1
|
Chen HJC, Hu SX, Tu CW. Multiple oxidative modifications on hemoglobin are elevated in breast cancer patients as measured by nanoflow liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2025; 252:116477. [PMID: 39321489 DOI: 10.1016/j.jpba.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Breast cancer is strongly connected with elevated oxidative stress. Oxidative modifications of hemoglobin can serve as biomarkers for monitoring oxidative stress status in vivo. The structure of hemoglobin modifications derived from malondialdehyde (MDA) in human blood hemoglobin exists as N-propenal and dihydropyridine (DHP). This study reports the simultaneous quantification of eleven modified peptides in hemoglobin derived from MDA and advanced histidine oxidation in 16 breast cancer patients and 16 healthy women using nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry. The results reveal statistically significant increases in the formation of MDA-derived N-propenal and DHP of lysine and advanced oxidation of histidine in hemoglobin of breast cancer patients with the Mann-Whitney U-test p values < 0.0001 and the AUC of ROC between 0.9277 and 1.0. Furthermore, the elevation in modified peptides is significant in patients with early stages of breast cancer. By measuring these oxidative modifications in hemoglobin from a drop of blood, the role of lipid peroxidation and oxidative stress in breast cancer can be assessed using this sensitive assay.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi 62142, Taiwan.
| | - Shun-Xiang Hu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi 62142, Taiwan
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
2
|
Wang C, Yang Q. ScerePhoSite: An interpretable method for identifying fungal phosphorylation sites in proteins using sequence-based features. Comput Biol Med 2023; 158:106798. [PMID: 36966555 DOI: 10.1016/j.compbiomed.2023.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Protein phosphorylation plays a vital role in signal transduction pathways and diverse cellular processes. To date, a tremendous number of in silico tools have been designed for phosphorylation site identification, but few of them are suitable for the identification of fungal phosphorylation sites. This largely hampers the functional investigation of fungal phosphorylation. In this paper, we present ScerePhoSite, a machine learning method for fungal phosphorylation site identification. The sequence fragments are represented by hybrid physicochemical features, and then LGB-based feature importance combined with the sequential forward search method is used to choose the optimal feature subset. As a result, ScerePhoSite surpasses current available tools and shown a more robust and balanced performance. Furthermore, the impact and contribution of specific features on the model performance were investigated by SHAP values. We expect ScerePhoSite to be a useful bioinformatics tool that complements hands-on experiments for the pre-screening of possible phosphorylation sites and facilitates our functional understanding of phosphorylation modification in fungi. The source code and datasets are accessible at https://github.com/wangchao-malab/ScerePhoSite/.
Collapse
|
3
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
4
|
Chen HJC, Chen CY, Fang YH, Hung KW, Wu DC. Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis. J Proteome Res 2022; 21:2947-2957. [PMID: 36375001 DOI: 10.1021/acs.jproteome.2c00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malondialdehyde (MDA) is the most abundant α,β-unsaturated aldehyde generated from endogenous peroxidation of polyunsaturated fatty acids and is present in cigarette smoke. Post-translational modifications of blood hemoglobin can serve as biomarkers for exposure to chemicals. In this study, two types of MDA-induced modifications, the N-propenal and the dihydropyridine (DHP), were identified at multiple sites in human hemoglobin digest by the high-resolution mass spectrometry. The N-propenal and the DHP types of modification led to the increase of 54.0106 and 134.0368 amu, respectively, at the N-terminal and lysine residues. Among the 21 MDA-modified peptides, 14 with dose-response to MDA concentrations were simultaneously quantified in study subjects by the nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry under selected reaction monitoring (nanoLC-NSI-MS/MS-SRM) without prior enrichment. The results showed that the modifications of the N-propenal-type at α-Lys-11, α-Lys-16, α-Lys-61, β-Lys-8, and β-Lys-17, as well as the DHP-type at the α-N-terminal valine, are significantly higher in hemoglobin isolated from the blood of smokers than in nonsmoking individuals. This is the first report to identify and quantify multiple sites of MDA-induced modifications in human hemoglobin from peripheral blood. Our results suggest that the MDA-derived modifications on hemoglobin might represent valuable biomarkers for MDA-induced protein damage.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Chau-Yi Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Ya-Hsuan Fang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Kai-Wei Hung
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung80756, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung807, Taiwan
| |
Collapse
|
5
|
Wu DC, Yang TC, Hu SX, Candy Chen HJ. Multiple oxidative and advanced oxidative modifications of hemoglobin in gastric cancer patients measured by nanoflow LC-MS/MS. Clin Chim Acta 2022; 531:137-144. [DOI: 10.1016/j.cca.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
6
|
Doh C, Dominic KL, Swanberg CE, Bharambe N, Willard BB, Li L, Ramachandran R, Stelzer JE. Identification of Phosphorylation and Other Post-Translational Modifications in the Central C4C5 Domains of Murine Cardiac Myosin Binding Protein C. ACS OMEGA 2022; 7:14189-14202. [PMID: 35573219 PMCID: PMC9089392 DOI: 10.1021/acsomega.2c00799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
Cardiac myosin binding protein C (cMyBPC) is a critical multidomain protein that modulates myosin cross bridge behavior and cardiac contractility. cMyBPC is principally regulated by phosphorylation of the residues within the M-domain of its N-terminus. However, not much is known about the phosphorylation or other post-translational modification (PTM) landscape of the central C4C5 domains. In this study, the presence of phosphorylation outside the M-domain was confirmed in vivo using mouse models expressing cMyBPC with nonphosphorylatable serine (S) to alanine substitutions. Purified recombinant mouse C4C5 domain constructs were incubated with 13 different kinases, and samples from the 6 strongest kinases were chosen for mass spectrometry analysis. A total of 26 unique phosphorylated peptides were found, representing 13 different phosphorylation sites including 10 novel sites. Parallel reaction monitoring and subsequent mutagenesis experiments revealed that the S690 site (UniProtKB O70468) was the predominant target of PKA and PKG1. We also report 6 acetylation and 7 ubiquitination sites not previously described in the literature. These PTMs demonstrate the possibility of additional layers of regulation and potential importance of the central domains of cMyBPC in cardiac health and disease. Data are available via ProteomeXchange with identifier PXD031262.
