1
|
Plavchak CL, Werner AZ, Betz E, Salvachúa D, Beckham GT, Kim Ratanathanawongs Williams S. Determination of particle number concentration for biological particles using AF4-MALS: Dependencies on light scattering model and refractive index. J Chromatogr A 2024; 1737:465460. [PMID: 39476775 DOI: 10.1016/j.chroma.2024.465460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/10/2024]
Abstract
Determining accurate counts and size distributions for biological particles (bioparticles) is crucial in wide-ranging fields, but current methods to this end are susceptible to bias from polydispersity in size. This bias can be mitigated by incorporating a separation step prior to characterization. For this reason, asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS) has become an important platform for determining particle size. AF4-MALS has also been increasingly used to report particle concentration, particularly for complex biological particles, yet the impact of light scattering models and particle refractive indices (RI) have not been quantitatively evaluated. Here, we develop an analysis workflow using AF4-MALS to simultaneously separate and determine particles sizes and concentrations. The impacts of the MALS particle counting model used to process data and the chosen RI value(s) on particle counts are systematically assessed for polystyrene latex (PSL) particles and bacterial outer membrane vesicles (OMVs) in the 20-500 nm size range. Across spherical models, PSL and OMV particle counts varied up to 13 % or 200 %, respectively. For the coated-sphere model used in the analysis of OMV samples, the sphere RI value greatly impacts particle counts. As the sphere RI value approaches the RI of the suspending medium, the model becomes increasingly sensitive to the light scattering signal-to-noise ratio ultimately causing erroneous particle counts. Overall, this work establishes the importance of selecting appropriate MALS models and RI values for bioparticles to obtain accurate counts and provides an AF4-MALS method to separate, enumerate, and size polydisperse bioparticles.
Collapse
Affiliation(s)
- Christine L Plavchak
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, United States
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Elizabeth Betz
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, United States
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | | |
Collapse
|
2
|
Brenjo L, Oklješa A, Tomšič M, Barta Holló B, Nešić J, Tóth E, Podlipnik Č. Polymethylenetetrazole: Synthesis, Characterization, and Energetic Properties. Molecules 2024; 29:3389. [PMID: 39064967 PMCID: PMC11280064 DOI: 10.3390/molecules29143389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The tetrazole moiety remains one of the most interesting scaffolds in the development of new high-energy density materials (HEDMs) because of its desired characteristics, such as high nitrogen content and heat of formation (HOF). The combination of several heterocycles with high HOF seems to be a promising strategy for obtaining energetic materials with superior properties. Herein, we report the synthesis and characterization of a tetrazole polymer, polymethylenetetrazole (PMT), as a potential HEDM. The compound was characterized using NMR, IR, and Raman spectroscopy. Its weight average molecular mass was obtained by static light scattering (SLS), and its physical properties by powder XRD analysis. The density, sensitivity to friction (FS), and impact (IS) of the compound were determined as well. The results of the thermal and energetic properties of PMT suggest that this polymer could be an insensitive explosive.
Collapse
Affiliation(s)
- Ljubica Brenjo
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (A.O.); (B.B.H.); (E.T.)
| | - Aleksandar Oklješa
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (A.O.); (B.B.H.); (E.T.)
| | - Matija Tomšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Berta Barta Holló
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (A.O.); (B.B.H.); (E.T.)
| | - Jovica Nešić
- Military Technical Institute (VTI), Ratka Resanovića 1, 11132 Belgrade, Serbia;
| | - Elvira Tóth
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (A.O.); (B.B.H.); (E.T.)
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Urbes A, Morel MH, Ramos L, Violleau F, Banc A. Delicate Analysis of Interacting Proteins and Their Assemblies by Flow Field-Flow Fractionation Techniques. Biomacromolecules 2024; 25:3976-3989. [PMID: 38829254 DOI: 10.1021/acs.biomac.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We study the efficiency of several asymmetrical flow field-flow fractionation (AF4) techniques to investigate self-associating wheat gluten proteins. We compare the use of a denaturing buffer including sodium dodecyl sulfate (SDS) and a mild chaotropic solvent, water/ethanol, as the eluent, on a model gluten sample. Through a thorough analysis of the data obtained from coupled light scattering detectors and with the identification of molecular composition of the eluted protein, we evidence coelution events in several conditions. We show that the focus step used in conventional AF4 with the SDS buffer leads to the formation of aggregates that coelute with monomeric proteins. By contrast, a frit-inlet device enables the fractionation of individual wheat proteins in the SDS buffer. Interestingly conventional AF4, using water/ethanol as eluent, is an effective method for fractionating gluten proteins and their complex dynamic assemblies, which involve weak forces and are composed of both monomeric and polymeric proteins.
Collapse
Affiliation(s)
- Aurélien Urbes
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Laboratoire de Chimie Agro-industrielle LCA, Université de Toulouse, INRAE, INP-PURPAN, 31030 Toulouse, France
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 31076 Toulouse, France
| | - Marie-Hélène Morel
- UMR IATE, Université de Montpellier, INRAE, Montpellier SupAgro, 2 pl. Pierre Viala, 34060 Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Frédéric Violleau
- Laboratoire de Chimie Agro-industrielle LCA, Université de Toulouse, INRAE, INP-PURPAN, 31030 Toulouse, France
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 31076 Toulouse, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
4
|
Wang WW, Yi GS, Zhou H, Zhao YX, Wang QS, He JH, Yu F, Xiao X, Liu XP. The structure of the archaeal nuclease RecJ2 implicates its catalytic mechanism and inability to interact with GINS. J Biol Chem 2024; 300:107379. [PMID: 38762184 PMCID: PMC11193018 DOI: 10.1016/j.jbc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Xuan Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China; The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
O'Connell A, González-Espinosa Y, Goycoolea FM, Schuetz P, Mattsson J. Characterisation of locust bean gum with asymmetric flow field-flow fractionation (AF4) and light scattering. Carbohydr Polym 2023; 322:121286. [PMID: 37839826 DOI: 10.1016/j.carbpol.2023.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 10/17/2023]
Abstract
We present a detailed characterisation of locust bean gum (LBG), an industrially significant galactomannan, utilising asymmetric flow field-flow fractionation (AF4) and light scattering. Molecular weight and size determination of galactomannans is complicated by their tendency to aggregate, even in dilute solutions; AF4 allows us to confirm the presence of aggregates, separate these from well-dispersed polymer, and characterise both fractions. For the dispersed polymer, we find Mw=9.2×105 g mol-1 and Rg,z=82.1 nm; the distribution follows Flory scaling (Rg∼Mν) with ν∼ 0.63, indicating good solvent conditions. The aggregate fraction exhibited radii of up to 1000 nm and masses of up to 3×1010 g mol-1. Furthermore, we demonstrate how both fractions are influenced by changes to filtration procedure and solvent conditions. Notably, a 200 nm nylon membrane effectively removes the aggregated fraction; we present a concentration-dependent investigation of solutions following this protocol, using static and dynamic light scattering, which reveals additional weak aggregation in these unfractionated samples. Overall, we demonstrate that AF4 is highly suited to LBG characterisation, providing structural information for both well-dispersed and aggregated fractions, and expect the methods employed to apply similarly to other galactomannans and associating polymer systems.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Johan Mattsson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Kariuki M, Rho JY, Hall SCL, Perrier S. Investigating the Impact of Hydrophobic Polymer Segments on the Self-Assembly Behavior of Supramolecular Cyclic Peptide Systems via Asymmetric-Flow Field Flow Fractionation. Macromolecules 2023; 56:6618-6632. [PMID: 37720562 PMCID: PMC10501196 DOI: 10.1021/acs.macromol.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/08/2023] [Indexed: 09/19/2023]
Abstract
The present study examines the behavior of cyclic peptide polymer conjugates that have been designed to combine their self-assembling ability via H-bonding with the properties of amphiphilic diblock copolymers. Using a combination of asymmetric flow-field flow fractionation (AF4) and small-angle neutron scattering (SANS), we have uncovered unique insight based on the population of structures established at a 24 h equilibrium profile. Our results determine that by introducing a small quantity of hydrophobicity into the conjugated polymer corona, the resulting nanotube structures exhibit low unimer dissociation which signifies enhanced stability. Furthermore, as the hydrophobicity of the polymer corona is increased, the elongation of the nanotubes is observed due to an increase in the association of unimers. This encompasses not only the H-bonding of unimers into nanotubes but also the self-assembly of single nanotubes into segmented-nanotube structures with high aspect ratios. However, this influence relies on a subtle balance between the hydrophobicity and hydrophilicity of the polymer corona. This balance is proposed to determine the solvent entropic penalty of hydrating the system, whereby the cost scales with the hydrophobic quantity. Consequently, it has been suggested that at a critical hydrophobic quantity, the solvation penalty becomes high enough such that the self-assembly of the system deviates from ordered hydrogen bonding. The association behavior is instead dominated by the hydrophobic effect which results in the undesirable formation of disordered aggregates.
