Guo
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
- Pan Asia Microvent Tech (Jiangsu) Coporation & Zhejiang University Micro-nano-porous Materials Joint Research Development Center, Changzhou 213100, China
| | - Hui Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.W.); (X.R.); (J.Q.); (H.L.); (H.Y.)
| |
Collapse
|
19
|
Hara T, Izumi Y, Hata K, V. Baron G, Bamba T, Desmet G. Performance of small-domain monolithic silica columns in nano-liquid chromatography and comparison with commercial packed bed columns with 2 µm particles. J Chromatogr A 2020; 1616:460804. [DOI: 10.1016/j.chroma.2019.460804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
|
20
|
Hara Y, Kanamori K, Nakanishi K. Self‐Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angew Chem Int Ed Engl 2019; 58:19047-19053. [DOI: 10.1002/anie.201911499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yosuke Hara
- Department of ChemistryGraduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuyoshi Kanamori
- Department of ChemistryGraduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for SustainabilityNagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
- Institute for Integrated Cell-Material SciencesKyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
21
|
Kumarasinghe R, Ito T, Higgins DA. Nanoconfinement and Mass Transport in Silica Mesopores: the Role of Charge at the Single Molecule and Single Pore Levels. Anal Chem 2019; 92:1416-1423. [DOI: 10.1021/acs.analchem.9b04589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruwandi Kumarasinghe
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Daniel A. Higgins
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
22
|
Hara Y, Kanamori K, Nakanishi K. Self‐Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yosuke Hara
- Department of ChemistryGraduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuyoshi Kanamori
- Department of ChemistryGraduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for SustainabilityNagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
- Institute for Integrated Cell-Material SciencesKyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
23
|
Han JY, Wiederoder M, DeVoe DL. Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith. MICROSYSTEMS & NANOENGINEERING 2019; 5:30. [PMID: 31240109 PMCID: PMC6572753 DOI: 10.1038/s41378-019-0063-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 05/25/2023]
Abstract
Rapid and efficient isolation of bacteria from complex biological matrices is necessary for effective pathogen identification in emerging single-cell diagnostics. Here, we demonstrate the isolation of intact and viable bacteria from whole blood through the selective lysis of blood cells during flow through a porous silica monolith. Efficient mechanical hemolysis is achieved while providing passage of intact and viable bacteria through the monoliths, allowing size-based isolation of bacteria to be performed following selective lysis. A process for synthesizing large quantities of discrete capillary-bound monolith elements and millimeter-scale monolith bricks is described, together with the seamless integration of individual monoliths into microfluidic chips. The impact of monolith morphology, geometry, and flow conditions on cell lysis is explored, and flow regimes are identified wherein robust selective blood cell lysis and intact bacteria passage are achieved for multiple gram-negative and gram-positive bacteria. The technique is shown to enable rapid sample preparation and bacteria analysis by single-cell Raman spectrometry. The selective lysis technique presents a unique sample preparation step supporting rapid and culture-free analysis of bacteria for the point of care.
Collapse
Affiliation(s)
- Jung Y. Han
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 USA
| | - Michael Wiederoder
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
24
|
Pudło W, Borys P, Huszcza G, Staniak A, Zakrzewska R. Hierarchical silica monolithic tablets as novel carriers for drug delivery. Eur J Pharm Biopharm 2019; 141:12-20. [PMID: 31059779 DOI: 10.1016/j.ejpb.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
This paper proposes the use of carriers with hierarchical porous structures as novel monolithic tablets for modified drug release. The influence of pore structure on the tamsulosin release profile is presented. The hierarchical arrangement of porous structure in monolithic tablets and the deposition of tamsulosin inside the silica carrier enable to control the kinetic of release and the amount of tamsulosin released. We developed a mathematical model of tamsulosin release from two carriers with different hierarchy of meso- and macropores. A model of this nature will allow to predict the release of tamsulosin from other carriers with a similar pore structure. We hope this research will improve the design process of novel carriers, and thus, will allow to tailor the porous structure of a carrier to achieve the desired release profile.