Collapse
Affiliation(s)
- Chang
Yoon Doh
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katherine L. Dominic
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Caitlin E. Swanberg
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nikhil Bharambe
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Belinda B. Willard
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Ling Li
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Rajesh Ramachandran
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julian E. Stelzer
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Yang L, Liu S, Han S, Hu Y, Wu Z, Shi X, Pang B, Ma Y, Jin J. The HDL from septic-ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung injury induced by cecal ligation and puncture (CLP) in mice. Respir Res 2020; 21:293. [PMID: 33148285 PMCID: PMC7640393 DOI: 10.1186/s12931-020-01553-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Background Septic-acute respiratory distress syndrome (ARDS), characterized by the acute lung injury (ALI) secondary to aberrant systemic inflammatory response, has high morbidity and mortality. Despite increased understanding of ALI pathogenesis, the therapies to prevent lung dysfunction underlying systemic inflammatory disorder remain elusive. The high density lipoprotein (HDL) has critical protective effects in sepsis and its dysfunction has a manifested contribution to septic organ failure. However, the adverse changes in HDL composition and function in septic-ARDS patients are large unknown. Methods To investigate HDL remodeling in septic-ARDS, we analyzed the changes of HDL composition from 40 patients with septic-ARDS (A-HDL) and 40 matched normal controls (N-HDL). To determine the deleterious functional remodeling of HDL, A-HDL or N-HDL was administrated to C57BL/6 and apoA-I knock-out (KO) mice after cecal ligation and puncture (CLP) procedure. Mouse lung microvascular endothelial cells (MLECs) were further treated by these HDLs to investigate whether the adverse effects of A-HDL were associated with endothelial dysfunction. Results Septic-ARDS patients showed significant changes of HDL composition, accompanied with significantly decreased HDL-C. We further indicated that A-HDL treatment aggravated CLP induced ALI. Intriguingly, these deleterious effects of A-HDL were associated with pulmonary endothelial dysfunction, rather than the increased plasma lipopolysaccharide (LPS). Further in vitro results demonstrated the direct effects of A-HDL on MLECs, including increased endothelial permeability, enhanced expressions of adhesion proteins and pro-inflammatory cytokines via activating NF-κB signaling and decreased junction protein expression. Conclusions Our results depicted the remodeling of HDL composition in sepsis, which predisposes lung to ARDS via inducing ECs dysfunction. These results also demonstrated the importance of circulating HDL in regulating alveolar homeostasis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China.,Beijing Institute of Respiratory Medicine, Beijing, China
| | - Sijie Liu
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China
| | - Silu Han
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China
| | - Yuhan Hu
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China
| | - Zhipeng Wu
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China
| | - Xiaoqian Shi
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Baosen Pang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China.,Beijing Institute of Respiratory Medicine, Beijing, China.,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China. .,Beijing Institute of Respiratory Medicine, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China. .,Beijing Institute of Respiratory Medicine, Beijing, China. .,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Lin YS, Wu CW, Lin TS, Chen NY, Wu DC, Chen HJC. Analysis of Oxidative and Advanced Oxidative Modifications in Hemoglobin of Oral Cancer Patients by Mass Spectrometry. Anal Chem 2019; 92:724-731. [DOI: 10.1021/acs.analchem.9b02743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yu-Sheng Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chin-Wei Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Tsai-Shiuan Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Nai-Ying Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
9
|
Chen HJC, Teng YC. Stability of glyoxal- and methylglyoxal-modified hemoglobin on dried blood spot cards as analyzed by nanoflow liquid chromatography tandem mass spectrometry. J Food Drug Anal 2019; 27:526-530. [PMID: 30987724 PMCID: PMC9296192 DOI: 10.1016/j.jfda.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Blood sampling by the dried blood spot (DBS) technique has become commonly applied in newborn screening. It is often used for analysis of small molecules, such as metabolites. Recently, DBS sampling has been applied for quantification of post-translational protein modifications. Glyoxal and methylglyoxal are two simple oxoaldehydes released from glycated proteins in the Maillard reaction. They are widely distributed in the environment (e.g. cigarette smoke) and found in foods and beverages. Glyoxal and methylglyoxal are shown to react with biomolecules including DNA and proteins. In this laboratory, we previously identified the sites of modification by these two oxoaldehydes in human hemoglobin and found that the extents of modification at certain sites of lysine and arginine residues are significantly higher in type 2 diabetes mellitus patients than in nondiabetic individuals. In this study, we examine the stability of these modifications of hemoglobin stored on DBS cards at room temperature or 4 °C in the ambient air. After hemoglobin was extracted from the DBS cards, it was digested by trypsin and analyzed by nanoflow liquid chromatography coupled with nanospray ionization tandem mass spectrometry. The results show that the extents of all these PTMs are stable within 14 and 21 days when stored on DBS at room temperature and at 4 °C, respectively. Extraction of globin from DBS cards is mostly advantageous for hemolytic blood samples. This assay is sensitive as only a quarter of a DBS card containing ca. 12 μL of blood is required. Thus, it is practically useful to measure the extents of glyoxal- and methylglyoxal-induced hemoglobin modifications from DBS cards.
Collapse
|
10
|
Chen HJC, Liu CT, Li YJ. Correlation between Glyoxal-Induced DNA Cross-Links and Hemoglobin Modifications in Human Blood Measured by Mass Spectrometry. Chem Res Toxicol 2018; 32:179-189. [PMID: 30507124 DOI: 10.1021/acs.chemrestox.8b00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glyoxal is an oxoaldehyde generated from the degradation of glucose-protein conjugates and from lipid peroxidation in foods and in vivo, and it is also present in the environment (e.g., cigarette smoke). The major endogenous source of glyoxal is glucose autoxidation, and the glyoxal concentrations in plasma are higher in diabetic patients than in nondiabetics. Glyoxal reacts with biomolecules forming covalently modified DNA and protein adducts. We previously developed sensitive and specific assays based on nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) for quantification of DNA cross-linked adducts (dG-gx-dC and dG-gx-dA) and for hemoglobin adducts derived from glyoxal. In this study, we isolated and analyzed both leukocyte DNA and hemoglobin from the blood of diabetic patients and compared the adduct levels with those from nondiabetic subjects using the modified assays. The results indicated that the extents of glyoxal-induced hemoglobin modifications on α-Lys-11, α-Arg-92, β-Lys-17, and β-Lys-66 were statistically higher in diabetic patients than nondiabetics and they correlated with HbA1c significantly. Moreover, the levels of dG-gx-dC in leukocyte DNA correlated positively with the extents of globin modification at α-Lys-11 and β-Lys-17, while levels of dG-gx-dA correlated with those at α-Lys-11 and α-Arg-92 in nonsmoking subjects. Comparing the levels and the correlation coefficients of these hemoglobin and DNA adducts including or excluding smokers, it appears that smoking is not a major contributor to glyoxal-induced adduction of hemoglobin and leukocyte DNA. To the best of our knowledge, this is one of the few reports of positive correlation between DNA and protein adducts of the same compound (glyoxal) in the blood from the same subjects. Because of the high abundance of hemoglobin in blood, the results indicate that quantification of glyoxal-modified peptides in hemoglobin might serve as a dosimetry for glyoxal and a practical surrogate biomarker for assessing glyoxal-induced DNA damage and its prevention.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Chun-Ting Liu
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Yi-Jou Li
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| |
Collapse
|
11
|
Chen HJC, Ip SW. Age-Associated Methylation in Human Hemoglobin and Its Stability on Dried Blood Spots As Analyzed by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Chem Res Toxicol 2018; 31:1240-1247. [PMID: 30362736 DOI: 10.1021/acs.chemrestox.8b00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methylation of biomolecules is involved in many important biological processes. The contributing methylating agents arise from endogenous and exogenous sources (such as cigarette smoking). Human hemoglobin is easily accessible from blood and has been used as a molecular dosimeter for monitoring chemical exposure. We recently developed a method for characterization and quantification of the extents of methylation and ethylation in hemoglobin by nanoflow liquid chromatography tandem mass spectrometry under the selected reaction monitoring mode. Using this method, the relative extents of methylated and ethylated peptides in hemoglobin were quantified in nonsmoking subjects at various ages in this study. Among the nine methylation sites, we found that the extents of methylation were significantly higher in elderly subjects at the N-terminal and His-20 of α-globin, and at the N-terminal and Glu-26 of β-globin. Moreover, the extents of methylation at these sites were significantly correlated with the age of the subjects. On the other hand, no statistically significant difference was found in the ethylated peptides. We also examined the stability of methylated and ethylated hemoglobin when stored on dried blood spot cards. The extents of these modifications on hemoglobin are stable for at least 4 weeks stored at room temperature. Our results suggest that age should be considered as a factor when measuring hemoglobin methylation and that dried blood spot is a valuable biomonitoring technique for hemoglobin modifications in epidemiological studies.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Sun Wai Ip
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142 , Taiwan
| |
Collapse
|
12
|
Liu D, Ji L, Zhao M, Wang Y, Guo Y, Li L, Zhang D, Xu L, Pan B, Su J, Xiang S, Pennathur S, Li J, Gao J, Liu P, Willard B, Zheng L. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. J Mol Cell Cardiol 2018; 122:47-57. [PMID: 30092227 DOI: 10.1016/j.yjmcc.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein A-I (apoA-I), the major protein compontent of high-density lipoprotein (HDL), exerts many anti-atherogenic functions. This study aimed to reveal whether nonenzymatic glycation of specific sites of apoA-I impaired its anti-inflammatory effects in type 2 diabetes mellitus (T2DM). LC-MS/MS was used to analyze the specific sites and the extent of apoA-I glycation either modified by glucose in vitro or isolated from T2DM patients. Cytokine release in THP-1 monocyte-derived macrophages was tested by ELISA. Activation of NF-kappa B pathway was detected by western blot. The binding affinity of apoA-I to THP-1 cells was measured using 125I-labeled apoA-I. We identified seven specific lysine (Lys, K) residues of apoA-I (K12, K23, K40, K96, K106, K107 and K238) that were susceptible to be glycated either in vitro or in vivo. Glycation of apoA-I impaired its abilities to inhibit the release of TNF-α and IL-1β against lipopolysaccharide (LPS) in THP-1 cells. Besides, the glycation levels of these seven K sites in apoA-I were inversely correlated with its anti-inflammatory abilities. Furthermore, glycated apoA-I had a lower affinity to THP-1 cells than native apoA-I had. We generated mutant apoA-I (K107E, M-apoA-I) with a substitution of glutamic acid (Glu, E) for lysine at the 107th site, and found that compared to wild type apoA-I (WT-apoA-I), M-apoA-I decreased its anti-inflammatory effects in THP-1 cells. We also modeled the location of these seven K residues on apoA-I which allowed us to infer the conformational alteration of glycated apoA-I and HDL. In summary, glycation of these seven K residues altered the conformation of apoA-I and consequently impaired the protective effects of apoA-I, which may partly account for the increased risk of cardiovascular disease (CVD) in diabetic subjects.