Collapse
Affiliation(s)
- Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen C. L. Hall
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0QX, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Qu H, Smith WC, Feng X, Wang J, Pinto J, Xu X, Faustino PJ. Asymmetrical Flow Field Flow Fractionation for Molar Mass Characterization of Polyethylene Oxide in Abuse-Deterrent Formulations. J Chromatogr A 2023; 1705:464186. [PMID: 37453175 DOI: 10.1016/j.chroma.2023.464186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
High molar mass polyethylene oxide (HM-PEO) is commonly used to enhance the mechanical strength of solid oral opioid drug products to deter abuse. Because the properties of PEO depend on molar mass distribution, accurately determining the molar mass distribution is a necessary part of understanding PEO's role in abuse-deterrent formulations (ADF). In this study, an asymmetrical flow field-flow fractionation (AF4) analytical procedure was developed to characterize PEO polymers with nominal molar masses of 1, 4 or 7 MDa as well as those from in-house prepared placebo ADF. The placebo ADF were manufactured using direct compress or hot-melt-extrusion methods, and subjected to physical manipulation, such as heating and grinding before measurement by AF4 were performed. The molar mass distribution characterized by AF4 revealed that PEO was sensitive to thermal stress, exhibiting decreased molar mass with increased heat exposure. The optimized AF4 method was deemed suitable for characterizing HM-PEO, offering adequate dynamic separation range for PEO with molar mass from 100 kDa to approximately 10 MDa.
Collapse
Affiliation(s)
- Haiou Qu
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993.
| | - William C Smith
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Xin Feng
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jiang Wang
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Julia Pinto
- Division of New Drug Product II, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Xiaoming Xu
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Patrick J Faustino
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993.
| |
Collapse
|
8
|
Wang X, Gao W, Liao B, Fatehi P. In Situ Copolymerization Studies of Lignin, Acrylamide, and Diallyldimethylammonium Chloride: Mechanism, Kinetics, and Rheology. ACS OMEGA 2023; 8:27156-27169. [PMID: 37546615 PMCID: PMC10398705 DOI: 10.1021/acsomega.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
In this work, free-radical polymerization of kraft lignin, acrylamide (AM), and diallyldimethylammonium chloride (DADMAC) was studied in detail. In situ nuclear magnetic resonance (NMR), rheological analysis, and particle size techniques were conducted to understand the physicochemical characteristics of this copolymerization system. The copolymerization of lignin-AM and lignin-DADMAC had activation energies of 65.7 and 69.3 kJ/mol, respectively, and followed the first-order kinetic model, which was monitored by in situ H1 NMR results. The highest conversions of AM and DADMAC were 96 and 68%, respectively, in the copolymerization of lignin, AM, and DADMAC at the molar ratio of 5.5:2.4:1, pH 2 and 85 °C. The results illustrated that the participation of AM in the reaction was essential for polymerizing DADMAC to lignin due to less steric hindrance of AM than DADMAC facilitating its bridging performance. The monomer conversion ratio and dynamic rheology of the reaction system indicated that lignin acted as an inhibitor in the copolymerization reaction. The particle size analysis of the reaction mixtures reflected the alteration in the size of particles from coarse particles (>300 μm) to fine particles (<10 and 10-50 μm) and suspension to colloidal systems when the reaction progressed. The oscillation study of the reaction media confirmed the gradual increase in the viscosity of the reaction media, illustrating the crosslinking of lignin, AM, and DADMAC.
Collapse
|
9
|
Pyrolysis activation energy of cellulosic fibres investigated by a method derived from the first order global model. Carbohydr Polym 2023; 305:120518. [PMID: 36737212 DOI: 10.1016/j.carbpol.2022.120518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The pyrolysis kinetics of cellulosic fibres, a natural cotton yarn (NCY) and a mercerized cotton yarn (MCY), has been explored with a modified first order global analysis method (FOG), via a series of non-isothermal experiments, using thermogravimetric analysis (TGA). The modified FOG analysis routine was developed to overcome discrepancy in heating rate and the difference between exact results and approximations in integrals. The intrinsic pyrolysis activation energy, with temperature range tending to zero, was found to be independent of heating rate and approximation used, giving average values of 153 ± 2 kJ/mol for NCY and 192 ± 7 kJ/mol for MCY. This proves the applicability of the reported analysis routine under the conducted TGA measurements. The reasons for different values were hypothesized to be the difference in chemical composition and crystalline structure. The findings provide a new approach in the investigation on pyrolysis kinetics of biomass and factors impacting their pyrolytic behaviour.
