1
|
Liu T, Lin S. Comprehensive characterization of the chemical constituents of Lianhua Qingwen capsule by ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. Heliyon 2024; 10:e27352. [PMID: 38496865 PMCID: PMC10944244 DOI: 10.1016/j.heliyon.2024.e27352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Lianhua Qingwen capsule is a famous traditional Chinese medicine (TCM) prescription that is widely used for the treatment of respiratory diseases in China. To facilitate in-depth and global characterization of the chemical constituents of Lianhua Qingwen capsule, a profiling method based on ultra-high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) was applied in both positive and negative ion modes for the comprehensive characterization of the chemical profiles of Lianhua Qingwen capsule. A total of 596 compounds were identified or tentatively characterized, including 137 flavonoids, 46 phenylpropanoids, 43 phenylethanoid glycosides, 145 terpenoids, 83 organic acids and their derivatives, 15 quinones, 39 alkaloids, 32 alcohol glycosides and 56 other compounds. Thus, this results widely extended and enriched the chemical constituents of Lianhua Qingwen capsule, which will provide comprehensive and valuable information for its quality control and further pharmacological study, facilitate understanding the effective substance and pharmacodynamic material basis, thereby providing a solid foundation for further development of the Lianhuaqingwen capsule.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Shu Lin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
2
|
Johnson JT, Carrick IJ, Eakins GS, McLuckey SA. Simultaneous Isolation of Nonadjacent m/ z Ions Using Mirror Switching in an Electrostatic Linear Ion Trap. Anal Chem 2019; 91:12574-12580. [PMID: 31497950 DOI: 10.1021/acs.analchem.9b03560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Simultaneous isolation of ions of disparate mass-to-charge (m/z) ratios is demonstrated via appropriately timed pulsing of entrance and exit ion mirrors in an electrostatic linear ion trap (ELIT) mass spectrometer. Manipulation of the voltages of the entrance and exit mirrors, referred to as "mirror switching", has been demonstrated as a method in which ions can be both captured and isolated. High resolution isolation (>35 000) was previously demonstrated by selective gating of trapping electrodes to avoid ion lapping while closely spaced ions could continue to separate [ Johnson et al. Anal. Chem. 2019 , 91 , 8789 ]. In this work, we demonstrate that advantage can be taken of the ion lapping phenomenon in an ELIT to enable the simultaneous isolation of ions of disparate m/z ratios using mirror switching. This process is demonstrated with minimal ion loss using isotopologues of three carborane compounds ranging in m/z from 320 to 1020. Simultaneous isolation is demonstrated with the isolation of two and three peaks in separate isotopic distributions as well as with the isolation of alternating isotopologues within the same distribution. Such simultaneous isolation experiments are particularly useful when conducting experiments in which a mass calibrant is needed or when multiplexing in a tandem MS workflow.
Collapse
Affiliation(s)
- Joshua T Johnson
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Ian J Carrick
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Gregory S Eakins
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
3
|
Metabolic profiling of Gegenqinlian decoction in rat plasma, urine, bile and feces after oral administration by ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:69-84. [DOI: 10.1016/j.jchromb.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/07/2017] [Accepted: 02/04/2018] [Indexed: 12/20/2022]
|
4
|
Xiao T, Guo Z, Sun B, Zhao Y. Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC-FT-ICR MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6211-6221. [PMID: 28699753 DOI: 10.1021/acs.jafc.7b02550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The polyphenolic profiles of four berries (blueberry, bilberry, mulberry, and cranberry) in China were investigated using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Thirty-nine polyphenols including 26 anthocyanins, 9 flavonoids, and 4 phenolic acids were identified accurately. Cyanidin aglycones are common in four berries, and malvidin aglycones are the main compounds found in bilberry and cranberry. The anthocyanin level in blueberry are the highest with 739.6 ± 17.14 mg/g DW and presented the strongest antioxidant capacity in DPPH, ABTS, FRAP, and ORAC assay. In α-glycosidase, the inhibition activity was in the following order: mulberry > bilberry > blueberry > cranberry. For the PTP1B inhibition assay, blueberry demonstrated the highest inhibitory effect with IC50 3.06 ± 0.02 μg/mL, followed by bilberry, mulberry, and cranberry. Molecular docking results showed that cyanidin aglycones had the highest inhibition activity to PTP1B.