Collapse
Affiliation(s)
- Donghui Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China; Department of Cardiology, the Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian 361004, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Yang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yansong Guo
- Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Li
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongmei Zhang
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liang Xu
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jinzi Su
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Song Xiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | | | - Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China.
| |
Collapse
|
13
|
Chen HJC, Ip SW, Lin FD. Simultaneous Mass Spectrometric Analysis of Methylated and Ethylated Peptides in Human Hemoglobin: Correlation with Cigarette Smoking. Chem Res Toxicol 2017; 30:2074-2083. [DOI: 10.1021/acs.chemrestox.7b00234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Sun Wai Ip
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Fu-Di Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
14
|
Vadvalkar SS, Matsuzaki S, Eyster CA, Giorgione JR, Bockus LB, Kinter CS, Kinter M, Humphries KM. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. J Biol Chem 2017; 292:4423-4433. [PMID: 28154187 DOI: 10.1074/jbc.m116.753509] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.
Collapse
Affiliation(s)
- Shraddha S Vadvalkar
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Satoshi Matsuzaki
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Craig A Eyster
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Jennifer R Giorgione
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Lee B Bockus
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and.,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Caroline S Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Michael Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Kenneth M Humphries
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
15
|
Chen HJC, Fan CH, Yang YF. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry. Chem Res Toxicol 2016; 29:2157-2163. [DOI: 10.1021/acs.chemrestox.6b00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chih-Huang Fan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Ya-Fen Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
16
|
Chen HJC, Yang YF, Lai PY, Chen PF. Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2016; 88:9276-84. [PMID: 27541571 DOI: 10.1021/acs.analchem.6b02663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The post-translational modification (PTM) of proteins by endogenous reactive chlorine, nitrogen, and oxygen species is implicated in certain pathological conditions, including diabetes mellitus. Evidence showed that the extents of modifications on a number of proteins are elevated in diabetic patients. Measuring modification on hemoglobin has been used to monitor the extent of exposure. This study develops an assay for simultaneous quantification of the extent of chlorination, nitration, and oxidation in human hemoglobin and to examine whether the level of any of these modifications is higher in poorly controlled type 2 diabetic mellitus patients. This mass spectrometry-based assay used the bottom-up proteomic strategy. Due to the low amount of endogenous modification, we first characterized the sites of chlorination at tyrosine in hypochlorous acid-treated hemoglobin by an accurate mass spectrometer. The extents of chlorination, nitration, and oxidation of a total of 12 sites and types of modifications in hemoglobin were measured by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry under the selected reaction monitoring mode. Relative quantification of these PTMs in hemoglobin extracted from blood samples shows that the extents of chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in diabetic patients (n = 19) than in nondiabetic individuals (n = 18). After excluding the factor of smoking, chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in the nonsmoking diabetic patients (n = 12) than in normal nonsmoking subjects (n = 11). Multiple regression analysis performed on the combined effect of age, body-mass index (BMI), and HbA1c showed that the diabetes factor HbA1c contributes significantly to the extent of chlorination at α-Tyr-24 in nonsmokers. In addition, age contributes to oxidation at α-Met-32 significantly in all subjects and in nonsmokers. These results suggest the potential of using chlorination at α-Tyr-24-containing peptide to evaluate protein damage in nonsmoking type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Ya-Fen Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pang-Yen Lai
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Dalin, Chia-Yi 62247, Taiwan
| |
Collapse
|
17
|
Kim EH, Galchev VI, Kim JY, Misek SA, Stevenson TK, Campbell MD, Pagani FD, Day SM, Johnson TC, Washburn JG, Vikstrom KL, Michele DE, Misek DE, Westfall MV. Differential protein expression and basal lamina remodeling in human heart failure. Proteomics Clin Appl 2016; 10:585-96. [PMID: 26756417 DOI: 10.1002/prca.201500099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE A goal of this study was to identify and investigate previously unrecognized components of the remodeling process in the progression to heart failure by comparing protein expression in ischemic failing (F) and nonfailing (NF) human hearts. EXPERIMENTAL DESIGN Protein expression differences were investigated using multidimensional protein identification and validated by Western analysis. This approach detected basal lamina (BL) remodeling, and further studies analyzed samples for evidence of structural BL remodeling. A rat model of pressure overload (PO) was studied to determine whether nonischemic stressors also produce BL remodeling and impact cellular adhesion. RESULTS Differential protein expression of collagen IV, laminin α2, and nidogen-1 indicated BL remodeling develops in F versus NF hearts Periodic disruption of cardiac myocyte BL accompanied this process in F, but not NF heart. The rat PO myocardium also developed BL remodeling and compromised myocyte adhesion compared to sham controls. CONCLUSIONS AND CLINICAL RELEVANCE Differential protein expression and evidence of structural and functional BL alterations develop during heart failure. The compromised adhesion associated with this remodeling indicates a high potential for dysfunctional cellular integrity and tethering in failing myocytes. Therapeutically targeting BL remodeling could slow or prevent the progression of heart disease.
Collapse
Affiliation(s)
- Evelyn H Kim
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Sean A Misek
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Tamara K Stevenson
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D Campbell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sharlene M Day
- Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - T Craig Johnson
- DNA Sequencing and Microarray Facility, University of Michigan, Ann Arbor, MI, USA
| | - Joseph G Washburn
- DNA Sequencing and Microarray Facility, University of Michigan, Ann Arbor, MI, USA
| | - Karen L Vikstrom
- Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David E Misek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Margaret V Westfall
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015; 28:2377-89. [DOI: 10.1021/acs.chemrestox.5b00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Yu-Chin Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chiung-Fong Hsiao
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Buddhist Dalin Tzu Chi General Hospital, No.2, Minsheng Road, Dalin, Chia-Yi 622, Taiwan
| |
Collapse
|
19
|
Fernandes J, Weddle A, Kinter CS, Humphries KM, Mather T, Szweda LI, Kinter M. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart. Biochemistry 2015; 54:4008-18. [PMID: 26061789 DOI: 10.1021/acs.biochem.5b00375] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput proteomics studies have identified several thousand acetylation sites on more than 1000 proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3)-catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-coenzyme A resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and revealed significant increases with both in vitro treatments. A high-fat diet (60% of kilocalories from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high-fat diet also produced an increased level of aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high-fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity, and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation.