Collapse
|
10
|
Shakiba S, Shariati S, Wu H, Astete CE, Cueto R, Fini EH, Rodrigues DF, Sabliov CM, Louie SM. Distinguishing nanoparticle drug release mechanisms by asymmetric flow field-flow fractionation. J Control Release 2022; 352:485-496. [PMID: 36280154 DOI: 10.1016/j.jconrel.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Saba Shariati
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Haoran Wu
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
11
|
Zhou X, Lei L, Zeng Y, Lu X, Liang F, Zhang L, Lin G. High salinity effects on the depletion attraction in colloid-polymer mixtures. J Colloid Interface Sci 2022; 631:155-164. [DOI: 10.1016/j.jcis.2022.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
12
|
Gidlöf Z, Pedersen BL, Nilsson L, Teleman A, Wahlgren M, Millqvist-Fureby A. Utilising phase diagram to understand barley starch microsphere preparation in an aqueous two-phase system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fuentes C, Choi J, Wahlgren M, Nilsson L. Charge and zeta-potential distribution in starch modified with octenyl succininc anhydride (OSA) determined using electrical asymmetrical flow field-flow fractionation (EAF4). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Asymmetrical flow field-flow fractionation combined with liquid chromatography enables rapid, quantitative, and structurally informative detection of resistant starch. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Deng JZ, Lin J, Chen M, Lancaster C, Zhuang P. Characterization of High Molecular Weight Pneumococcal Conjugate by SEC-MALS and AF4-MALS. Polymers (Basel) 2022; 14:3769. [PMID: 36145915 PMCID: PMC9501040 DOI: 10.3390/polym14183769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Infections by Streptococcus pneumoniae can cause serious pneumococcal diseases and other medical complications among patients. Polysaccharide-based vaccines have been successfully developed as prophylactic agents against such deadly bacterial infections. In the 1980s, PNEUMOVAX® 23 were introduced as the first pneumococcal polysaccharide vaccines (PPSV). Later, pneumococcal polysaccharides were conjugated to a carrier protein to improve immune responses. Pneumococcal conjugate vaccines (PCV) such as PREVNAR® and VAXNEUVANCE™ have been developed. Of the more than 90 pneumococcal bacteria serotypes, serotype 1 (ST-1) and serotype 4 (ST-4) are the two main types that cause invasive pneumococcal diseases (IPD) that could lead to morbidity and mortality. Development of a novel multi-valent PCV against these serotypes requires extensive biophysical and biochemical characterizations of each monovalent conjugate (MVC) in the vaccine. To understand and characterize these high molecular weight (Mw) polysaccharide protein conjugates, we employed the multi-angle light scattering (MALS) technique coupled with size-exclusion chromatography (SEC) separation and asymmetrical flow field flow fractionation (AF4). MALS analysis of MVCs from the two orthogonal separation mechanisms helps shed light on the heterogeneity in conformation and aggregation states of each conjugate.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jason Lin
- Wyatt Technology Corporation, Goleta, CA 93117, USA
| | | | - Catherine Lancaster
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ping Zhuang
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
16
|
Parker E, Haberichter SL, Lollar P. Subunit Flexibility of Multimeric von Willebrand Factor/Factor VIII Complexes. ACS OMEGA 2022; 7:31183-31196. [PMID: 36092565 PMCID: PMC9453814 DOI: 10.1021/acsomega.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that participates in platelet adhesion and aggregation and serves as a carrier for blood coagulation factor VIII (fVIII). Plasma VWF consists of a population of multimers that range in molecular weight from ∼ 0.55 MDa to greater than 10 MDa. The VWF multimer consists of a variable number of concatenated disulfide-linked ∼275 kDa subunits. We fractionated plasma-derived human VWF/fVIII complexes by size-exclusion chromatography at a pH of 7.4 and subjected them to analysis by sodium dodecyl sulfate agarose gel electrophoresis, sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), and multi-angle light scattering (MALS). Weight-average molecular weights, M w, were independently measured by MALS and by application of the Svedberg equation to SV AUC and DLS measurements. Estimates of the Mark-Houwink-Kuhn-Sakurada exponents , αs, and αD describing the functional relationship between the z-average radius of gyration, , weight-average sedimentation coefficient, s w, z-average diffusion coefficient, D z , and M w were consistent with a random coil conformation of the VWF multimer. Ratios of to the z-average hydrodynamic radius, , estimated by DLS, were calculated across an M w range from 2 to 5 MDa. When compared to values calculated for a semi-flexible, wormlike chain, these ratios were consistent with a contour length over 1000-fold greater than the persistence length. These results indicate a high degree of flexibility between domains of the VWF subunit.
Collapse
Affiliation(s)
- Ernest
T. Parker
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| | - Sandra L. Haberichter
- Diagnostic
Laboratories and Blood Research Institute, Versiti, Milwaukee, Wisconsin 53201-2178, United States
- Pediatric
Hematology/Oncology, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226, United States
- Children’s
Research Institute, Children’s Hospital
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Pete Lollar
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| |
Collapse
|
17
|
Mhanna R, Gao Y, Van Tol I, Springer E, Wu N, Marr DWM. Chain Assembly Kinetics from Magnetic Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5730-5737. [PMID: 35486385 DOI: 10.1021/acs.langmuir.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues.
Collapse
Affiliation(s)
- Ramona Mhanna
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Isaac Van Tol
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ela Springer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
18
|
Polyethylenimine/cGAMP Nanocomplexes for STING-Mediated Cancer Immunotherapy: Formulation and Characterization Using Orthogonal Techniques. Processes (Basel) 2022. [DOI: 10.3390/pr10050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) has lately been extensively investigated in cancer immunotherapy due its activation of the innate immunity stimulation of interferon genes (STING) pathway within antigen presenting cells (APC) leading to an increase in tumor specific CD8+ T cells. As negatively charged dinucleotides are prone to enzymatic degradation before being taken up by APC, there is a need for an appropriate carrier. Therefore, polyethylenimine (PEI), a gold standard for oligonucleotide delivery, was selected. Molecular weight, type of PEI and N/P ratio between PEI/cGAMP were investigated in terms of toxicity, efficacy and physicochemical properties of the nanocomplexes (NCs) such as size, zeta potential and shape. Due to lack of nano-medicine regulations and the need for a case-by case assessment, here we examine these parameters by several orthogonal methods, such as dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and online asymmetric flow field flow fractionation (AF4) connected to DLS. N/P ratio of 2/1 ratio using linear PEI 25 kDa resulted in larger, positively charged particles of elongated shape, which were shown to have the best toxicity/efficacy ratio among different PEIs and ratios tested.
Collapse
|
19
|
Schiessl S, Kucukpinar E, Cros S, Miesbauer O, Langowski HC, Eisner P. Nanocomposite Coatings Based on Polyvinyl Alcohol and Montmorillonite for High-Barrier Food Packaging. Front Nutr 2022; 9:790157. [PMID: 35340548 PMCID: PMC8948434 DOI: 10.3389/fnut.2022.790157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Materials with high barrier properties against oxygen are required for the packaging of many sensitive foods. Since commodity polymers lack these properties, additional barrier materials are used in plastic-based barrier packaging. These are usually more expensive than commodity polymers and, in higher fractions, also make recycling more difficult. Current developments, therefore, aim at barrier layers that are as thin as possible but retain the barrier properties. One approach is to incorporate nanoparticles into these layers. In this study, the barrier properties of nanocomposite coatings, consisting of unmodified polyvinyl alcohol (PVA), and dispersed stick-shaped halloysite (Hal) or platelet-shaped montmorillonite (MMT) silicate nanoparticles, were investigated. The PVA was dissolved in aqueous nanoparticle dispersions, which were prepared by mechanical shearing, to produce the so-called "nanolacquer." Nanolacquers with nanoparticle concentrations of 7, 30, and 47 vol% with respect to PVA were applied in a single process step with k-bar on a polypropylene substrate film. The integration of 30 vol% platelet-shaped MMT enhances the barrier performance in comparison to pure PVA by a factor of 12 and 17 for oxygen and helium, respectively. Scanning electron microscopy (SEM) shows a homogeneous distribution and a parallel alignment of the nanoparticles within the coated layer. An increase in the crystallinity of PVA was observed due to the nanoparticle integration as demonstrated by x-ray diffraction (XRD) measurements. The investigation by Fourier transform infrared (FTIR) spectroscopy and the activation energy of the permeation coefficient indicate an interaction between the nanoparticles and the PVA. The theoretically calculated values for barrier enhancement accord well with the experimental values, which emphasizes that the gas barrier improvement for oxygen and helium is mainly dominated by the tortuous path effect.
