1
|
Risk Factors and Mouse Models of Abdominal Aortic Aneurysm Rupture. Int J Mol Sci 2020; 21:ijms21197250. [PMID: 33008131 PMCID: PMC7583758 DOI: 10.3390/ijms21197250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is an important cause of death in older adults. In clinical practice, the most established predictor of AAA rupture is maximum AAA diameter. Aortic diameter is commonly used to assess AAA severity in mouse models studies. AAA rupture occurs when the stress (force per unit area) on the aneurysm wall exceeds wall strength. Previous research suggests that aortic wall structure and strength, biomechanical forces on the aorta and cellular and proteolytic composition of the AAA wall influence the risk of AAA rupture. Mouse models offer an opportunity to study the association of these factors with AAA rupture in a way not currently possible in patients. Such studies could provide data to support the use of novel surrogate markers of AAA rupture in patients. In this review, the currently available mouse models of AAA and their relevance to the study of AAA rupture are discussed. The review highlights the limitations of mouse models and suggests novel approaches that could be incorporated in future experimental AAA studies to generate clinically relevant results.
Collapse
|
2
|
Vincke D, Miller R, Stassart É, Otte M, Dardenne P, Collins M, Wilkinson K, Stewart J, Baeten V, Fernández Pierna JA. Analysis of collagen preservation in bones recovered in archaeological contexts using NIR Hyperspectral Imaging. Talanta 2014; 125:181-8. [DOI: 10.1016/j.talanta.2014.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023]
|
3
|
Boada-Lopez J, DeJesus-Maldonado I, Jerez J, Romañach R, Diffoot-Carlo N, Sundaram P. Collagen abundance in mechanically stimulated osteoblast cultures using near infrared microscopy. J Biomech 2013; 46:2442-50. [PMID: 23938057 DOI: 10.1016/j.jbiomech.2013.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/18/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
Affiliation(s)
- Jairo Boada-Lopez
- Department of Mechanical Engineering,University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA
| | | | | | | | | | | |
Collapse
|
4
|
Samouillan V, Dandurand J, Lacabanne C, Stella A, Gargiulo M, Degani A, Gandaglia A, Spina M. Analysis of the molecular mobility of collagen and elastin in safe, atheromatous and aneurysmal aortas. ACTA ACUST UNITED AC 2011; 60:58-65. [PMID: 22169773 DOI: 10.1016/j.patbio.2011.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/30/2011] [Indexed: 11/19/2022]
Abstract
AIM OF THE STUDY In this study, we propose to use a thermal technique, Differential Scanning Calorimetry (DSC) to follow the evolution of elastin and collagen in safe and pathological cardiovascular tissues. PATIENTS AND METHODS The first part of this study deals with the analysis of the elastin network and associated proteins during ageing (from children to old persons) in aortic walls. The second part is devoted to the characterization of the collagenic phase in aneurysms. In both cases, physical data are correlated with biochemical analyses. RESULTS AND CONCLUSION For old persons aortas with atheromatous stades, elastin and associated proteins are found to interpenetrate to form a homogenous phase. Abdominal aortic aneurysms (AAA) are characterized by structural alterations of the aortic wall resulting from the degradation of elastic fibers and an increase of collagen/elastin ratio. Notable modifications are evidenced between collagen from control tissue and collagen from AAA, particularly concerning the thermal denaturation. Biochemical and thermal results are compatible with the increase of new collagen deposition and/or impairment of the collagen phase stability in the extracellular matrix of AAAs.