Collapse
Affiliation(s)
- Jolyn Fernandes
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alexis Weddle
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Caroline S Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Kenneth M Humphries
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Timothy Mather
- ‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,§Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Luke I Szweda
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Michael Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
20
|
Tsutsui Y, Johnson JM, Demeler B, Kinter MT, Hays FA. Conformation-Dependent Human p52Shc Phosphorylation by Human c-Src. Biochemistry 2015; 54:3469-82. [PMID: 25961473 DOI: 10.1021/acs.biochem.5b00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the human p52Shc adaptor protein is a key determinant in modulating signaling complex assembly in response to tyrosine kinase signaling cascade activation. The underlying mechanisms that govern p52Shc phosphorylation status are unknown. In this study, p52Shc phosphorylation by human c-Src was investigated using purified proteins to define mechanisms that affect the p52Shc phosphorylation state. We conducted biophysical characterizations of both human p52Shc and human c-Src in solution as well as membrane-mimetic environments using the acidic lipid phosphatidylinositol 4-phosphate or a novel amphipathic detergent (2,2-dihexylpropane-1,3-bis-β-D-glucopyranoside). We then identified p52Shc phosphorylation sites under various solution conditions, and the amount of phosphorylation at each identified site was quantified using mass spectrometry. These data demonstrate that the p52Shc phosphorylation level is altered by the solution environment without affecting the fraction of active c-Src. Mass spectrometry analysis of phosphorylated p52Shc implies functional linkage among phosphorylation sites. This linkage may drive preferential coupling to protein binding partners during signaling complex formation, such as during initial binding interactions with the Grb2 adaptor protein leading to activation of the Ras/MAPK signaling cascade. Remarkably, tyrosine residues involved in Grb2 binding were heavily phosphorylated in a membrane-mimetic environment. The increased phosphorylation level in Grb2 binding residues was also correlated with a decrease in the thermal stability of purified human p52Shc. A schematic for the phosphorylation-dependent interaction between p52Shc and Grb2 is proposed. The results of this study suggest another possible therapeutic strategy for altering protein phosphorylation to regulate signaling cascade activation.
Collapse
Affiliation(s)
- Yuko Tsutsui
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Jennifer M Johnson
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Borries Demeler
- ‡Department of Biochemistry, The University of Texas Health Sciences Center at San Antonio, 7750 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Michael T Kinter
- ∥Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Franklin A Hays
- †Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,⊥Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∇Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
21
|
Ji Y, Liu M, Bachschmid MM, Costello CE, Lin C. Surfactant-Induced Artifacts during Proteomic Sample Preparation. Anal Chem 2015; 87:5500-4. [PMID: 25945600 DOI: 10.1021/acs.analchem.5b00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bottom-up proteomics is a powerful tool for characterization of protein post-translational modifications (PTMs), where PTMs are identified at the peptide level by mass spectrometry (MS) following protein digestion. However, enzymatic digestion is associated with additional sample processing steps that may potentially introduce artifactual modifications. Here, during an MS study of the PTMs of the regulator of G-protein signaling 4, we discovered that the use of ProteaseMAX, which is an acid-labile surfactant commonly used to improve protein solubilization and digestion efficiency, can lead to in vitro modifications on cysteine residues. These hydrophobic modifications resemble S-palmitoylation and hydroxyfarnesylation, thus discouraging the use of ProteaseMAX in studies of lipid modifications of proteins. Furthermore, since they target the cysteine thiol group, the presence of these artifacts will inevitably lead to inaccuracies in quantitative analysis of cysteine modifications.
Collapse
|
22
|
Lang SE, Schwank J, Stevenson TK, Jensen MA, Westfall MV. Independent modulation of contractile performance by cardiac troponin I Ser43 and Ser45 in the dynamic sarcomere. J Mol Cell Cardiol 2015; 79:264-74. [PMID: 25481661 PMCID: PMC4301988 DOI: 10.1016/j.yjmcc.2014.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) targets cardiac troponin I (cTnI) S43/45 for phosphorylation in addition to other residues. During heart failure, cTnI S43/45 phosphorylation is elevated, and yet there is ongoing debate about its functional role due, in part, to the emergence of complex phenotypes in animal models. The individual functional influences of phosphorylated S43 and S45 also are not yet known. The present study utilizes viral gene transfer of cTnI with phosphomimetic S43D and/or S45D substitutions to evaluate their individual and combined influences on function in intact adult cardiac myocytes. Partial replacement (≤40%) with either cTnIS43D or cTnIS45D reduced the amplitude of contraction, and cTnIS45D slowed contraction and relaxation rates, while there were no significant changes in function with cTnIS43/45D. More extensive replacement (≥70%) with cTnIS43D, cTnIS45D, and cTnIS43/45D each reduced the amplitude of contraction. Additional experiments also showed cTnIS45D reduced myofilament Ca(2+) sensitivity of tension. At the same time, shortening rates returned toward control values with cTnIS45D and the later stages of relaxation also became accelerated in myocytes expressing cTnIS43D and/or S45D. Further studies demonstrated this behavior coincided with adaptive changes in myofilament protein phosphorylation. Taken together, the results observed in myocytes expressing cTnIS43D and/or S45D suggest these 2 residues reduce function via independent mechanism(s). The changes in function associated with the onset of adaptive myofilament signaling suggest the sarcomere is capable of fine tuning PKC-mediated cTnIS43/45 phosphorylation and contractile performance. This modulatory behavior also provides insight into divergent phenotypes reported in animal models with cTnI S43/45 phosphomimetic substitutions.
Collapse
Affiliation(s)
- Sarah E Lang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Schwank
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara K Stevenson
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark A Jensen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret V Westfall
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Popov IA, Indeikina MI, Pekov SI, Starodubtseva NL, Kononikhin AS, Nikolaeva MI, Kukaev EN, Kostyukevich YI, Kozin SA, Makarov AA, Nikolaev EN. Estimation of phosphorylation level of amyloid-beta isolated from human blood plasma: Ultrahigh-resolution mass spectrometry. Mol Biol 2014. [DOI: 10.1134/s0026893314040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Pan B, Yu B, Ren H, Willard B, Pan L, Zu L, Shen X, Ma Y, Li X, Niu C, Kong J, Kang S, Eugene Chen Y, Pennathur S, Zheng L. High-density lipoprotein nitration and chlorination catalyzed by myeloperoxidase impair its effect of promoting endothelial repair. Free Radic Biol Med 2013; 60:272-81. [PMID: 23416364 DOI: 10.1016/j.freeradbiomed.2013.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
High-density lipoprotein (HDL) plays a key role in protecting against atherosclerosis. In cardiovascular disease, HDL can be nitrated and chlorinated by myeloperoxidase (MPO). In this study, we discovered that MPO-oxidized HDL is dysfunctional in promoting endothelial repair compared to normal HDL. Proliferation assay, wound healing, and transwell migration experiments showed that MPO-oxidized HDL was associated with a reduced stimulation of endothelial cell (EC) proliferation and migration. In addition, we found that Akt and ERK1/2 phosphorylation in ECs was significantly lower when ECs were incubated with oxidized HDL compared with normal HDL. To further determine whether oxidized HDL diminished EC migration through the PI3K/Akt and MEK/ERK pathways, we performed experiments with inhibitors of both these pathways. The transwell experiments performed in the presence of these inhibitors showed that the migration capacity was reduced and the differences observed between normal HDL and oxidized HDL were diminished. Furthermore, to study the effects of oxidized HDL on endothelial cells in vivo, we performed a carotid artery electric injury model on nude mice injected with either normal or oxidized HDL. Oxidized HDL inhibited reendothelialization compared to normal HDL in vivo. These findings implicate a key role for MPO-oxidized HDL in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun QA, Wang B, Miyagi M, Hess DT, Stamler JS. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification. J Biol Chem 2013; 288:22961-71. [PMID: 23798702 DOI: 10.1074/jbc.m113.480228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In mammalian skeletal muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca(2+)-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca(2+) channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in "hot spot" regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.