Collapse
Affiliation(s)
- Stefan Schiessl
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,Fraunhofer Gesellschaft FhG, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Esra Kucukpinar
- Fraunhofer Gesellschaft FhG, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Stéphane Cros
- Département Des Technologies Solaires, Université Crenoble Alpes, Commissariat àl'énergieatomique et aux énergies alternatives, Le Bourget-du-Lac, France
| | - Oliver Miesbauer
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Horst-Christian Langowski
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,Fraunhofer Gesellschaft FhG, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Peter Eisner
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,Fraunhofer Gesellschaft FhG, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Steinbeis-Hochschule, Faculty of Technology and Engineering, Dresden, Germany
| |
Collapse
|
20
|
Xu M, Xu Q, Wang M, Qiu S, Xu D, Zhang W, Wang W, He J, Wang Q, Ran T, Sun B. Crystal structures of TTHA1265 and TTHA1264/TTHA1265 complex reveal an intrinsic heterodimeric assembly. Int J Biol Macromol 2022; 207:424-433. [PMID: 35276293 DOI: 10.1016/j.ijbiomac.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Abstract
Zinc peptidase M16 family members are widely distributed in most prokaryotic and eukaryotic organisms. M16 family has been divided into three subfamilies, M16A, M16B and M16C, based on sequence alignments and subunit connectivity. TTHA1264, an M16B protein found in Thermus thermophiles HB8, possesses an HXXEH motif essential for Zn2+ binding and catalytic activity. TTHA1265 is another member of M16B, which lacks the metal-binding motif but with a conserved active-site R/Y pair commonly found in the C-terminal half of M16 enzymes. Sequence analysis showed that two genes coding for TTHA1264 and TTHA1265 assemble into a single operon in the bacterial genome. Here, we report the crystal structure of TTHA1265 and TTHA1264/TTHA1265 complex from T. thermophilus HB8. Interestingly, when TTHA1264 and TTHA1265 are present alone, TTHA1264 forms a monomer, TTHA1265 forms a homodimer, respectively. However, TTHA264 and TTHA1265 assembled into a heterodimeric complex, indicating that they prefer to form heterodimer. Biochemical data further confirmed the heterodimeric assembly indicating intrinsic heterodimeric assembly of TTHA1264 and TTHA1265. This property of TTHA1264 and TTHA1265 is consistent with the characteristics of the M16B family.
Collapse
Affiliation(s)
- Mengxue Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Shenshen Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dongqing Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Weizhe Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
21
|
Chen TY, Deng X, Lin LC, Ho WW. New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Dynamic behaviors of protein and starch and interactions associated with glutenin composition in wheat dough matrices during sequential thermo-mechanical treatments. Food Res Int 2022; 154:110986. [DOI: 10.1016/j.foodres.2022.110986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
|
23
|
Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343:338-346. [DOI: 10.1016/j.jconrel.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
24
|
Song T, Zhang W, Chen X, Zhang A, Guo S, Shen S, Li H, Dou H. Insights into the correlations between the size of starch at nano- to microscale and its functional properties based on asymmetrical flow field-flow fractionation. Int J Biol Macromol 2021; 193:500-509. [PMID: 34710476 DOI: 10.1016/j.ijbiomac.2021.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022]
Abstract
In this study, the starches were isolated from three botanical sources (i.e., rice, sweet potato, and lotus seed). The size distributions of starch granules and molecules were determined by asymmetrical flow field-flow fractionation (AF4), and compared with those measured from optical microscopy (OM) and dynamic light scattering (DLS). Furthermore, the starches were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). AF4 coupled online with UV-visible, multiangle light scattering (MALS), and differential refractive index (dRI) detectors (AF4-UV-MALS-dRI) was employed for the investigation of the digestion and retrogradation properties of starches. Meanwhile, the relationships between the size of starch at nano- to microscale and its functional properties (i.e., digestibility, retrogradation, and thermal properties) were studied by Pearson correlation analysis. AF4-UV-MALS-dRI was proved to be a rapid and gentle method for the separation and size characterization of starches at both micro- and nano-molecule levels. Moreover, it was demonstrated that AF4-UV-MALS-dRI is a useful tool for the monitoring of the digestion and retrogradation properties of starches. The results suggested that the sizes of starch granules and molecules were to some extent correlated with their thermal properties and digestibility, but not with retrogradation property.
Collapse
Affiliation(s)
- Tiange Song
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wenhui Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xue Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Aixia Zhang
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Suna Guo
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071000, China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Huili Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Haiyang Dou
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Affiliated Hospital of Hebei University, Baoding 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China.
| |
Collapse
|
25
|
Lee D, Zhu Y, Chae B, Tocce EJ. Characterization of ultrahigh molecular weight poly(ethylene oxide) by size-exclusion chromatography with multiangle light scattering detection. J Chromatogr A 2021; 1659:462640. [PMID: 34731751 DOI: 10.1016/j.chroma.2021.462640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022]
Abstract
This study investigated the experimental conditions needed to obtain molecular weight distribution (MWD) of ultrahigh MW poly(ethylene oxide) (PEO) using size exclusion chromatography (SEC) hyphenated with a multiangle light scattering photometer (MALS) and a differential refractive index detector (RI). Ultrahigh MW components yielded non-linear angular dependency in scattered light intensities. The first-order linear fitting using Zimm formalism resulted in significant differences in MW depending on if the signals from detector 4 to 16 were used in the fitting or only five low-angles from 4 to 8 were used. In contrast, no significant differences in MW were obtained for lower MW PEO samples (equal or less than 1000 KDa) between the two fitting approaches. It was thus proposed to use only the five low-angles to derive MW for a sample with broad polydispersity including both ultrahigh and low MW components. The SEC separation was done using one column designed for ultrahigh MW polymer separation connected with another mixed-bed column. The ultrahigh MW column allowed separation and characterization of polymeric components in the MW range between 10 and 50 million Dalton (MDa) and the size range between 300 and 600 nm in radius of gyration (Rg). Online calibration curves were obtained from the linear fittings of MW as a function of elution volume. MW polydispersity was derived from the online calibration curve showing that the ultrahigh MW PEO had higher polydispersity than the lower MW samples. The double logarithmic plot of radius of gyration versus MW indicated that both ultrahigh MW and low MW PEO would adopt expanded coil conformations in the aqueous solution.
Collapse
Affiliation(s)
- Dean Lee
- Analytical R&D, Pharma Solutions, International Flavors and Fragrances Inc. Midland, Michigan 48642, USA.
| | - Yucheng Zhu
- Analytical R&D, Pharma Solutions, International Flavors and Fragrances Inc. Midland, Michigan 48642, USA
| | - Byeong Chae
- Process R&D, Pharma Solutions, International Flavors and Fragrances Inc. Midland, Michigan 48667, USA
| | - Elizabeth J Tocce
- TS&D, Pharma Solutions, International Flavors and Fragrances Inc. Midland, Michigan 48642, USA
| |
Collapse
|
26
|
New Analytical Approaches for Effective Quantification and Identification of Nanoplastics in Environmental Samples. Processes (Basel) 2021. [DOI: 10.3390/pr9112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nanoplastics (NPs) are a rapidly developing subject that is relevant in environmental and food research, as well as in human toxicity, among other fields. NPs have recently been recognized as one of the least studied types of marine litter, but potentially one of the most hazardous. Several studies are now being reported on NPs in the environment including surface water and coast, snow, soil and in personal care products. However, the extent of contamination remains largely unknown due to fundamental challenges associated with isolation and analysis, and therefore, a methodological gap exists. This article summarizes the progress in environmental NPs analysis and makes a critical assessment of whether methods from nanoparticles analysis could be adopted to bridge the methodological gap. This review discussed the sample preparation and preconcentration protocol for NPs analysis and also examines the most appropriate approaches available at the moment, ranging from physical to chemical. This study also discusses the difficulties associated with improving existing methods and developing new ones. Although microscopical techniques are one of the most often used ways for imaging and thus quantification, they have the drawback of producing partial findings as they can be easily mixed up as biomolecules. At the moment, the combination of chemical analysis (i.e., spectroscopy) and newly developed alternative methods overcomes this limitation. In general, multiple analytical methods used in combination are likely to be needed to correctly detect and fully quantify NPs in environmental samples.