Collapse
Affiliation(s)
- Ting Xiao
- Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Zhenghong Guo
- Bijie Municipal Hospital of Traditional Chinese Medicine , Bijie 551700, China
| | - Baoshan Sun
- Shenyang Pharmaceutical University , Shenyang 110016, China
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P. , Quinta da Almoinha, 2565-191 Dois Portos, Portugal
| | - Yuqing Zhao
- Shenyang Pharmaceutical University , Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| |
Collapse
|
5
|
Han F, Li Y, Ma L, Liu T, Wu Y, Xu R, Song A, Yin R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016; 160:183-193. [PMID: 27591603 DOI: 10.1016/j.talanta.2016.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
A rapid and sensitive UHPLC-FT-ICR MS/MS method was developed for the first time to analyze the extract of Rhodiola crenulata and the constituents absorbed into rat blood and brain after oral administration. Under the optimized conditions, a total of 64 chemical constituents were identified or tentatively characterized in vitro in 30min, and also 24 and 9 chemical constituents were detected in rat plasma and brain respectively, by comparing the retention time, accurate mass and/or MS/MS data of blank and dosed sample. The results indicated that the developed UHPLC-FT-ICR MS/MS method was suitable for detection and identifying the chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain, and it could be used as a powerful and reliable analytical strategy for rapid identification of chemical constituents in vitro and in vivo for other traditional Chinese herbal medicines (TCMs). Furthermore, the detected chemical constituents in rat brain could be speculated to be the pharmacodynamic substances of Rhodiola crenulata for Alzheimer's disease (AD) and it could also provide useful chemical information for further mass spectrometry imaging and bioactive substances research on Rhodiola crenulata.
Collapse
Affiliation(s)
- Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yanting Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Li Ma
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tianfeng Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yawen Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Rui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Aihua Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ran Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
6
|
Han F, Li Y, Mao X, Xu R, Yin R. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:363-368. [PMID: 27194521 DOI: 10.1002/jms.3764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/06/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yanting Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xinjuan Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ran Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
7
|
Wills RH, O'Connor PB. Structural characterization of actinomycin D using multiple ion isolation and electron induced dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:186-195. [PMID: 24297472 DOI: 10.1007/s13361-013-0774-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/13/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Non-ribosomal peptides are bio synthesized using a range of enzymes that allow much more structural variability compared with "normal" peptides. Deviations from the standard amino acid structures are common features of this diverse class of natural products, making sequencing a challenging process. FTICR mass spectrometry, specifically the complementary tandem mass spectrometry techniques collision activated dissociation (CAD) and electron induced dissociation (EID), have been used to reveal structural information on the non-ribosomal peptide actinomycin D. EID was also combined with a multiple ion isolation method in order to provide an accurate (sub-ppm) internal calibration for the product ions. EID has been found to produce more detailed, complementary data than CAD for actinomycin D, with additional information being provided through fragmentation of the sodium and lithium adducts. Furthermore, the use of isolation in the FTICR cell was found to increase product ion intensities relative to the precursor ion, enabling significantly more peaks to be detected than when using EID alone. The combination of multiple ion isolation with EID, therefore, enables an accurate internal calibration of the fragment ions to be made (average mass uncertainty of <0.3 ppm), as well as increasing the degree of fragmentation of the compound, resulting in detailed structural information.