Collapse
Affiliation(s)
- Qi-An Sun
- Institute for Transformative Molecular Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
27
|
Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 2013; 6:rs8. [PMID: 23572148 DOI: 10.1126/scisignal.2003509] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abscisic acid (ABA) is a phytohormone that regulates diverse plant processes, including seed germination and the response to dehydration. In Arabidopsis thaliana, protein kinases of the SNF1-related protein kinase 2 (SnRK2) family are believed to transmit ABA- or dehydration-induced signals through phosphorylation of downstream substrates. By mass spectrometry, we identified proteins that were phosphorylated in Arabidopsis wild-type plants, but not in mutants lacking all three members of the SnRK2 family (srk2dei), treated with ABA or subjected to dehydration stress. The number of differentially phosphorylated peptides was greater in srk2dei plants treated with ABA than in the ones subjected to dehydration, suggesting that SnRK2 was mainly involved in ABA signaling rather than dehydration. We identified 35 peptides that were differentially phosphorylated in wild-type but not in srk2dei plants treated with ABA. Biochemical and genetic studies of candidate SnRK2-regulated phosphoproteins showed that SnRK2 promoted the ABA-induced activation of the mitogen-activated protein kinases AtMPK1 and AtMPK2; that SnRK2 mediated phosphorylation of Ser(45) in a bZIP transcription factor, AREB1 (ABA-responsive element binding protein 1), and stimulated ABA-responsive gene expression; and that a previously unknown protein, SnRK2-substrate 1 (SNS1), was phosphorylated in vivo by ABA-activated SnRK2s. Reverse genetic analysis revealed that SNS1 inhibited ABA responses in Arabidopsis. Thus, by integrating genetics with phosphoproteomics, we identified multiple components of the ABA-responsive protein phosphorylation network.
Collapse
Affiliation(s)
- Taishi Umezawa
- Faculty of Agriculture and Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Jin W, Brown AT, Murphy AM. Cardiac myofilaments: from proteome to pathophysiology. Proteomics Clin Appl 2012; 2:800-10. [PMID: 21136880 DOI: 10.1002/prca.200780075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses the functional consequences of altered post-translational modifications of cardiac myofilament proteins in cardiac diseases such as heart failure and ischemia. The modifications of thick and thin filament proteins as well as titin are addressed. Understanding the functional consequences of altered protein modifications is an essential step in the development of targeted therapies for common cardiac diseases.
Collapse
Affiliation(s)
- Wenhai Jin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
29
|
Chen HJC, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem 2012; 84:7881-90. [PMID: 22958097 DOI: 10.1021/ac301597r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is essential for normal physiology, but excessive production of NO during inflammatory processes can damage the neighboring tissues. Reactive nitrogen oxide species (RNOx), including peroxynitrite (ONOO(-)), are powerful nitrating agents. Biological protein nitration is involved in several disease states, including inflammatory diseases, and it is evident by detection of 3-nitrotyrosine (3NT) in inflamed tissues. In this study, we identified peroxynitrite-induced post-translational modifications (PTMs) in human hemoglobin by accurate mass measurement as well as by the MS(2) and MS(3) spectra. Nitration on Tyr-24, Tyr-42 (α-globin), and Tyr-130 (β-globin) as well as nitrosation on Tyr-24 (α-globin) were identified. Also characterized were oxidation of all three methionine residues, α-Met-32, α-Met-76, and β-Met-55 to the sulfoxide, as well as cysteine oxidation determined as sulfinic acid on α-Cys-104 and sulfonic acid on α-Cys-104, β-Cys-93, and β-Cys-112. These modifications are detected in hemoglobin freshly isolated from human blood and the extents of modifications were semiquantified relative to the reference peptides by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the selected reaction monitoring (SRM) mode. The results showed a statistically significant positive correlation between cigarette smoking and the extents of tyrosine nitration at α-Tyr-24 and at α-Tyr-42. To our knowledge, this is the first report on identification and quantification of multiple PTMs in hemoglobin from human blood and association of a specific 3NT-containing peptide with cigarette smoking. This highly sensitive and specific assay only requires hemoglobin isolated from one drop (∼10 μL) of blood. Thus, measurement of these PTMs in hemoglobin might be feasible for assessing nitrative stress in vivo.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
30
|
Pan B, Ren H, Ma Y, Liu D, Yu B, Ji L, Pan L, Li J, Yang L, Lv X, Shen X, Chen B, Zhang Y, Willard B, He Y, Zheng L. High-density lipoprotein of patients with type 2 diabetes mellitus elevates the capability of promoting migration and invasion of breast cancer cells. Int J Cancer 2012; 131:70-82. [PMID: 21805479 DOI: 10.1002/ijc.26341] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 07/21/2011] [Indexed: 12/29/2022]
Abstract
Epidemiological studies suggested complicated associations between type 2 diabetes mellitus and breast cancer. There is a significant inverse association between high-density lipoprotein (HDL) and the risk and mortality of breast cancer. However, HDL could be modified in various ways in diabetes patients, and this may lead to the altered effects on many different types of cells. In our study, we found that glycation and oxidation levels are significantly higher in HDL from type 2 diabetes mellitus patients compared to that from healthy subjects. Diabetic HDL dramatically had a stronger capability to promote cell proliferation, migration and invasion of breast cancer (as examined both on hormone-independent cells and on hormone-dependent cells). In addition, glycated and oxidized HDL, which were produced in vitro, acted in similar way as diabetic HDL. Diabetic HDL, glycated HDL and oxidized HDL also induced higher synthesis and secretion of VEGF-C, MMP-2 and MMP-9 from malondialdehyde (MDA)-MB-231 cells. It was indicated that diabetic, glycated and oxidized HDL promote MDA-MB-231 cell migration and invasion through ERK and p38 MAPK pathways, and Akt pathway plays an important role as well in MDA-MB-231 cell invasion. The Akt, ERK and p38 MAPK pathways are also involved in VEGF-C and MMP-9 secretion induced by diabetic, glycated and oxidized HDL. Our study demonstrated that glycation and oxidation of HDL in diabetic patients could lead to abnormal actions on MDA-MB-231 cell proliferation, migration and invasion, thereby promoting the progression of breast cancer. This will largely draw the attention of HDL-based treatments in diabetic patients especially those with breast cancer.
Collapse
Affiliation(s)
- Bing Pan
- The Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sherrod SD, Myers MV, Li M, Myers JS, Carpenter KL, Maclean B, Maccoss MJ, Liebler DC, Ham AJL. Label-free quantitation of protein modifications by pseudo selected reaction monitoring with internal reference peptides. J Proteome Res 2012; 11:3467-79. [PMID: 22559222 PMCID: PMC3368409 DOI: 10.1021/pr201240a] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Liquid chromatography tandem mass spectrometry (LC–MS/MS)
based methods provide powerful tools for the quantitative analysis
of modified proteins. We have developed a label-free approach using
internal reference peptides (IRP) from the target protein for signal
normalization without the need for isotope labeling. Ion-trap mass
spectrometry and pseudo-selected reaction monitoring (pSRM) were used
to acquire full MS/MS and MS3 spectra from target peptides.