Collapse
|
27
|
Kang Y, Zhao X, Han X, Ji X, Chen Q, Pasch H, Lederer A, Liu Y. Conformation and persistence length of chitosan in aqueous solutions of different ionic strengths via asymmetric flow field-flow fractionation. Carbohydr Polym 2021; 271:118402. [PMID: 34364548 DOI: 10.1016/j.carbpol.2021.118402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
Conformation of chitosan in acidic aqueous solutions is strongly influenced by ionic strength, but the conventional employed size exclusion chromatography is limited to high ionic strength. Here we show that conformation of chitosan in acetate buffer down to millimolar ionic strength can be studied via asymmetric flow field-flow fractionation (AF4), where the separation is governed by the diffusion properties of the chitosan molecules and assisted by the electrostatic repulsion of the polyelectrolyte from the channel membrane. The size of chitosan decreases with ionic strength due to increasing screening of the polyelectrolyte effect. The persistence length of chitosan in the solutions, obtained by fitting the conformation plot by the wormlike chain model, decreases linearly with the Debye screening length from 44.5 nm at a salt concentration of 1.25 mM dominated by the electrostatic contribution to 8.6 nm in 800 mM acetate buffer close to its intrinsic persistence length of 7.7 nm.
Collapse
Affiliation(s)
- Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Xinyue Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Xintong Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Harald Pasch
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - Albena Lederer
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa; Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
28
|
Ferens FG, Summers WAT, Bharaj A, Stetefeld J, Court DA. A C-Terminally Truncated Variant of Neurospora crassa VDAC Assembles Into a Partially Functional Form in the Mitochondrial Outer Membrane and Forms Multimers in vitro. Front Physiol 2021; 12:739001. [PMID: 34603088 PMCID: PMC8485043 DOI: 10.3389/fphys.2021.739001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
The voltage-dependent anion-selective channel (VDAC) is a porin in the mitochondrial outer membrane (MOM). Unlike bacterial porins, several mitochondrial β-barrels comprise an odd number of β-strands, as is the case for the 19-β-stranded VDAC. Previously, a variant of a VDAC from Neurospora crassa, VDAC-ΔC, lacking the predicted 19th β-strand, was found to form gated, anion-selective channels in artificial membranes. In vivo, the two C-terminal β-strands (β18 and β19) in VDAC form a β-hairpin necessary for import from the cytoplasm into mitochondria and the β-signal required for assembly in the mitochondrial outer membrane resides in β19. The current study demonstrated that the putative 18-stranded β-barrel formed by VDAC-ΔC can be imported and assembled in the MOM in vivo and can also partially rescue the phenotype associated with the deletion of VDAC from a strain of N. crassa. Furthermore, when expressed and purified from Escherichia coli, VDAC-ΔC can be folded into a β-strand-rich form in decyl-maltoside. Size exclusion chromatography (SEC) alone or combined with multi-angle light scattering (SEC-MALS) and analytical ultracentrifugation revealed that, unlike full-length VDACs, VDAC-ΔC can self-organize into dimers and higher order oligomers in the absence of sterol.
Collapse
Affiliation(s)
- Fraser G Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Ameet Bharaj
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Deborah A Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Modification of EDC method for increased labeling efficiency and characterization of low-content protein in gum acacia using asymmetrical flow field-flow fractionation coupled with multiple detectors. Anal Bioanal Chem 2021; 413:6313-6320. [PMID: 34415361 PMCID: PMC8487880 DOI: 10.1007/s00216-021-03587-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) is widely used as a crosslinker for fluorescence labeling of protein in the fields of biochemistry and food analysis. Many natural polysaccharides often contain some proteins or peptides that are very low in content but play a vital role in their biological function as well as technical applications. Determination of these low-content proteinaceous matters requires a highly sensitive and selective method. In this study, a methodological approach for investigations of the presence of proteinaceous material over the molar mass distribution (MD) of polysaccharides was developed using gum acacia (GA) as a model polysaccharide. EDC fluorescence-labeling method was modified by changing the pH (7, 9, and 11) of the solution for the analysis of low-content protein in food materials. Fluorescence spectroscopy and asymmetrical flow field-flow fractionation (AF4) were employed for characterizing the labeling efficiency and physiochemical properties of unlabeled and fluorescence-labeled GA. AF4 provided molar mass (M) and the radius of gyration (rG) of arabinogalactan (AG) and arabinogalactan protein complex (AGP) and determined the presence of proteinaceous matter over the MD. The labeling efficiencies of GA at pH 7, 9, and 11 determined by fluorescence spectroscopy were 56.5, 68.4, and 72.0%, respectively, with an increment of 15.5% when pH was increased from 7 to 11. The modified EDC fluorescence-labeling method allows highly sensitive and selective analysis of low-content proteinaceous matters and their distribution in natural polysaccharides.
Collapse
|
30
|
Investigation on the stability of low‐density lipoproteins modified by phospholipase A2 using asymmetrical flow field‐flow fractionation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Baek JH, Shin HKH, Koo SM, Gao Y, Qu H, Feng X, Xu X, Pinto J, Katneni U, Kimchi-Sarfaty C, Buehler PW. Polyethylene Oxide Molecular Size Determines the Severity of Atypical Thrombotic Microangiopathy in a Guinea Pig Model of Acute Intravenous Exposure. Toxicol Sci 2021; 177:235-247. [PMID: 32579216 DOI: 10.1093/toxsci/kfaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 2017, Opana ER was voluntarily removed from the U.S. market based on concerns that its risks outweighed its therapeutic benefits. The data that supported this conclusion were based on postmarketing evaluation that demonstrated increased intravenous abuse associated outbreaks of HIV, hepatitis C, and uniquely, a thrombotic thrombocytopenic purpura (TTP)-like syndrome. In 2017, the cause was mechanistically linked to intravenous exposure of the high-molecular weight polyethylene oxide (PEO), an excipient component of the drug product. However, it was unknown how differing PEO preparations might alter this response in vivo. Knowing the likelihood of a PEO driven atypical thrombotic microangiopathy with hemolytic uremic syndrome (TMA-HUS), this study was specifically designed with the primary objective focused on understanding the impact of PEO molecular weight on TMA-HUS in a guinea pig model of acute repeat PEO (1, 4, and 7 MDa) dosing. Results from this analysis suggest that repeated dosing with PEO 4 and 7 MDa, but not 1 MDa induced a marked intravascular hemolysis with schistocytes, mild anemia, thrombocytopenia, hemoglobinuria, and kidney injury, consistent with observations of a TMA-HUS-like syndrome. Nonetheless, observations of tissue microthrombi, complement or altered von Willebrand factor involvement were not observed, which would be consistent with a definitive TMA. Further, only 7 MDa PEO dosing was associated with marked renal hypoxia. Taken together, this study defines renal injury risk with PEO formulations >1 MDa that is driven by a robust intravascular hemolysis and potentially, tissue hypoxia.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Office of Blood Research and Review; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Hye Kyung H Shin
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Office of Blood Research and Review; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Soo Min Koo
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Office of Blood Research and Review; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Yamei Gao
- Division of Viral Products, Office of Vaccines, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland
| | - Haiou Qu
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Xin Feng
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Xiaoming Xu
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality; Center for Drug Evaluation and Review, FDA, Silver Spring, Maryland
| | - Julia Pinto
- Division of New Drug Product II, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring Maryland
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring Maryland
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring Maryland
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021; 11:373-395. [PMID: 33521866 PMCID: PMC7987708 DOI: 10.1007/s13346-021-00918-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the "do's and don'ts" about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.