Collapse
Affiliation(s)
- Rebecca H Wills
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | |
Collapse
|
8
|
Zhong W, Yang J, Yang X. Structural determination of an unknown degradation product in posaconazole drug product using CASI technology in a Fourier transform ion cyclotron resonance mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3650-3655. [PMID: 22095514 DOI: 10.1002/rcm.5249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
9
|
Pavlásková K, Strnadová M, Strohalm M, Havlíček V, Šulc M, Volný M. Time-Dependent Oxidation during Nano-Assisted Laser Desorption Ionization Mass Spectrometry: A Useful Tool for Structure Determination or a Source of Possible Confusion? Anal Chem 2011; 83:5661-5. [DOI: 10.1021/ac200801t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kateřina Pavlásková
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
| | - Marcela Strnadová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
| | - Martin Strohalm
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
| | - Vladimír Havlíček
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Miroslav Šulc
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
| | - Michael Volný
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20 Czech Republic
| |
Collapse
|
10
|
Gates PJ, Lopes NP, Pinto E, Colepicolo P, Cardozo KHM. The application of "double isolation" in Fourier transform ion cyclotron resonance sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry to remove labile isobaric impurities. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:481-484. [PMID: 22173541 DOI: 10.1255/ejms.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study reports the application of "double isolation" in sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry (SORI-CID-MS/MS) to remove radio- frequency (RF) fragment ions of very close mass isobaric ions (0.02 m/z apart). Analyses were performed with a fraction of a biological extract isolated from a macroalgae containing the mycosporine-like amino acid asterina-330. Direct isolation of the precursor ion by narrowing the isolation window proved ineffective as it impinged upon the required ion thus substantially reducing its intensity. By increasing the correlated sweep time, ejection efficiency of the isolation was improved, but caused the unwanted side-effect of RF fragmentation of labile ions. Finally, by skipping the ion activation step and performing a second isolation (in the MS(3) module) the RF fragments from the first isolation were removed leaving a very pure isolation of the required precursor ion and allowed a very clean CID fragmentation. We demonstrated that the m/z 272.1351 ion is derived from the loss of NH(3) from m/z 289.1620 isobaric impurity and is not related to asterina-330. This application represents a powerful tool to remove unwanted ions in the MS/MS spectrum that result from fragmentation of isobaric ions.
Collapse
Affiliation(s)
- Paul J Gates
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Zhang J, Ma J, Dou L, Wu S, Qian X, Xie H, Zhu Y, He F. Mass Measurement Errors of Fourier-Transform Mass Spectrometry (FTMS): Distribution, Recalibration, and Application. J Proteome Res 2008; 8:849-59. [DOI: 10.1021/pr8005588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiyang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Lei Dou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Hongwei Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China, and School of Mechanical Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
12
|
Johnson H, Wong SCC, Simpson DM, Beynon RJ, Gaskell SJ. Protein quantification by selective isolation and fragmentation of isotopic pairs using FT-ICR MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:973-977. [PMID: 18450473 DOI: 10.1016/j.jasms.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 05/26/2023]
Abstract
Isolation of tryptic peptide ions, along with their differentially labeled analogs derived from an artificial QconCAT protein, is performed using multiple correlated harmonic excitation fields in an FT-ICR cell. Simultaneous fragmentation of the isolated unlabeled and labeled peptide pairs using IRMPD yields specific y-series fragment ions useful for quantification. The mass increment attributed to stable isotope labeling at the C-terminus is maintained in the C-terminal fragment ions, providing multiple measurements of labeled/unlabeled intensity ratios during highly selective detection. The utility of this approach has been demonstrated in the absolute quantification of components of an unfractionated chicken muscle protein mixture.
Collapse
Affiliation(s)
- Hannah Johnson
- Michael Barber Centre for Mass Spectrometry, School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Abstract
Recent advances in the use of liquid chromatography-mass spectrometry for the study of metabolomics are reviewed. Sample preparations of biofluids and practical aspects of ultra-high pressure liquid chromatography are discussed. Applicability of different kinds of mass spectrometers for metabolite profiling is described. New tools-ion mobility spectroscopy and automated chip-based nanoelectrospray system with potentials to be applied in the metabolomics analysis are described.