Skyline, a widely used software for SRM experiments, was used for
chromatographic ion extraction. Phosphopeptides spiked into a BSA
background yielded concentration response curves with high correlation
coefficients (typically >0.9) and low coefficients of variation
(≤15%)
over a 200-fold concentration range. Stable isotope dilution (SID)
and IRP methods were compared for quantitation of six site-specific
phosphorylations in the epidermal growth factor receptor (EGFR) in
epidermal growth factor-stimulated A431 cells with or without the
addition of EGFR inhibitors cetuximab and gefitinib. Equivalent responses
were observed with both IRP and SID methods, although analyses using
the IRP method typically had higher median CVs (22–31%) than
SID (10–20%). Analyses using both methods were consistent with
immunoblot using site-selective antibodies. The ease of implementation
and the suitability for targeted quantitative comparisons make this
method suitable for broad application in protein biochemistry.
Collapse
Affiliation(s)
- Stacy D Sherrod
- Jim Ayers Institute of Precancer Detection and Diagnosis and §Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hwang H, Robinson DA, Stevenson TK, Wu HC, Kampert SE, Pagani FD, Dyke DB, Martin JL, Sadayappan S, Day SM, Westfall MV. PKCβII modulation of myocyte contractile performance. J Mol Cell Cardiol 2012; 53:176-86. [PMID: 22587992 DOI: 10.1016/j.yjmcc.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 12/26/2022]
Abstract
Significant up-regulation of the protein kinase Cβ(II) (PKCβ(II)) develops during heart failure and yet divergent functional outcomes are reported in animal models. The goal here is to investigate PKCβ(II) modulation of contractile function and gain insights into downstream targets in adult cardiac myocytes. Increased PKCβ(II) protein expression and phosphorylation developed after gene transfer into adult myocytes while expression remained undetectable in controls. The PKCβ(II) was distributed in a peri-nuclear pattern and this expression resulted in diminished rates and amplitude of shortening and re-lengthening compared to controls and myocytes expressing dominant negative PKCβ(II) (PKCβDN). Similar decreases were observed in the Ca(2+) transient and the Ca(2+) decay rate slowed in response to caffeine in PKCβ(II)-expressing myocytes. Parallel phosphorylation studies indicated PKCβ(II) targets phosphatase activity to reduce phospholamban (PLB) phosphorylation at residue Thr17 (pThr17-PLB). The PKCβ inhibitor, LY379196 (LY) restored pThr17-PLB to control levels. In contrast, myofilament protein phosphorylation was enhanced by PKCβ(II) expression, and individually, LY and the phosphatase inhibitor, calyculin A each failed to block this response. Further work showed PKCβ(II) increased Ca(2+)-activated, calmodulin-dependent kinase IIδ (CaMKIIδ) expression and enhanced both CaMKIIδ and protein kinase D (PKD) phosphorylation. Phosphorylation of both signaling targets also was resistant to acute inhibition by LY. These later results provide evidence PKCβ(II) modulates contractile function via intermediate downstream pathway(s) in cardiac myocytes.
Collapse
Affiliation(s)
- Hyosook Hwang
- Dept. of Surgery, Cardiac Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, Zheng L. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev 2012; 28:186-95. [PMID: 21928330 DOI: 10.1002/dmrr.1297] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS In type 2 diabetes mellitus (T2DM), the abnormal protein and lipid composition of diabetic high-density lipoprotein (HDL) could impair its anti-inflammatory functions. Whether nonenzymatic glycation directly impaired the anti-inflammatory effects of HDL in innate immunity remained unclear. METHODS Human acute monocytic leukemia cell line (THP-1) cells, mouse RAW 264.7 macrophages and primary human monocytes derived macrophages were pre-incubated with native HDL, diabetic HDL isolated from T2DM patients or HDL glycated with different doses of d-glucose in vitro and then challenged with lipopolysaccharide (LPS). The release of tumor necrosis factor (TNF)-α and IL-1β was assayed by enzyme-linked immunosorbent assay (ELISA). Phosphorylation of Iκ-Bα in cytoplasm and nuclear translocation of NF-κB were detected by western blot. Glycation levels of native HDL, glycated HDL and diabetic HDL were determined using LC-MS/MS. RESULTS The potency of diabetic HDL to inhibit the release of TNF-α (p < 0.05) and IL-1β (p < 0.001) was dramatically attenuated compared with that of native HDL. Similarly, glycation of HDL in vitro impaired its ability to inhibit TNF-α and IL-1β release in a glucose dose-dependent manner. Moreover, apoHDL still effectively inhibited the release of TNF-α and IL-1β induced by LPS, but glycated apoHDL partly lost such abilities. Nonenzymatic glycation levels of glycated HDL and diabetic HDL increased 28 fold (p < 0.001) and 4 fold (p < 0.001), respectively compared with that of native HDL. CONCLUSIONS In this study, we observed that diabetic HDL and HDL glycated in vitro both partly lose their protective effects to inhibit cytokines release induced by LPS in macrophages, and nonenzymatic glycation of the protein components of HDL plays key roles in these impairments.
Collapse
Affiliation(s)
- Donghui Liu
- The Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kitagawa D, Gouda M, Kirii Y, Sugiyama N, Ishihama Y, Fujii I, Narumi Y, Akita K, Yokota K. Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J Biochem 2011; 151:47-55. [DOI: 10.1093/jb/mvr112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 2010; 285:28902-11. [PMID: 20610395 PMCID: PMC2937917 DOI: 10.1074/jbc.m110.116657] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/18/2010] [Indexed: 11/06/2022] Open
Abstract
Plants detect potential pathogens by sensing microbe-associated molecular patterns via pattern recognition receptors. In the dicot model plant Arabidopsis, the lysin motif (LysM)-containing chitin elicitor receptor kinase 1 (CERK1) has been shown to be essential for perception of the fungal cell wall component chitin and for resistance to fungal pathogens. Recent in vitro studies with CERK1 protein expressed heterologously in yeast suggested direct chitin binding activity. Here we show in an affinity purification approach that CERK1 is a major chitin-binding protein of Arabidopsis cells, along with several known and putative chitinases. The ectodomain of CERK1 harbors three distinct LysM domains with potential ligand binding capacity. We demonstrate that the CERK1 ectodomain binds chitin and partially deacetylated chitosan directly without any requirement for interacting proteins and that all three LysM domains are necessary for chitin binding. Ligand-induced phosphorylation events are a general feature of animal and plant signal transduction pathways. Our studies show that chitin, chitin oligomers, and chitosan rapidly induce in vivo phosphorylation of CERK1 at multiple residues in the juxtamembrane and kinase domain. Functional analyses with a kinase dead variant provide evidence that kinase activity of CERK1 is required for its chitin-dependent in vivo phosphorylation, as well as for early defense responses and downstream signaling. Collectively, our data suggest that in Arabidopsis, CERK1 is a major chitin, chitosan, and chito-oligomer binding component and that chitin signaling depends on CERK1 post-translational modification and kinase activity.