Collapse
Affiliation(s)
- Federico Quattrini
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
| | - Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Lu Y, Bergenståhl B. Condensation of iso-humulone in solution and at hydrophobic surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Nwoko KC, Liang X, Perez MA, Krupp E, Gadd GM, Feldmann J. Characterisation of selenium and tellurium nanoparticles produced by Aureobasidium pullulans using a multi-method approach. J Chromatogr A 2021; 1642:462022. [PMID: 33714080 DOI: 10.1016/j.chroma.2021.462022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Aureobasidium pullulans was grown in liquid culture media amended with selenite and tellurite and selenium (Se) and tellurium (Te) nanoparticles (NPs) were recovered after 30 d incubation. A separation method was applied to recover and characterise Se and Te NPs by asymmetric flow field flow fractionation (AF4) with online coupling to multi-angle light scattering (MALS), ultraviolet visible spectroscopy (UV-Vis), and inductively coupled plasma mass spectrometry (ICP-MS) detectors. Additional characterisation data was obtained from transmission electron microscopy (TEM), and dynamic light scattering (DLS). Solutions of 0.2% Novachem surfactant and 10 mM phosphate buffer were compared as mobile phases to investigate optimal AF4 separation and particle recovery using Se-NP as a model sample. 88% recovery was reported for 0.2% Novachem solution, compared with 50% recovery for phosphate buffer. Different crossflow (Cflow) rates were compared to further investigate optimum separation, with recoveries of 88% and 30% for Se-NPs, and 90% and 29% for Te-NPs for 3.5 mL min-1 and 2.5 mL min-1 respectively. Zeta-potential (ZP) data suggested higher stability for NP elution in Novachem solution, with increased stability attributed to minimised NP-membrane interaction due to PEGylation. Detection with MALS showed monodisperse Se-NPs (45-90 nm) and polydisperse Te-NPs (5-65 nm).Single particle ICP-MS showed mean particle diameters of 49.7 ± 2.7 nm, and 135 ± 4.3 nm, and limit of size detection (LOSD) of 20 nm and 45 nm for Se-NPs and Te-NPs respectively. TEM images of Se-NPs and Te-NPs displayed a spherical morphology, with the Te-NPs showing a clustered arrangement, which suggested electrostatic attraction amongst neighbouring particles. Particle hydrodynamic diameters (dH) measured with dynamic light scattering (DLS) further suggested monodisperse Se-NPs and polydisperse Te-NPs distributions, showing good agreement with AF4-MALS for Se-NPs, but suggests that the Rg obtained from AF4-MALS for Te-NP was unreliable. The results demonstrate a complementary application of asymmetric flow field-flow fractionation (AF4), ICP-MS, light scattering, UV-Vis detection, and microscopic techniques to characterise biogenic Se and Te NPs.
Collapse
Affiliation(s)
- Kenneth C Nwoko
- Trace Element Speciation Laboratories, Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom.
| | - Xinjin Liang
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Magali Amj Perez
- Trace Element Speciation Laboratories, Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom
| | - Eva Krupp
- Trace Element Speciation Laboratories, Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Science and Environment, China University of Petroleum, Beijing, 102249, China
| | - Jörg Feldmann
- Trace Element Speciation Laboratories, Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom; Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
35
|
Centrifugal ultrafiltration preconcentration for studying the colloidal phase of a uranium-containing soil suspension. J Chromatogr A 2021; 1640:461957. [PMID: 33582516 DOI: 10.1016/j.chroma.2021.461957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
The objective of this work was to explore centrifugal ultrafiltration (UF) to separate and / or preconcentrate natural colloidal particles for their characterization. A soil suspension obtained by batch leaching was used as a laboratory reference sample. It was preconcentrated with concentration factors (CF) varying from 10 to 450. The dimensional analysis of the colloidal phase was carried out by Asymmetric Flow Field-Flow Fractionation (AF4)-multidetection. The colloidal masses were estimated by mass balance of the initial suspension, its concentrates and filtrates. The size-dependent distribution (expressed in gyration radius) and total colloidal mass (especially recovery), as well as chemical composition and concentration (including species partitioning between dissolved and colloidal phases) were determined to assess the effects of UF preconcentration on colloidal particles. The gyration radius of the colloidal particles recovered in these concentrated suspensions ranged from about 20 nm to over 150 nm. Neither de-agglomeration nor agglomeration was observed. However, only (64 ± 4) % (CF = 10) of the colloidal particles initially in the soil suspension were found in the recovered concentrated suspensions, and this percentage decreased as CF increased. The filter membrane trapped all other particles, mainly the larger ones. Whatever the CF, the centrifugal UF did not appear to change the dissolved-colloidal partitioning of certain species (Al, organic carbon); whereas it led to an enrichment of the colloidal phase for others (Fe, U). The enrichment rate was specific to each species (15% for Fe; 100% for U). By fitting the observed trends (i.e. conservation, depletion or enrichment of the colloidal phase in the concentrate) as a function of CF, the colloidal concentrations (total and species) were assessed without bias. This methodology offers a new perspective for determining physicochemical speciation in natural waters, with a methodology applicable for environmental survey or site remediation studies.
Collapse
|
36
|
Isolation and Self-Association Studies of Beta-Lactoglobulin. Int J Mol Sci 2020; 21:ijms21249711. [PMID: 33352705 PMCID: PMC7766286 DOI: 10.3390/ijms21249711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate isolated β-lactoglobulin (β-LG) from the whey protein isolate (WPI) solution using the column chromatography with SP Sephadex. The physicochemical characterization (self-association, the pH stability in various salt solutions, the identification of oligomeric forms) of the protein obtained have been carried out. The electrophoretically pure β-LG fraction was obtained at pH 4.8. The fraction was characterized by the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) technique. The use of the HCCA matrix indicated the presence of oligomeric β-LG forms, while the SA and DHB matrices enabled the differentiation of A and B isoforms in the sample. The impact of sodium chloride, potassium chloride, ammonium sulfate, and sodium citrate in dispersion medium on β-LG electrophoretic stability in solution was also studied. Type of the dispersion medium led to the changes in the isoelectric point of protein. Sodium citrate stabilizes protein in comparison to ammonium sulfate. Additionally, the potential of capillary electrophoresis (CE) with UV detection using bare fused capillary to monitor β-LG oligomerization was discussed. Obtained CE data were further compared by the asymmetric flow field flow fractionation coupled with the multi-angle light scattering detector (AF4-MALS). It was shown that the β-LG is a monomer at pH 3.0, dimer at pH 7.0. At pH 5.0 (near the isoelectric point), oligomers with structures from dimeric to octameric are formed. However, the appearance of the oligomers equilibrium is dependent on the concentration of protein. The higher quantity of protein leads to the formation of the octamer. The far UV circular dichroism (CD) spectra carried out at pH 3.0, 5.0, and 7.0 confirmed that β-sheet conformation is dominant at pH 3.0, 5.0, while at pH 7.0, this conformation is approximately in the same quantity as α-helix and random structures.