Collapse
Affiliation(s)
- Chiun-Gung Juo
- Molecular Medicine Research Center, Chang Gung University, Kwei-san, Tao-yuan, Taiwan
| | | | | |
Collapse
|
14
|
Affiliation(s)
- Masaru KATO
- Center for NanoBio Integration, Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
15
|
Feng X, Siegel MM. FTICR-MS applications for the structure determination of natural products. Anal Bioanal Chem 2007; 389:1341-63. [PMID: 17701030 DOI: 10.1007/s00216-007-1468-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Natural products are a source of unique chemical entities with specific biological activities of great value to the pharmaceutical industry. However, the determination of unknown structures is usually time consuming and often becomes a bottleneck in the effort to develop natural products into effective drugs. The high-performance features of high magnetic field FTMS have greatly alleviated the structural elucidation bottleneck to meet increasingly shorter discovery timelines for drug candidates based on natural products. The high-performance features of high field FTMS include unsurpassed mass measurement accuracy for elemental formula determination, ultra-high mass resolution for component separation, the ability to perform multiple levels of tandem mass spectrometry for structural elucidation, and moderate sensitivity for limited supply of isolates. A number of applications utilizing these properties of FTMS have been reported recently for the structural elucidation of novel natural product structures originating from terrestrial and marine microorganisms. In this review, FTMS methods and their applications for the structural elucidation and characterization of natural products will be reviewed.
Collapse
Affiliation(s)
- Xidong Feng
- Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA.
| | | |
Collapse
|
16
|
Pingitore F, Tang Y, Kruppa GH, Keasling JD. Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 2007; 79:2483-90. [PMID: 17305312 DOI: 10.1021/ac061906b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluxes through known metabolic pathways and the presence of novel metabolic reactions are often determined by feeding isotopically labeled substrate to an organism and then determining the isotopomer distribution in amino acids in proteins. However, commonly used techniques to measure the isotopomer distributions require derivatization prior to analysis (gas chromatography/mass spectrometry (GC/MS)) or large sample sizes (nuclear magnetic resonance (NMR) spectroscopy). Here, we demonstrate the use of Fourier transform-ion cyclotron resonance mass spectrometry with direct infusion via electrospray ionization to rapidly measure the amino acid isotopomer distribution in a biomass hydrolysate of the soil bacterium Desulfovibrio vulgaris Hildenborough. By applying high front-end resolution for the precursor ion selection followed by sustained off-resonance irradiation collision-induced dissociation, it was possible to determine exactly and unambiguously the specific locations of the labeled atoms in the amino acids, which usually requires a combination of 2-D 13C NMR spectroscopy and GC/MS. This method should be generally applicable to all biomass samples and will allow more accurate determination of metabolic fluxes with less work and less sample.
Collapse
Affiliation(s)
- Francesco Pingitore
- Virtual Institute of Microbial Stress and Survival, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
17
|
McConnell O, Bach A, Balibar C, Byrne N, Cai Y, Carter G, Chlenov M, Di L, Fan K, Goljer I, He Y, Herold D, Kagan M, Kerns E, Koehn F, Kraml C, Marathias V, Marquez B, McDonald L, Nogle L, Petucci C, Schlingmann G, Tawa G, Tischler M, Williamson RT, Sutherland A, Watts W, Young M, Zhang MY, Zhang Y, Zhou D, Ho D. Enantiomeric separation and determination of absolute stereochemistry of asymmetric molecules in drug discovery—Building chiral technology toolboxes. Chirality 2007; 19:658-82. [PMID: 17390370 DOI: 10.1002/chir.20399] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The application of Chiral Technology, or the (extensive) use of techniques or tools for the determination of absolute stereochemistry and the enantiomeric or chiral separation of racemic small molecule potential lead compounds, has been critical to successfully discovering and developing chiral drugs in the pharmaceutical industry. This has been due to the rapid increase over the past 10-15 years in potential drug candidates containing one or more asymmetric centers. Based on the experiences of one pharmaceutical company, a summary of the establishment of a Chiral Technology toolbox, including the implementation of known tools as well as the design, development, and implementation of new Chiral Technology tools, is provided.