Collapse
Affiliation(s)
- Elena K. Petutschnig
- From the Department of Plant Cell Biology, Albrecht-von-Haller-Institute of Plant Sciences, Georg-August-University Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany and
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Alexandra M. E. Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Liliya Serazetdinova
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Ulrike Lipka
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Volker Lipka
- From the Department of Plant Cell Biology, Albrecht-von-Haller-Institute of Plant Sciences, Georg-August-University Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany and
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
36
|
Langlais P, Mandarino LJ, Yi Z. Label-free relative quantification of co-eluting isobaric phosphopeptides of insulin receptor substrate-1 by HPLC-ESI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1490-9. [PMID: 20594869 PMCID: PMC2995262 DOI: 10.1016/j.jasms.2010.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/30/2010] [Accepted: 05/22/2010] [Indexed: 05/18/2023]
Abstract
Intracellular signal transduction is often regulated by transient protein phosphorylation in response to external stimuli. Insulin signaling is dependent on specific protein phosphorylation events, and analysis of insulin receptor substrate-1 (IRS-1) phosphorylation reveals a complex interplay between tyrosine, serine, and threonine phosphorylation. The phospho-specific antibody-based quantification approach for analyzing changes in site-specific phosphorylation of IRS-1 is difficult due to the dearth of phospho-antibodies compared with the large number of known IRS-1 phosphorylation sites. We previously published a method detailing a peak area-based mass spectrometry approach, using precursor ions for peptides, to quantify the relative abundance of site-specific phosphorylation in the absence or presence of insulin. We now present an improvement wherein site-specific phosphorylation is quantified by determining the peak area of fragment ions respective to the phospho-site of interest. This provides the advantage of being able to quantify co-eluting isobaric phosphopeptides (differentially phosphorylated versions of the same peptide), allowing for a more comprehensive analysis of protein phosphorylation. Quantifying human IRS-1 phosphorylation sites at Ser303, Ser323, Ser330, Ser348, Ser527, and Ser531 shows that this method is linear (n = 3; r(2) = 0.85 +/- 0.05, 0.96 +/- 0.01, 0.96 +/- 0.02, 0.86 +/- 0.07, 0.90 +/- 0.03, 0.91 +/- 0.04, respectively) over an approximate 10-fold range of concentrations and reproducible (n = 4; coefficient of variation = 0.12, 0.14, 0.29, 0.30, 0.12, 0.06, respectively). This application of label-free, fragment ion-based quantification to assess relative phosphorylation changes of specific proteins will prove useful for understanding how various cell stimuli regulate protein function by phosphorylation.
Collapse
Affiliation(s)
- Paul Langlais
- ASU/Mayo Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | |
Collapse
|
37
|
Domanski D, Murphy LC, Borchers CH. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal Chem 2010; 82:5610-20. [PMID: 20524616 PMCID: PMC2909760 DOI: 10.1021/ac1005553] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a phosphatase-based phosphopeptide quantitation (PPQ) method for determining phosphorylation stoichiometry in complex biological samples. This PPQ method is based on enzymatic dephosphorylation, combined with specific and accurate peptide identification and quantification by multiple reaction monitoring (MRM) with stable-isotope-labeled standard peptides. In contrast with classical MRM methods for the quantitation of phosphorylation stoichiometry, the PPQ-MRM method needs only one nonphosphorylated SIS (stable isotope-coded standard) and two analyses (one for the untreated sample and one for the phosphatase-treated sample), from which the expression and modification levels can accurately be determined. From these analyses, the percent phosphorylation can be determined. In this manuscript, we compare the PPQ-MRM method with an MRM method without phosphatase and demonstrate the application of these methods to the detection and quantitation of phosphorylation of the classic phosphorylated breast cancer biomarkers (ERalpha and HER2), and for phosphorylated RAF and ERK1, which also contain phosphorylation sites of biological importance. Using synthetic peptides spiked into a complex protein digest, we were able to use our PPQ-MRM method to accurately determine the total phosphorylation stoichiometry on specific peptides as well as the absolute amount of the peptide and phosphopeptide present. Analyses of samples containing ERalpha protein revealed that the PPQ-MRM method is capable of determining phosphorylation stoichiometry in proteins from cell lines, and is in good agreement with determinations obtained using the direct MRM approach in terms of phosphorylation and total protein amount.
Collapse
Affiliation(s)
- Dominik Domanski
- University of Victoria – Genome BC Proteomics Centre, #3101-4464 Markham St., Victoria, BC, Canada, V8Z-7X8
| | - Leigh C. Murphy
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Ave. Rm. ON5008B, Winnipeg, MB R3E 0V9
| | - Christoph H. Borchers
- University of Victoria – Genome BC Proteomics Centre, #3101-4464 Markham St., Victoria, BC, Canada, V8Z-7X8
| |
Collapse
|
38
|
Allmer J. Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids 2010; 42:129-38. [DOI: 10.1007/s00726-010-0614-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 04/27/2010] [Indexed: 12/25/2022]
|
39
|
Voolstra O, Beck K, Oberegelsbacher C, Pfannstiel J, Huber A. Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 2010; 285:14275-84. [PMID: 20215118 PMCID: PMC2863191 DOI: 10.1074/jbc.m110.102053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/04/2010] [Indexed: 11/06/2022] Open
Abstract
The Drosophila phototransduction cascade terminates in the opening of an ion channel, designated transient receptor potential (TRP). TRP has been shown to become phosphorylated in vitro, suggesting regulation of the ion channel through posttranslational modification. However, except for one phosphorylation site, Ser(982), which was analyzed by functional in vivo studies (Popescu, D. C., Ham, A. J., and Shieh, B. H. (2006) J. Neurosci. 26, 8570-8577), nothing is known about the role of TRP phosphorylation in vivo. Here, we report the identification of 21 TRP phosphorylation sites by a mass spectrometry approach. 20 phosphorylation sites are located in the C-terminal portion of the channel, and one site is located near the N terminus. All 21 phosphorylation sites were also identified in the inaC(P209) mutant, indicating that phosphorylation of TRP at these sites occurred independently from the eye-enriched protein kinase C. Relative quantification of phosphopeptides revealed that at least seven phosphorylation sites were predominantly phosphorylated in the light, whereas one site, Ser(936), was predominantly phosphorylated in the dark. We show that TRP phosphorylated at Ser(936) was located in the rhabomere. Light-dependent changes in the phosphorylation state of this site occurred within minutes. The dephosphorylation of TRP at Ser(936) required activation of the phototransduction cascade.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Germany.
| | | | | | | | | |
Collapse
|
40
|
Ozlu N, Akten B, Timm W, Haseley N, Steen H, Steen JA. Phosphoproteomics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:255-276. [DOI: 10.1002/wsbm.41] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nurhan Ozlu
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Bikem Akten
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wiebke Timm
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Nathan Haseley
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Hanno Steen
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Judith A.J. Steen
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ. Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2211-2220. [PMID: 19783156 DOI: 10.1016/j.jasms.2009.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
Quantification of the stoichiometry of phosphorylation is usually achieved using a mixture of phosphatase treatment and differential isotopic labeling. Here, we introduce a new approach to the concomitant determination of absolute protein concentration and the stoichiometry of phosphorylation at predefined sites. The method exploits QconCAT to quantify levels of phosphorylated and nonphosphorylated peptide sequences in a phosphoprotein. The nonphosphorylated sequence is used to determine the absolute protein quantity and serves as a reference to calculate the extent of phosphorylation at the second peptide. Thus, the stoichiometry of phosphorylation and the absolute protein concentration can be determined accurately in a single experiment.