Collapse
Affiliation(s)
- Wojciech Pudło
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | - Przemysław Borys
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Grzegorz Huszcza
- Department of Pharmacy, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland
| | - Angelika Staniak
- Department of Pharmacy, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland
| | - Renata Zakrzewska
- Department of Pharmaceutical Dosage Form Analysis, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland
| |
Collapse
|
25
|
Lan D, Bai L, Liu H, Guo H, Yan H. Fabrication of a monolithic, macroporous diallyl maleate-based material and its application for fast separation of intact proteins from human plasma with reversed-phase chromatography. J Chromatogr A 2019; 1592:197-201. [DOI: 10.1016/j.chroma.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
|
26
|
Beck G, Sieland M, Beleites JF, Marschall R, Smarsly BM. Independent Tailoring of Macropore and Mesopore Space in TiO 2 Monoliths. Inorg Chem 2019; 58:2599-2609. [PMID: 30681841 DOI: 10.1021/acs.inorgchem.8b03203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TiO2 monoliths were synthesized by a partially hindered sol-gel process. Various synthesis parameters like precursor concentrations and gelation temperature were varied to investigate changes in the macroporosity (being in the range of micrometers) and to determine influences on the macropore formation mechanism. Ionic liquids (ILs) were used as templates to vary the mesopore size independently from the macropore size. Depending on the synthesis parameters, TiO2 monoliths with exclusive mesoporosity or with hierarchical meso-/macropore structure were received, and the range of macropores can be shifted between 100 nm and 10 μm without influencing the mesopore diameter. Pore volumes up to 880 mm3/g were achieved, as determined by mercury intrusion porosimetry. The mesopores' diameter can be adjusted between 6 and 25 nm by adding different amounts of IL, and surface areas up to 260 m2/g and mesopore volumes of 0.5 cm3/g were obtained, based on N2-physisorption measurements. The monoliths were cladded by polymer, allowing for studying the flow-through properties depending on the macropore size. This precise control for tailored macropores enables the design of optimized TiO2 monoliths with respect to the desired application requirements.
Collapse
Affiliation(s)
- Giuliana Beck
- Institute of Physical Chemistry , Justus-Liebig University , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany
| | - Melanie Sieland
- Institute of Physical Chemistry , Justus-Liebig University , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany
| | - J Fabian Beleites
- Institute of Physical Chemistry , Justus-Liebig University , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany
| | - Roland Marschall
- Institute of Physical Chemistry , Justus-Liebig University , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany.,Physical Chemistry III , University of Bayreuth , D-95447 Bayreuth , Germany.,Center for Materials Research , Justus-Liebig University , Heinrich-Buff-Ring 16 , D-35392 Giessen , Germany
| | - Bernd M Smarsly
- Institute of Physical Chemistry , Justus-Liebig University , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany.,Center for Materials Research , Justus-Liebig University , Heinrich-Buff-Ring 16 , D-35392 Giessen , Germany
| |
Collapse
|
27
|
Wang Y, Ma S, Zhang L, Zhang N, Li Y, Ou J, Shen Y, Ye M. Fast fabrication of a hybrid monolithic column containing cyclic and aliphatic hydrophobic ligands via photo-initiated thiol-ene polymerization. J Sep Sci 2019; 42:1332-1340. [PMID: 30667168 DOI: 10.1002/jssc.201801033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 11/11/2022]
Abstract
Three monomers, octakis (3-mercaptopropyl) octasilsesquioxane, 1,2,4-trivinylcyclohexane and isophytol were employed to synthesize a novel monolithic stationary phase via photo-initiated thiol-ene click polymerization for reversed-phase liquid chromatography. Several factors such as porogenic system, reaction time and the molar ratio of functional groups were investigated in detail. The resulting poly(POSS-co-TVCH-co-isophytol) monolithic column exhibited suitable permeability for fast separation and outstanding thermal stability. Five alkylbenzenes were employed to evaluate the ability of chromatographic separation of the resulting monolithic columns at different flow rates, and showed the highest column efficiencies of 90,200-93,100 N/m (corresponding to 10.4-10.6 μm of plate height) at a velocity of 0.41 mm/s. The baseline separations of five anilines and eight phenols further proved the applicability of poly(POSS-co-TVCH-co-isophytol) monolithic column in the separation of small molecules.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Luwei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
28
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
29
|
Dores-Sousa JL, Fernández-Pumarega A, De Vos J, Lämmerhofer M, Desmet G, Eeltink S. Guidelines for tuning the macropore structure of monolithic columns for high-performance liquid chromatography. J Sep Sci 2018; 42:522-533. [DOI: 10.1002/jssc.201801092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022]
Affiliation(s)
- José Luís Dores-Sousa
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Alejandro Fernández-Pumarega
- Departament de Química Analítica and Institut de Biomedicina (IBUB); Universitat de Barcelona, Facultat de Química; Barcelona Spain
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis; University of Tübingen; Tübingen Germany