Collapse
Affiliation(s)
- Oliver McConnell
- Wyeth Research, Chemical and Screening Sciences, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Poulsen SA. Direct screening of a dynamic combinatorial library using mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1074-1080. [PMID: 16735129 DOI: 10.1016/j.jasms.2006.03.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 05/09/2023]
Abstract
A dynamic combinatorial library (DCL) screening approach is described that permits direct identification of the effective (from ineffective) combination of building blocks in the equilibrating DCL. The approach uses Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) together with sustained off-resonance irradiation collision activated dissociation (SORI-CAD) to detect noncovalent protein-DCL ligand complexes under native conditions. It was shown that in a single, rapid experiment one could concurrently identify all the ligands of interest from the DCL against a background of inactive DCL ligands while still in the presence of the target protein. This result has demonstrated that mass spectrometry may provide a fast preliminary screening approach to identify DCL candidates for later verification with more traditional but time-consuming analysis. The MS/MS enables DCL mixtures to be effectively deconvoluted without the need for either chromatography, synthesis of DCL sub-libraries, conversion of the DCL to a static library, or disruption of the protein-ligand complexes before analysis--all typically necessary for the current screening method for DCLs.
Collapse
Affiliation(s)
- Sally-Ann Poulsen
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia.
| |
Collapse
|
19
|
Stemmler EA, Provencher HL, Guiney ME, Gardner NP, Dickinson PS. Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry for the Identification of Orcokinin Neuropeptides in Crustaceans Using Metastable Decay and Sustained Off-Resonance Irradiation. Anal Chem 2005; 77:3594-606. [PMID: 15924394 DOI: 10.1021/ac0502347] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuum UV matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry (FTMS) has been applied to the direct analysis of crustacean neuronal tissues using in-cell accumulation techniques to improve sensitivity. In an extension of previous work by Li and co-workers (Kutz, K. K.; Schmidt, J. J.; Li, L. Anal. Chem. 2004, 76, 5630-5640), and with a focus on the Maine lobster, Homarus americanus, we report that many peaks appearing in direct tissue spectra from crustaceans result from the metastable decay of aspartate-containing neuropeptides with localized protonation sites. We report on mass spectral characteristics of crustacean neuropeptides under MALDI-FTMS conditions and show how fragments formed by Asp-Xxx cleavages can be used to advantage for the identification of orcokinin peptides, a ubiquitous family of crustacean neuropeptides with a highly conserved N-terminus sequence. We show that predicted fragment ion fingerprints (FIFs) can be used to screen internally calibrated direct tissue spectra to provide high-confidence identification of previously identified orcokinin peptides. We use FIFs, identified based upon characteristic neutral losses, to screen for new members of the orcokinin family. Sustained off-resonance irradiation of y-series fragment ions is used to sequence the variable C-terminus. We apply these techniques to the analysis of CoG tissues from Cancer borealis and Panulirus interruptus and show that orcokinins in P. interruptus were misidentified in a previous MALDI-TOF study.
Collapse
|
20
|
Kaiser NK, Anderson GA, Bruce JE. Improved mass accuracy for tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:463-470. [PMID: 15792715 DOI: 10.1016/j.jasms.2004.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 05/24/2023]
Abstract
With the emergence of top-down proteomics, the ability to achieve high mass measurement accuracy on tandem MS/MS data will be beneficial for protein identification and characterization. (FT-ICR) Fourier transform ion cyclotron resonance mass spectrometers are the ideal instruments to perform these experiments with their ability to provide high resolution and mass accuracy. A major limitation to mass measurement accuracy in FT-ICR instruments arises from the occurrence of space charge effects. These space charge effects shift the cyclotron frequency of the ions, which compromises the mass measurement accuracy. While several methods have been developed that correct these space charge effects, they have limitations when applied to MS/MS experiments. It has already been shown that additional information inherent in electrospray spectra can be used for improved mass measurement accuracy with the use of a computer algorithm called DeCAL (deconvolution of Coulombic affected linearity). This paper highlights a new application of the strategy for improved mass accuracy in tandem mass analysis. The results show a significant improvement in mass measurement accuracy on complex electron capture dissociation spectra of proteins. We also demonstrate how the improvement in mass accuracy can increase the confidence in protein identification from the fragment masses of proteins acquired in MS/MS experiments.