Collapse
Affiliation(s)
- Hannah Johnson
- Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, School of Chemistry, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2009; 2:ra46. [PMID: 19690332 DOI: 10.1126/scisignal.2000007] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation events during T cell receptor (TCR) signaling control the formation of complexes among proteins proximal to the TCR, the activation of kinase cascades, and the activation of transcription factors; however, the mode and extent of the influence of phosphorylation in coordinating the diverse phenomena associated with T cell activation are unclear. Therefore, we used the human Jurkat T cell leukemia cell line as a model system and performed large-scale quantitative phosphoproteomic analyses of TCR signaling. We identified 10,665 unique phosphorylation sites, of which 696 showed TCR-responsive changes. In addition, we analyzed broad trends in phosphorylation data sets to uncover underlying mechanisms associated with T cell activation. We found that, upon stimulation of the TCR, phosphorylation events extensively targeted protein modules involved in all of the salient phenomena associated with T cell activation: patterning of surface proteins, endocytosis of the TCR, formation of the F-actin cup, inside-out activation of integrins, polarization of microtubules, production of cytokines, and alternative splicing of messenger RNA. Further, case-by-case analysis of TCR-responsive phosphorylation sites on proteins belonging to relevant functional modules together with network analysis allowed us to deduce that serine-threonine (S-T) phosphorylation modulated protein-protein interactions (PPIs) in a system-wide fashion. We also provide experimental support for this inference by showing that phosphorylation of tubulin on six distinct serine residues abrogated PPIs during the assembly of microtubules. We propose that modulation of PPIs by stimulus-dependent changes in S-T phosphorylation state is a widespread phenomenon applicable to many other signaling systems.
Collapse
Affiliation(s)
- Viveka Mayya
- Department of Cell Biology, University of Connecticut Health Center, Farmington, 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annu Rev Biomed Eng 2009; 11:49-79. [DOI: 10.1146/annurev-bioeng-061008-124934] [Citation(s) in RCA: 798] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John R. Yates
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| | - Cristian I. Ruse
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| | - Aleksey Nakorchevsky
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| |
Collapse
|
44
|
Abstract
The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.
Collapse
Affiliation(s)
- Assem G Ziady
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
45
|
Chapter 17 Mass Spectrometry-Driven Approaches to Quantitative Proteomics and Beyond. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Kim J, Petritis K, Shen Y, Camp DG, Moore RJ, Smith RD. Phosphopeptide elution times in reversed-phase liquid chromatography. J Chromatogr A 2007; 1172:9-18. [PMID: 17935722 PMCID: PMC2096734 DOI: 10.1016/j.chroma.2007.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/10/2007] [Accepted: 09/14/2007] [Indexed: 11/16/2022]
Abstract
Elution time shifts between 33 different peptides and their corresponding phosphopeptides ranging from 4 amino acid residues to 35 amino acids in length were systematically investigated using high-resolution reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) analysis with trifluoroacetic acid as the ion pairing agent. Observed peptide elution time shifts for a single phosphorylation ranged from -5.28 min (for pYVPML) to +0.59 min (for HRDpSGLLDSLGR). Peptides containing a phosphotyrosine residue displayed a significant decrease in elution time following phosphorylation compared to their similar-sized peptides with phosphoserine or phosphothreonine residues. While peptide phosphorylation generally led to a decrease in the observed elution time, five peptides displayed increased elution times as a result of phosphorylation. For large peptides (> or =18 amino acids), the elution time shifts due to single phosphorylation were limited (ranging between -0.48 and +0.03 min), while the elution time shifts for small peptides (<18 amino acids) were characterized by a larger deviation (ranging between -5.28 and +0.59 min). The predictive capability for the observed RPLC elution time change due to phosphorylation has been suggested, which will aid in assigning confident phosphopeptide identifications and their subsequent confirmation.
Collapse
Affiliation(s)
- Jeongkwon Kim
- Environmental Molecular Science Laboratory, MSIN K8-98, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
47
|
Mathur MC, Kobayashi T, Chalovich JM. Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin. Biophys J 2007; 94:542-9. [PMID: 17872964 PMCID: PMC2157249 DOI: 10.1529/biophysj.107.113944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations in the troponin complex can lead to increases or decreases in contractile activity. Most mutations of troponin that cause hypertrophic cardiomyopathy increase the activity of cardiac muscle fibers. In at least some cases these mutants stabilize the active state of regulated actin. In contrast, phosphorylation of troponin I at residues 43, 45, and 144 inhibits muscle contractility. To determine if alterations of troponin I that reduce activity do stabilize the inactive state of actin, we introduced negative charges at residues 43, 45, and 144 of troponin I to mimic a constitutively phosphorylated state. At saturating calcium, all mutants decreased ATPase rates relative to wild-type actin-tropomyosin-troponin. Reduced activation of ATPase activity was seen with a single mutation at S45E and was not further altered by mutating the other two sites. In the presence of low concentrations of NEM-S1, wild-type troponin was more active than the mutants. At high NEM-S1, the rates of wild-type and mutants approached the same limiting value. Changes in Ca(2+) affinity also support the idea that the equilibrium between states of actin-tropomyosin-troponin was shifted to the inactive state by mutations that mimic troponin I phosphorylation.
Collapse
Affiliation(s)
- Mohit C Mathur
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | | |
Collapse
|
48
|
Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A. Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew Chem Int Ed Engl 2007; 46:569-71. [PMID: 17146833 DOI: 10.1002/anie.200602517] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A Pereira Navaza
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo, Spain
| | | | | |
Collapse
|
49
|
D'Ambrosio C, Salzano AM, Arena S, Renzone G, Scaloni A. Analytical methodologies for the detection and structural characterization of phosphorylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:163-80. [PMID: 16891166 DOI: 10.1016/j.jchromb.2006.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation of proteins is a frequent post-translational modification affecting a great number of fundamental cellular functions in living organisms. Because of its key role in many biological processes, much effort has been spent over the time on the development of analytical methodologies for characterizing phosphoproteins. In the past decade, mass spectrometry-based techniques have emerged as a viable alternative to more traditional methods of phosphorylation analysis, providing accurate information for a purified protein on the number of the occurring phosphate groups and their exact localization on the polypeptide sequence. This review summarizes the analytical methodologies currently available for the analysis of protein phosphorylation, emphasizing novel mass spectrometry (MS) technologies and dedicated biochemical procedures that have been recently introduced in this field. A formidable armamentarium is now available for selective enrichment, exaustive structural characterization and quantitative determination of the modification degree for phosphopeptides/phosphoproteins. These methodologies are now successfully applied to the global analysis of cellular proteome repertoire according a holistic approach, allowing the quantitative study of phosphoproteomes on a dynamic time-course basis. The enormous complexity of the protein phosphorylation pattern inside the cell and its dynamic modification will grant important challenges to future scientists, contributing significantly to deeper insights into cellular processes and cell regulation.
Collapse
Affiliation(s)
- Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | |
Collapse
|
50
|
Sun J, Lynn BC. Development of a MALDI-TOF-MS method to identify and quantify butyrylcholinesterase inhibition resulting from exposure to organophosphate and carbamate pesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:698-706. [PMID: 17223355 DOI: 10.1016/j.jasms.2006.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/16/2006] [Accepted: 11/19/2006] [Indexed: 05/13/2023]
Abstract
A novel, proteomics based method was developed for the detection, quantification, and categorization of serum butyrylcholinesterase (BChE) inhibitors, including organophosphates (OPs) and carbamates (CBs). This method was based on the MALDI-TOF-MS analysis of the trypsin generated BChE active site peptide (191-SVTLFGESAGAASVSLHLLSPR-212) previously modified by reaction with an OP or CB. The ionization efficiency of OP modified active site peptides by MALDI was greatly improved by adding diammonium citrate to the MALDI matrix, which made the quantification of OP exposure feasible. Excellent linearity (r2 > 0.98) between the normalized abundance ratios (NARs) and OP concentrations or logarithm of carbaryl concentration was obtained. The accuracy of the developed assay was evaluated by comparison of IC50 and IC100 values from the assay with those determined by the Ellman method. Results from this method were comparable with those from the Ellman method. The advantage of the assay was that both the origin and the extent of pesticide exposure can be determined in one analysis. Our MALDI method can provide critical evidence for the pesticide exposure at low BChE inhibition levels even down to 3%, not available with the Ellman method.
Collapse
Affiliation(s)
- Jinchun Sun
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0286, USA
| | | |
Collapse
|