Collapse
|
37
|
Osorio-Macías DE, Song D, Thuvander J, Ferrer-Gallego R, Choi J, Peñarrieta JM, Nilsson L, Lee S, Bergenståhl B. Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14564-14576. [PMID: 33236630 PMCID: PMC7735732 DOI: 10.1021/acs.jafc.9b07251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The particle matter of wine is mainly composed of wine colloids and macromolecules. The present work develops a methodology using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering, differential refractive index detector, and ultraviolet detector (AsFlFFF-MALS-dRI-UV) for the fractionation and determination of the molar mass, the hydrodynamic radius, and the apparent densities of the aggregates and macromolecules present in wine samples. The results from a set of six Argentinian high-altitude wines showed two main populations: the first population composed of wine colloids with higher UV-specific absorptivity and the second population composed of polysaccharides, such as arabinogalactans. The conformation results showed that population 1 consists of small and dense particles, while population 2 showed high molar masses and lower densities. The results demonstrated the use of AsFlFFF as a new, effective method for the fractionation and characterization of wine colloids and wine macromolecules in red wines with further potential applications.
Collapse
Affiliation(s)
- Daniel E. Osorio-Macías
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Dongsup Song
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Johan Thuvander
- Department of Chemical Engineering, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Raúl Ferrer-Gallego
- Centro Tecnológico del Vino (VITEC), Carretera de Porrera, km. 1, 43730 Falset, Spain
| | - Jaeyeong Choi
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Seungho Lee
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Björn Bergenståhl
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
38
|
Choi J, Wahlgren M, Ek V, Elofsson U, Fransson J, Nilsson L, Terry A, Söderberg CAG. Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering. PLoS One 2020; 15:e0242605. [PMID: 33232370 PMCID: PMC7685474 DOI: 10.1371/journal.pone.0242605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.
Collapse
Affiliation(s)
- Jaeyeong Choi
- Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Marie Wahlgren
- Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Vilhelm Ek
- Swedish Orphan Biovitrum AB (Sobi), Stockholm, Sweden
| | - Ulla Elofsson
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, Lund, Sweden
| | | | - Lars Nilsson
- Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Ann Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
39
|
Shrestha B, Schaefer A, Chavez EC, Kopp AJ, Jacobs TM, Moench TR, Lai SK. Engineering tetravalent IgGs with enhanced agglutination potencies for trapping vigorously motile sperm in mucin matrix. Acta Biomater 2020; 117:226-234. [PMID: 32937206 PMCID: PMC8778962 DOI: 10.1016/j.actbio.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Multivalent antibodies such as sIgA can crosslink motile entities such as sperm and bacteria, creating agglomerates that are too large to permeate the dense mucin matrix in mucus, a process commonly referred to as immune exclusion. Unfortunately, sIgA remains challenging to produce in large quantities, and easily aggregates, which prevented their use in clinical applications. To develop sIgA-like tetravalent antibodies that are stable and can be easily produced in large quantities, we designed two IgGs possessing 4 identical Fab domains, with the Fabs arranged either in serial or in the diametrically opposite orientation. As a proof-of-concept, we engineered these tetravalent IgG constructs to bind a ubiquitous sperm antigen using a Fab previously isolated from an immune infertile woman. Both constructs possess at least 4-fold greater agglutination potency and induced much more rapid sperm agglutination than the parent IgG, while exhibiting comparable production yields and identical thermostability as the parent IgG. These tetravalent IgGs offer promise for non-hormonal contraception and underscores the multimerization of IgG as a promising strategy to enhance antibody effector functions based on immune exclusion.
Collapse
Affiliation(s)
- Bhawana Shrestha
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Elizabeth C Chavez
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Alexander J Kopp
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Timothy M Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | - Samuel K Lai
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Mucommune, LLC., Durham, NC 27709, United States.
| |
Collapse
|
40
|
Fast and Purification-Free Characterization of Bio-Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field-Flow Fractionation Hyphenated with Multi-Angle Light Scattering and Nanoparticle Tracking Analysis Detection. Molecules 2020; 25:molecules25204703. [PMID: 33066514 PMCID: PMC7587377 DOI: 10.3390/molecules25204703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Accurate physico-chemical characterization of exosomes and liposomes in biological media is challenging due to the inherent complexity of the sample matrix. An appropriate purification step can significantly reduce matrix interferences, and thus facilitate analysis of such demanding samples. Electrical Asymmetrical Flow Field-Flow Fractionation (EAF4) provides online sample purification while simultaneously enabling access to size and Zeta potential of sample constituents in the size range of approx. 1–1000 nm. Hyphenation of EAF4 with Multi-Angle Light Scattering (MALS) and Nanoparticle Tracking Analysis (NTA) detection adds high resolution size and number concentration information turning this setup into a powerful analytical platform for the comprehensive physico-chemical characterization of such challenging samples. We here present EAF4-MALS hyphenated with NTA for the analysis of liposomes and exosomes in complex, biological media. Coupling of the two systems was realized using a flow splitter to deliver the sample at an appropriate flow speed for the NTA measurement. After a proof-of-concept study using polystyrene nanoparticles, the combined setup was successfully applied to analyze liposomes and exosomes spiked into cell culture medium and rabbit serum, respectively. Obtained results highlight the benefits of the EAF4-MALS-NTA platform to study the behavior of these promising drug delivery vesicles under in vivo like conditions.