| | - Gert Desmet
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
30
|
Nagase K, Okano T, Kanazawa H. Poly(N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
MIYASHITA K, TANAKA R, HASEGAWA G, NAKANISHI K, MORIOKA K, ZENG H, KATO S, UCHIYAMA K, SAITOH K, SHIBUKAWA M, NAKAJIMA H. On-line Redox Derivatization Liquid Chromatography Using a Carbon Monolithic Column. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ken MIYASHITA
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
- Present address: GL Sciences Inc
| | - Ryo TANAKA
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - George HASEGAWA
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Kazuki NAKANISHI
- Department of Chemistry, Graduate School of Science, Kyoto University
| | - Kazuhiro MORIOKA
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hulie ZENG
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Shungo KATO
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Katsumi UCHIYAMA
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Kazunori SAITOH
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Masami SHIBUKAWA
- Department of Applied Chemistry, Graduate School of Science and Technology, Saitama University
| | - Hizuru NAKAJIMA
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| |
Collapse
|
32
|
Buszewska-Forajta M, Markuszewski MJ, Kaliszan R. Free silanols and ionic liquids as their suppressors in liquid chromatography. J Chromatogr A 2018; 1559:17-43. [DOI: 10.1016/j.chroma.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/21/2022]
|
33
|
Hemdan A, Abdel-Aziz O. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column. J Chromatogr Sci 2018; 56:351-357. [DOI: 10.1093/chromsci/bmy009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- A Hemdan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th October, Egypt
| | - Omar Abdel-Aziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Su J, Yang L, Wang Q. Dual polyhedral oligomeric silsesquioxanes polymerization approach to mutually-mediated separation mechanisms of hybrid monolithic stationary and mobile phases towards small molecules. J Chromatogr A 2018; 1533:136-142. [DOI: 10.1016/j.chroma.2017.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 01/10/2023]
|
35
|
Mohammad Raei Nayini M, Bastani S, Moradian S, Croutxé-Barghorn C, Allonas X. Manipulating the Surface Structure of Hybrid UV Curable Coatings through Photopolymerization-Induced Phase Separation: Influence of Inorganic Portion and Photoinitiator Content. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohsen Mohammad Raei Nayini
- Department of Printing Science and Technology; Institute for Color Science and Technology; Vafamanesh St, Sayad Shirazi North HWY PB: 54-16765 Tehran Iran
| | - Saeed Bastani
- Department of Surface Coatings and Corrosion; Institute for Color Science and Technology; Vafamanesh St, Sayad Shirazi North HWY PB: 54-16765 Tehran Iran
- Center of Excellence for Color Science and Technology; Institute of Color Science and Technology; Vafamanesh St, Sayad Shirazi North HWY PB: 54-16765 Tehran Iran
| | - Siamak Moradian
- Center of Excellence for Color Science and Technology; Institute of Color Science and Technology; Vafamanesh St, Sayad Shirazi North HWY PB: 54-16765 Tehran Iran
| | - Céline Croutxé-Barghorn
- Laboratory of Macromolecular Photochemistry and Engineering; University of Haute Alsace; ENSCMu; 3 rue Alfred Werner 68093 Mulhouse France
| | - Xavier Allonas
- Laboratory of Macromolecular Photochemistry and Engineering; University of Haute Alsace; ENSCMu; 3 rue Alfred Werner 68093 Mulhouse France
| |
Collapse
|
36
|
Lubbad SH. Wide-Bore Columns of Poly(Glycidyl Methacrylate-Co-Divinylbenzene)-Based Monolithic Beds for Reversed-Phase and Anion-Exchange Chromatographic Separation of Biomolecules. J Chromatogr Sci 2017; 55:205-213. [PMID: 27777225 DOI: 10.1093/chromsci/bmw170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/14/2022]
Abstract
Three monoliths based on poly(glycidyl methacrylate-co-divinylbenzene) were prepared in the confines of borosilicate glass columns (100 × 3 mm I.D.). The first monolith was applied for analysis of proteins by reversed-phase high-performance liquid chromatography. It furnished a fast base-line separation for four proteins (ribonuclease A, cytochrome c, α-lactalbumin and myoglobin) in <80 s, with optimum resolution range of 2.11-2.84, and extremely small values of peak width at half height with a range of 1.0-1.6 s. The second and third monoliths were surface-modified into weak and strong anion-exchangers, respectively, and were investigated for anion-exchange (AE) high-performance liquid chromatography of four proteins with acidic isoelectronic points (bovine carbonic anhydrase, conalbumin, ovalbumin and soybean trypsin inhibitor) and of 5-phosphorylated oligodeoxythymidylic acids fragments [d(pT)12-18]. The weak AE monolith experienced complete elution of the four proteins applying a basic Tris-HCl buffer (0.02 M, pH 8.9); however, the strong AE monolith established a base-line separation of these proteins in ~14 min. Both monoliths showed base-line separation of the seven fragments of d(pT)12-18 in ~6 min. The ion-exchange capacity determined by frontal and elemental analyses was comparable for the weak AE monolith (0.75 and 0.80 meq/g) and for the strong AE monolith (0.81 and 0.87 meq/g), respectively. Finally, a run-to-run and monolith-to-monolith reproducibility showed a relative standard deviation in retention time of d(pT)12-18 fragments of <2%.