Collapse
Affiliation(s)
- Nathan K Kaiser
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | | | | |
Collapse
|
21
|
Laskin J, Futrell JH. Activation of large ions in FT-ICR mass spectrometry. MASS SPECTROMETRY REVIEWS 2005; 24:135-167. [PMID: 15389858 DOI: 10.1002/mas.20012] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition--the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)--the simplest and most robust means of introducing the multiple collision activation process--is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules can be effected using IR or UV/vis lasers and generally requires tuning lasers to specific wavelengths and/or utilizing high flux, multiphoton excitation to match energy levels in the ion. Photodissociation of complex ions is much easier to accomplish from the basic physics perspective. The quasi-continuum of vibrational states at room temperature makes it very easy to pump relatively large amounts of energy into complex ions and infrared multiphoton dissociation (IRMPD) is a powerful technique for characterizing large ions, particularly biologically relevant molecules. Since both SORI-CID and IRMPD are slow activation methods they have many common characteristics. They are also distinctly different because SORI-CID is intrinsically selective (only ions that have a cyclotron frequency close to the frequency of the excitation field are excited), whereas IRMPD is not (all ions that reside on the optical path of the laser are excited). There are advantages and disadvantages to each technique and in many applications they complement each other. In contrast with these slow activation methods, the less widely appreciated activation method of surface induced dissociation (SID) appears to offer unique advantages because excitation in SID occurs on a sub-picosecond time scale, instantaneously relative to the observation time of any mass spectrometer. Internal energy deposition is quite efficient and readily adjusted by altering the kinetic energy of the impacting ion. The shattering transition--instantaneous decomposition of the ion on the surface--observed at high collision energies enables access to dissociation channels that are not accessible using SORI-CID or IRMPD. Finally, we discuss some approaches for tailoring the surface to achieve particular aims in SID.
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, P.O. Box 999 (K8-88), Richland, Washington 99352, USA.
| | | |
Collapse
|
22
|
Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. MASS SPECTROMETRY REVIEWS 2005; 24:168-200. [PMID: 15389855 DOI: 10.1002/mas.20015] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review provides a broad overview of recent Fourier transform ion cyclotron resonance (FTICR) applications and technological developments relevant to the field of proteomics. Both the "bottom up" (peptide level) and "top down" (intact protein level) approaches are discussed and illustrated with examples. "Bottom up" topics include peptide fragmentation, the accurate mass and time (AMT) tag approach and dynamic range extension technology, aspects of quantitative proteomics measurements, post-translational modifications, and developments in FTICR operation software focused on peptide and protein identification. Topics related to the "top down" approach include various aspects of high mass measurements, protein tandem mass spectrometry, methods for the study of protein conformations, and protein complexes as well as advanced technologies that may become of practical utility in the coming years. Finally, early examples of the integration of both FTICR approaches to biomedical proteomics applications are presented, along with an outlook for future directions.
Collapse
Affiliation(s)
- Bogdan Bogdanov
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
23
|
Brown SC, Kruppa G, Dasseux JL. Metabolomics applications of FT-ICR mass spectrometry. MASS SPECTROMETRY REVIEWS 2005; 24:223-231. [PMID: 15389859 DOI: 10.1002/mas.20011] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metabolomics, also known as Metabolic Profiling, is an emerging discipline under the umbrella concept of systems biology. The goal of metabolomics is to know and understand the concentrations and fluxes of endogenous metabolites within a living biological system under study. General tools are being developed for the rapid measurement of many metabolites in a single experiment, most of which are mass spectrometric methods. FT-ICR has unique advantages, as a mass spectrometric method, in this regard. Applications of FT-ICR to metabolomics analyses will be discussed and reviewed in the context of the single publication currently available.