Collapse
|
41
|
Molecular weight dependent structure of the exopolysaccharide levan. Int J Biol Macromol 2020; 161:398-405. [DOI: 10.1016/j.ijbiomac.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
|
42
|
Lee C, Peddi S, Anderson C, Su H, Cui H, Epstein AL, MacKay JA. Adaptable antibody Nanoworms designed for non-Hodgkin lymphoma. Biomaterials 2020; 262:120338. [PMID: 32916604 DOI: 10.1016/j.biomaterials.2020.120338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Despite advancements in antibody-based therapies for non-Hodgkin lymphoma (NHL), at least two major therapeutic needs remain unmet: i) heterogenous activation of host immunity towards B cell NHL; and ii) lack of antibody-based therapeutics for T cell NHL. This study explores the molecular characteristics of an adaptable modality called antibody Nanoworms and demonstrates their receptor clustering activity as a means to overcome and address abovementioned needs. To test this, four selected therapeutic receptors of B cell (CD19, CD20, HLA-DR10) and T cell (CD3) NHL were targeted by Nanoworms. Regardless of the target or the cell type, Nanoworms inherently clustered bound receptors on the cell-surface through their multivalency and activated intracellular signaling without any secondary crosslinker. As a sole agent, Nanoworms induced apoptosis by clustering CD20 or HLA-DR10, and arrested the cell cycle upon CD19 clustering. Interestingly, CD3 clustering was particularly advantageous in inducing activation-induced cell death (AICD) in an aggressive form of T cell NHL named Sézary syndrome that is fatal, limited in antibody-based therapeutics, and has poor outcomes to traditional chemotherapy. As Nanoworms can be easily designed to target any receptor for which a scFv is available, they may provide solutions and add therapeutic novelty to underserved diseases.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States
| | - Caleb Anderson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, United States; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
43
|
Chen D, Zhu X, Tao W, Kong Y, Huag Y, Zhang Y, Liu R, Jiang L, Tang Y, Yu H, Hao Q, Yang X, Zou H, Chen J, Lu Y, Zhang H, Li W. Regulation of pancreatic cancer microenvironment by an intelligent gemcitabine@nanogel system via in vitro 3D model for promoting therapeutic efficiency. J Control Release 2020; 324:545-559. [DOI: 10.1016/j.jconrel.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
|
44
|
Pas T, Smeets B, Ramon H, Van Schepdael A, Mansour M, Koekoekx R, Clasen C, Vergauwen B, Van den Mooter G. Mechanodegradation of Polymers: A Limiting Factor of Mechanochemical Activation in the Production of Amorphous Solid Dispersions by Cryomilling. Mol Pharm 2020; 17:2987-2999. [DOI: 10.1021/acs.molpharmaceut.0c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy Pas
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), KU Leuven, 3001 Leuven, Belgium
| | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), KU Leuven, 3001 Leuven, Belgium
| | - Ann Van Schepdael
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b923, 3000 Leuven, Belgium
| | - Marwa Mansour
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b923, 3000 Leuven, Belgium
| | - Robin Koekoekx
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f - bus 2424, 3001 Leuven, Belgium
| | - Christian Clasen
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f - bus 2424, 3001 Leuven, Belgium
| | - Bjorn Vergauwen
- Rousselot bvba, Expertise center, Meulestedekaai 81, 9000 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Parot J, Caputo F, Mehn D, Hackley VA, Calzolai L. Physical characterization of liposomal drug formulations using multi-detector asymmetrical-flow field flow fractionation. J Control Release 2020; 320:495-510. [PMID: 32004590 PMCID: PMC7146538 DOI: 10.1016/j.jconrel.2020.01.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/11/2023]
Abstract
Liposomal formulations for the treatment of cancer and other diseases are the most common form of nanotechnology enabled pharmaceuticals (NEPs) submitted for market approval and in clinical application today. The accurate characterization of their physical-chemical properties is a key requirement; in particular, size, size distribution, shape, and physical-chemical stability are key among properties that regulators identify as critical quality attributes. Here we develop and validate an optimized method, based on multi-detector asymmetrical-flow field flow fractionation (MD-AF4) to accurately and reproducibly separate liposomal drug formulations into their component populations and to characterize their associated size and size distribution, whether monomodal or polymodal in nature. In addition, the results show that the method is suitable to measure liposomes in the presence of serum proteins and can yield information on the shape and physical stability of the structures. The optimized MD-AF4 based method has been validated across different instrument platforms, three laboratories, and multiple drug formulations following a comprehensive analysis of factors that influence the fractionation process and subsequent physical characterization. Interlaboratory reproducibility and intra-laboratory precision were evaluated, identifying sources of bias and establishing criteria for the acceptance of results. This method meets a documented high priority need in regulatory science as applied to NEPs such as Doxil and can be adapted to the measurement of other NEP forms (such as lipid nanoparticle therapeutics) with some modifications. Overall, this method will help speed up development of NEPS, and facilitate their regulatory review, ultimately leading to faster translation of innovative concepts from the bench to the clinic. Additionally, the approach used in this work (based on international collaboration between leading non-regulatory institutions) can be replicated to address other identified gaps in the analytical characterization of various classes of NEPs. Finally, a plan exists to pursue more extended interlaboratory validation studies to advance this method to a consensus international standard.
Collapse
Affiliation(s)
- J Parot
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520, United States; Theiss Research, La Jolla, California 92037, United States
| | - F Caputo
- Université Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
| | - D Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - V A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520, United States.
| | - L Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
46
|
Orski SV, Kassekert LA, Farrell WS, Kenlaw GA, Hillmyer MA, Beers KL. Design and Characterization of Model Linear Low-Density Polyethylenes (LLDPEs) by Multidetector Size Exclusion Chromatography. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara V. Orski
- Materials Science & Engineering Division, National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| | - Luke A. Kassekert
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Wesley S. Farrell
- Materials Science & Engineering Division, National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| | - Grace A. Kenlaw
- Materials Science & Engineering Division, National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Kathryn L. Beers
- Materials Science & Engineering Division, National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
47
|
Chemelli A, Gomernik F, Thaler F, Huber A, Hirn U, Bauer W, Spirk S. Cationic starches in paper-based applications-A review on analytical methods. Carbohydr Polym 2020; 235:115964. [PMID: 32122498 DOI: 10.1016/j.carbpol.2020.115964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/18/2023]
Abstract
This review focuses on cationic starches with a low degree of substitution (<0.06) which are mainly used for production of paper-based products. After a brief introduction on starch in general, cationization pathways and importance of cationic starches in paper production, this review emphasizes on the analytical challenges from different perspectives. These include the different length scales of starches when in solution: the macromolecular level, their assembly into nm aggregates and finally hydrocolloids with hundreds of nanometers of diameter. We give an overview on the current state of the art on the analysis of such challenging samples and aim at providing a guideline for obtaining and presenting reliable analytical data.
Collapse
Affiliation(s)
- Angela Chemelli
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
| | - Florian Gomernik
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Ferula Thaler
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Anton Huber
- Institute of Chemistry, University of Graz, Heinrichstrasse 24, 8010, Graz, Austria
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Wolfgang Bauer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria.
| |
Collapse
|
48
|
Lapointe M, Barbeau B. Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115893] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. J Pharm Biomed Anal 2019; 179:113017. [PMID: 31816470 DOI: 10.1016/j.jpba.2019.113017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Nanoformulations are complex systems where physicochemical properties determine their therapeutic efficacy and safety. In the case of nanovaccines, particle size and shape play a crucial role on the immune response generated. Furthermore, the antigen's integrity is also a key aspect to control when producing a nanovaccine. The determination of all those physicochemical properties is still an analytical challenge and the lack of well-established methods hinders the access of new therapeutics to the market. In this work, robust methods for the characterization of a novel HIV nanoparticle-based vaccine produced in good manufacturing practice (GMPs)-like environment were developed. With slightly polydisperse particles (< 0.2) close to 180 nm of size, batch-mode Dynamic Light Scattering (DLS) was validated to be used as a quality control technique in the pilot production plant. In addition, a high size resolution method using Asymmetrical Flow Field Flow Fractionation (AF4) demonstrated its ability to determine not only size and size distribution but also shape modification across the size and accurate quantification of the free active ingredient. Results showed a monomodal distribution of particles from 60 to 700 nm, most of them (> 90%) with size lower than 250 nm, consistent with more traditional techniques, and revealed a slight change in the structure of the particles induced by the presence of the antigen. Finally, a batch to batch variability lower than 20% was obtained by both DLS and AF4 methods indicating that preparation method was highly reproducible.
Collapse
|
50
|
Fuentes C, Castañeda R, Rengel F, Peñarrieta JM, Nilsson L. Characterization of molecular properties of wheat starch from three different types of breads using asymmetric flow field-flow fractionation (AF4). Food Chem 2019; 298:125090. [DOI: 10.1016/j.foodchem.2019.125090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
|