Collapse
Affiliation(s)
- Said H Lubbad
- Department of Chemistry, Al-Azhar University-Gaza, P.O.Box 1277, Gaza, Palestine
| |
Collapse
|
37
|
Svec F. Monolithic columns: A historical overview. Electrophoresis 2017; 38:2810-2820. [DOI: 10.1002/elps.201700181] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy; Charles University; Hradec Králové Czech Republic
| |
Collapse
|
38
|
Li D, Yin D, Chen Y, Liu Z. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A 2017; 1498:56-63. [DOI: 10.1016/j.chroma.2016.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
39
|
Mann BF, Makarov AA, Wang H, Welch CJ. Effects of pressure and frictional heating on protein separation using monolithic columns in reversed-phase chromatography. J Chromatogr A 2017; 1489:58-64. [DOI: 10.1016/j.chroma.2017.01.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
|
40
|
High performance liquid chromatography analysis of 100-nm liposomal nanoparticles using polymer-coated, silica monolithic columns with aqueous mobile phase. J Chromatogr A 2017; 1484:34-40. [DOI: 10.1016/j.chroma.2016.12.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 11/22/2022]
|
41
|
Higuchi T, Yano Y, Aita T, Takami S, Adschiri T. Phase-Field Simulation of Polymerization-Induced Phase Separation: II. Effect of Volume Fraction and Mobility of Network Polymer. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takeshi Higuchi
- Department of Chemistry and Chemical Engineering, Yamagata University
| | - Yusuke Yano
- Department of Chemistry and Chemical Engineering, Yamagata University
| | - Tadahiro Aita
- Department of Chemistry and Chemical Engineering, Yamagata University
| | - Seiichi Takami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Tadafumi Adschiri
- World Premier International Research Center, Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
| |
Collapse
|
42
|
Li D, Bie Z. Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Adv 2017. [DOI: 10.1039/c7ra00263g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is a major post-translational modification, which plays a central role in the cellular signaling of numerous biological processes.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Fuction-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry
- Bengbu Medical College
- China
| |
Collapse
|
43
|
Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 2017; 46:481-558. [DOI: 10.1039/c6cs00829a] [Citation(s) in RCA: 839] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses recent advances in synthesis strategies of hierarchically porous materials and their structural design from micro-, meso- to macro-length scale.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Li-Hua Chen
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Yu Li
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Joanna Claire Rooke
- Laboratory of Inorganic Materials Chemistry (CMI)
- University of Namur
- B-5000 Namur
- Belgium
| | - Clément Sanchez
- Chimie de la Matiere Condensee de Paris
- UniversitePierre et Marie Curie (Paris VI)
- Collège de France
- France
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
44
|
Characterization of the Kinetic Performance of Silica Monolithic Columns for Reversed-Phase Chromatography Separations. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Gu H, Yin D, Ren J, Zhang B, Zhang Q. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:399-405. [DOI: 10.1016/j.jchromb.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 01/31/2023]
|
46
|
Seto H, Matsumoto H, Shibuya M, Akiyoshi T, Hoshino Y, Miura Y. Poly(N-isopropylacrylamide) gel-based macroporous monolith for continuous-flow recovery of palladium(II) ions. J Appl Polym Sci 2016. [DOI: 10.1002/app.44385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Makoto Shibuya
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Takanori Akiyoshi
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
47
|
Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation. J Chromatogr A 2016; 1446:125-33. [PMID: 27083263 DOI: 10.1016/j.chroma.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition.
Collapse
|
48
|
Hara T, Desmet G, Baron GV, Minakuchi H, Eeltink S. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. J Chromatogr A 2016; 1442:42-52. [DOI: 10.1016/j.chroma.2016.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
|
49
|
Optimization of poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based capillary monoliths for separation of low, medium, and high molecular-weight analytes. J Chromatogr A 2016; 1443:126-35. [DOI: 10.1016/j.chroma.2016.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
50
|
Wu C, Liang Y, Yang K, Min Y, Liang Z, Zhang L, Zhang Y. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation. Anal Chem 2016; 88:1521-5. [DOI: 10.1021/acs.analchem.5b04641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ci Wu
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kaiguang Yang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Min
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|