Collapse
Affiliation(s)
- V Samouillan
- Physique des polymères, BAT 3R1B2, institut Carnot, CIRIMAT UMR 5085, université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Samouillan V, Dandurand J, Lacabanne C, Stella A, Gargiulo M, Degani A, Gandaglia A, Spina M. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques. J Biomed Mater Res A 2010; 95:611-9. [DOI: 10.1002/jbm.a.32835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Zhang L, Noda I, Wu Y. Principal component analysis based interconversion between infrared and near-infrared spectra for the study of thermal-induced weak interaction changes of poly(N-isopropylacrylamide). APPLIED SPECTROSCOPY 2009; 63:694-699. [PMID: 19531297 DOI: 10.1366/000370209788559575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of a novel spectral interconversion scheme, principal component analysis (PCA) based spectral prediction, to probe weak molecular interactions of a polymer film is reported. A PCA model is built based on a joint data matrix by concatenating two related spectral data matrices (such as infrared (IR) and near-infrared (NIR) spectra) along the variable direction, then the obtained loading matrix of the model is split into two parts to predict the desired spectra. For a better PCA-based prediction, it is suggested that the samples whose spectra are to be predicted should be as similar as possible to those used in the model. Based on the PCA model, the thermal-induced changes in the weak interaction of poly(N-isopropylacrylamide) (PNiPA) film is revealed by the interconversion between selected spectral ranges measured between 40 and 220 degrees C. The thermal-induced weak interaction changes of PNiPA, expressed as either the band shift or intensity changes at a specific region, have been probed properly. Meanwhile, the robustness of the spectral prediction is also compared with that achieved by a partial least squares (PLS2) model in detail, illustrating its advantages in predicting more subtle structural changes such as C-H groups.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Lab for Supramolecular Structure and Material, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 PR China
| | | | | |
Collapse
|
7
|
Wetzel DL, Wetzel LH, Wetzel MD, Lodder RA. Imminent cardiac risk assessment via optical intravascular biochemical analysis. Analyst 2009; 134:1099-106. [PMID: 19475135 DOI: 10.1039/b821164g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference 'Spectroscopic Diagnosis of Disease...' this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination are still the first line of defense. However, with the fidelity of 64-slice CT imaging, this technique has recently become an option when the patient presents with symptoms of reduced arterial flow. Single photon emission computerized tomography (SPECT) treadmill exercise testing is a standard non-invasive test for decreased perfusion of heart muscle, but is time consuming and not suited for emergent evaluation. Once the invasive clinical option of catherization is chosen, this provides the opportunity for intravascular ultrasound (IVUS) imaging. As the probe is pulled through the artery, the diameter at different parts is measurable, and monochrome contrast in the constricted area reveals the presence of tissue with a different ultrasonic response. Also, via an optical catheter with a fiber-optic conductor, the possibly of spectroscopic analysis of arterial walls is now a reality. In this case, the optical transducer is coupled to a near-infrared spectrometer. Revealing the arterial chemical health means that plaque vulnerability and imminent risk could be assessed by the physician. The classical emergency use of catherization involves a contrast agent and dynamic X-ray imaging to locate the constriction, determine its severity, and possibly perform angioplasty, and stent placement.
Collapse
Affiliation(s)
- David L Wetzel
- Microbeam Molecular Spectroscopy Lab., Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
8
|
Zhang L, Noda I, Wu Y. Multivariate prediction of the thermal-induced weak interaction changes of poly(n-isopropylacrylamide) film by the interconversion between middle and near-infrared spectra. APPLIED SPECTROSCOPY 2009; 63:112-119. [PMID: 19146728 DOI: 10.1366/000370209787169722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of a novel spectral interconversion scheme to probe weak molecular interactions of a polymer system is reported. Based on the multivariate regression model using partial least squares (PLS), the thermally induced changes in the weak interaction of poly(n-isopropylacrylamide) (PNiPA) film was studied by the interconversion between mid-infrared (MIR) and near-infrared (NIR) spectra measured at temperatures between 40 and 220 degrees C. It was demonstrated that not only NIR spectra but also well-resolved MIR spectra of PNiPA film, either in narrow or wide spectral ranges, can be predicted from each other based on the proposed scheme. The thermally induced weak interaction changes of PNiPA, expressed as either the band shift or intensity changes at a specific region, can be probed properly. Meanwhile, the effect of several important factors such as the selected spectral range, correlation between the specific bands, and especially the multiple scattering corrections (MSC) on the accuracy of the spectral prediction were also investigated in detail. This study provides a novel method for the analysis of weak interactions in complex systems.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Lab for Supramolecular Structure and Material, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 PR China
| | | | | |
Collapse
|
9
|
Dai B, Urbas A, Douglas CC, Lodder RA. Molecular Factor Computing for Predictive Spectroscopy. Pharm Res 2007; 24:1441-9. [PMID: 17380265 DOI: 10.1007/s11095-007-9260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The concept of molecular factor computing (MFC)-based predictive spectroscopy was demonstrated here with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument. METHODS Molecular computing of vectors for transformation matrices enabled spectra to be represented in a desired coordinate system. New coordinate systems were selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a new MFC spectrometer employing transmission MFC filters. A library search algorithm was developed to calculate the chemical constituents of the MFC filters. The prototype instrument was used to collect data from 39 ethanol-in-water mixtures (range 0-14%). For each sample, four different voltage outputs from the detector (forming two factor scores) were measured by using four different MFC filters. Twenty samples were used to calibrate the instrument and build a multivariate linear regression prediction model, and the remaining samples were used to validate the predictive ability of the model. RESULTS In engineering simulations, four MFC filters gave an adequate calibration model (r2 = 0.995, RMSEC = 0.229%, RMSECV = 0.339%, p = 0.05 by f test). This result is slightly better than a corresponding PCR calibration model based on corrected transmission spectra (r2 = 0.993, RMSEC = 0.359%, RMSECV = 0.551%, p = 0.05 by f test). The first actual MFC prototype gave an RMSECV = 0.735%. CONCLUSION MFC was a viable alternative to conventional spectrometry with the potential to be more simply implemented and more rapid and accurate.