Collapse
Affiliation(s)
- Stephen C Brown
- Esperion Therapeutics, Inc., Ann Arbor, Michigan 48108, USA.
| | | | | |
Collapse
|
24
|
Cristoni S, Bernardi LR. Development of new methodologies for the mass spectrometry study of bioorganic macromolecules. MASS SPECTROMETRY REVIEWS 2003; 22:369-406. [PMID: 14528493 DOI: 10.1002/mas.10062] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years, mass spectrometry has been increasingly used for the analysis of various macromolecules of biological, biomedical, and biochemical interest. This increase has been made possible by two key developments: the advent of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) sources. The two new techniques produce a significant increase in mass range and in sensitivity that led to the development of new applications and of new analyzer designs, software, and robotics. This review, apart from the description of the status of mass spectrometry in the analysis of bioorganic macromolecules, is mainly devoted to the illustration of the more recent promising techniques and on their possible future evolution.
Collapse
Affiliation(s)
- Simone Cristoni
- Università degli Studi di Milano, Centro Interdisciplinare Studi Bio-molecolari e Applicazioni Industriali CISI, Via Fratelli Cervi 93, 20090 Segrate Milano, Italy.
| | | |
Collapse
|
25
|
|
26
|
McDonald LA, Barbieri LR, Carter GT, Kruppa G, Feng X, Lotvin JA, Siegel MM. FTMS structure elucidation of natural products: application to muraymycin antibiotics using ESI multi-CHEF SORI-CID FTMS(n), the top-down/bottom-up approach, and HPLC ESI capillary-skimmer CID FTMS. Anal Chem 2003; 75:2730-9. [PMID: 12948143 DOI: 10.1021/ac0264731] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular formulas for the structures and substructures of muraymycin antibiotics A1 (C52H90N14O19, MW 1214) and B1 (C49H83N11O18, MW 1113) were determined using electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS). The muraymycin A1 and B1 structures were elucidated by utilizing capillary-skimmer fragmentation with up to five stages of mass spectrometry (MS5). Multi-CHEF, a multiple ion isolation method, was used at each stage of MS(n) to isolate a parent ion and up to four reference ions, for exact-mass calibration. The parent ions were fragmented by SORI-CID and the product ions internally calibrated with average absolute mass errors less than 1 ppm at each stage in the fragmentation processes. Using the top-down/bottom-up approach, the molecular formulas for the antibiotics were determined by summing the elemental formulas of the neutral losses, obtained by measuring the mass differences (<500 Da) between the genetically related sequential parent ion masses in the MS(n) spectra, with the unique elemental formula of the lowest parent ion mass (<500 Da). The structures of 12 additional compounds in the muraymycin complex were elucidated using HPLC ESI capillary-skimmer CID FTMS by correlating their fragmentation patterns with those of muraymycins A1 and B1. Sequential neutral losses of an aminosugar, a valine, a uridine, and an ester fatty acid from the muraymycin parent ions provided diagnostic fragments for characterization.
Collapse
|
27
|
Kruppa GH, Schoeniger J, Young MM. A top down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:155-162. [PMID: 12512095 DOI: 10.1002/rcm.885] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mass spectrometric analysis of wild-type proteins that have been covalently modified by bifunctional cross-linking reagents and then digested proteolytically can be used to obtain low-resolution distance constraints, which can be useful for protein structure determination. Limitations of this approach include time-consuming separation steps, such as the separation of internally cross-linked protein monomers from covalent dimers, and a susceptibility to artifacts due to low levels of natural and man-made peptide modifications that can be mistaken for cross-linked species. The results presented here show that when a crude cross-linked protein mixture is injected into an electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) instrument, the cross-link positions can be localized by fragmentation and mass spectrometry on the 'gas-phase purified' singly internally cross-linked monomer. Our results show that reaction of ubiquitin with the homobifunctional lysine-lysine cross-linking reagent dissuccinimidyl suberate (DSS) resulted in two cross-links consistent with the known ubiquitin tertiary structure (K6-K11 and K48-K63). Because no protein or peptide chemistry steps are needed, other than the initial cross-linking, this new top down approach appears well suited for high-throughput experiments with multiple cross-linkers and reaction conditions. Published in 2002 by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gary H Kruppa
- Sandia National Laboratories, Livermore, CA 94551-0969, USA.
| | | | | |
Collapse
|
28
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1298-1307. [PMID: 12489092 DOI: 10.1002/jms.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|