Collapse
Affiliation(s)
- Bin Dai
- Department of Chemistry, University of Kentucky, Lexington, USA
| | | | | | | |
Collapse
|
10
|
Medendorp JP, Paudel KS, Lodder RA, Stinchcomb AL. Near Infrared Spectrometry for the Quantification of Human Dermal Absorption of Econazole Nitrate and Estradiol. Pharm Res 2006; 24:186-93. [PMID: 17103333 DOI: 10.1007/s11095-006-9140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/28/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study was to demonstrate the use of near-infrared (NIR) spectrometry for the in vitro quantification of econazole nitrate (EN) and estradiol (EST) in human skin. METHODS NIR spectra were collected from EN and EST powders to verify the presence of NIR chromophores. One percent EN cream, a saturated solution of EN, or 0.25% EST solution was applied to human skin. NIR spectra were collected and one-point net analyte signal (NAS) multivariate calibration was used to predict the drug concentrations. NIR results were validated against known skin concentrations measured by high-pressure liquid chromatography (HPLC) analysis of solvent extracts. RESULTS NIR spectroscopy measured dermal absorption from saturated solutions of EN on human skin with an r2=0.990, standard error of estimation (SEE)=2.46%, and a standard error of performance (SEP)=3.55%, EN cream on skin with an r2=0.987, SEE=2.30%, and SEP=2.66%, and 0.25% solutions of EST on skin with an r2=0.987, SEE=3.30%, and SEP=5.66%. Despite low permeation amounts of both drugs through the stratum corneum into human tissue, the NIR signal-to-noise ratio was greater than three, even for the lowest concentrations. CONCLUSION NIR analyses paralleled the results obtained from HPLC, and thus could serve as a viable alternative for measuring the topical bioavailability/bioequivalence of different EN and EST formulations. Because these experiments were conducted in human tissue, this research suggests an all-optical in vivo method of measurement for dermal absorption could be developed.
Collapse
Affiliation(s)
- Joseph P Medendorp
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536-0082, USA
| | | | | | | |
Collapse
|
11
|
Medendorp J, Yedluri J, Hammell DC, Ji T, Lodder RA, Stinchcomb AL. Near-Infrared Spectrometry for the Quantification of Dermal Absorption of Econazole Nitrate and 4-Cyanophenol. Pharm Res 2006; 23:835-43. [PMID: 16554957 DOI: 10.1007/s11095-006-9749-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/13/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to demonstrate the utility of near-infrared (NIR) spectroscopy for the in vitro quantification of econazole nitrate (EN) and 4-cyanophenol (4-CP) in hairless guinea pig skin. METHODS NIR spectra were collected from each of the following: EN and 4-CP powders, EN and 4-CP in solution, and skin samples following topical exposure to either 4-CP in water or EN in propylene glycol and topical creams. To predict drug concentration from NIR spectra, principal component regression (PCR), interval PCR, and uninformative variable elimination PCR were each used with a leave-one-out cross-validation, and results were compared. NIR results were validated against known skin concentrations measured by high-pressure liquid chromatography (HPLC) analysis of solvent extracts. RESULTS NIR results matched the HPLC results for the quantification of 4-CP and EN in skin exposed to saturated solutions and topical creams with an r2 > 0.90, a standard error of estimation < 7.0%, and a standard error of performance < 8.0%. CONCLUSION This experiment demonstrated that NIR closely parallels results obtained from tissue extraction and HPLC analysis, proving its potential utility for the rapid and noninvasive determination of topical bioavailability/bioequivalence of EN and quantification of the model chemical 4-CP. Investigation of drugs in human skin is now justified.
Collapse
Affiliation(s)
- Joseph Medendorp
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082, USA
| | | | | | | | | | | |
Collapse
|