1
|
Dikpati A, Maio VDP, Ates E, Greffard K, Bertrand N. Studying the stability of polymer nanoparticles by size exclusion chromatography of radioactive polymers. J Control Release 2024; 369:394-403. [PMID: 38556217 DOI: 10.1016/j.jconrel.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The properties of nanomedicines will influence how they can deliver drugs to patients reproducibly and effectively. For conventional pharmaceutical products, Chemistry, Manufacturing and Control (CMC) documents require monitoring stability and storage conditions. For nanomedicines, studying these important considerations is hindered by a lack of appropriate methods. In this paper, we show how combining radiolabelling with size exclusion chromatography, using a method called SERP (for Size Exclusion of Radioactive Polymers), can inform on the in vitro degradation of polymer nanoparticles. Using nanoparticles composed of biodegradable poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA), we show that SERP is more sensitive than dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) to detect degradation. We also demonstrate that the properties of the polymer composition and the nature of the aqueous buffer affect nanoparticle degradation. Importantly, we show that minute changes in stability that cannot be detected by DLS and NTA impact the pharmacokinetic of nanoparticles injected in vivo. We believe that SERP might prove a valuable method to document and understand the pharmaceutical quality of polymer nanoparticles.
Collapse
Affiliation(s)
- Amrita Dikpati
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Vanessa Dos Passos Maio
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Ece Ates
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Karine Greffard
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada.
| |
Collapse
|
2
|
Suresh D, Suresh A, Kannan R. Engineering biomolecular systems: Controlling the self-assembly of gelatin to form ultra-small bioactive nanomaterials. Bioact Mater 2022; 18:321-336. [PMID: 35415301 PMCID: PMC8965973 DOI: 10.1016/j.bioactmat.2022.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
The size of nanocarriers determines the biological property of the materials, especially as it relates to intratumoral distribution. Previous research has shown that sizes of 10-50 nm penetrate deep inside the tumor, resulting in better efficacy. On the other hand, studies have shown that gelatin exhibits excellent biological properties, including compatibility, degradability, and toxicity. Therefore, FDA approved gelatin as a safe material to use as an excipient in injectables. The bottleneck is the nonexistence of smaller-sized gelatin nanoparticles (GNPs) to realize the full potential of these biomaterials. Yet, GNPs with sizes of less than 50 nm have not been reported; the synthetic strategy reported in the literature uses "uncontrolled crosslinking coupled with nanoprecipitation", resulting in larger particle size. We have developed a new method to self-assemble gelatin strands by using an anionic, phosphate-based crosslinker and controlled precipitation. The method we developed produced ultra-small gelatin nanoparticles (GX) of size 10 nm with a high degree of reproducibility, and it was characterized using dynamic light scattering (DLS), Energy-dispersive X-ray spectroscopy (EDS), High-resolution transmission, and scanning electron microscopy (HR-TEM/STEM). We also explored GX as a bioactive platform to encapsulate imaging and therapy agents within the cavity. Interestingly, we were able to encapsulate 2 nm size gold nanoparticles within the void of GX. The versatile nature of the GX particles was further demonstrated by surface functionalizing with larger size gelatin nanoparticles to form core-satellite nanocomposites. Additionally, we studied the tumor penetrability of dye-tagged 10, 50, and 200 nm gelatin nanoparticles. The study showed that smaller size gelatin nanoparticles penetrate deeper tumor regions than larger particles. In general, GX was efficient in penetrating the inner region of the spheroids. The results demonstrate the potential capabilities of ultra-small GX nanoparticles for multi-staged payload delivery, diagnostics, and cancer therapy.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, United States
| | - Agasthya Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, United States
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, United States
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, United States
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, United States
| |
Collapse
|
3
|
Abstract
Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.
Collapse
|
4
|
Zhao C, Latif A, Williams KJ, Tirella A. The characterization of molecular weight distribution and aggregation by asymmetrical flow field-flow fractionation of unmodified and oxidized alginate. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Anal Chim Acta 2022; 1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
6
|
Shakiba S, Astete CE, Cueto R, Rodrigues DF, Sabliov CM, Louie SM. Asymmetric flow field-flow fractionation (AF4) with fluorescence and multi-detector analysis for direct, real-time, size-resolved measurements of drug release from polymeric nanoparticles. J Control Release 2021; 338:410-421. [PMID: 34453956 DOI: 10.1016/j.jconrel.2021.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
7
|
Wang X, Bolan N, Tsang DCW, Sarkar B, Bradney L, Li Y. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123496. [PMID: 32717542 DOI: 10.1016/j.jhazmat.2020.123496] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
A large amount of plastic waste released into natural waters and their demonstrated toxicity have made the transformation of microplastics (MPs; < 5 mm) and nanoplastics (NPs; < 100 nm) an emerging environmental concern. Aggregation is one of the most important environmental behaviors of MPs, especially in aquatic environments, which determines the mobility, distribution and bioavailability of MPs. In this paper, the sources and inputs of MPs in aquatic environments were first summarized followed by the analytical methods for investigating MP aggregation, including the sampling, visualization, and quantification procedures of MP' particle sizes. We critically evaluated the sampling methods that still remains a methodological gap. Identification and quantification of MPs were mostly carried out by visual, spectroscopic and spectrometric techniques, and modeling analysis. Important factors affecting MP aggregation in natural waters and environmental implications of the aggregation process were also reviewed. Finally, recommendations for future research were discussed, including (1) conducting more field studies; (2) using MPs in laboratory works representing those in the environment; and (3) standardizing methods of identification and quantification. The review gives a comprehensive overview of current knowledge for MP aggregation in natural waters, identifies knowledge gaps, and provides suggestions for future research.
Collapse
Affiliation(s)
- Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Nanthi Bolan
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Lauren Bradney
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
8
|
Nanocomposites for Food Packaging Applications: An Overview. NANOMATERIALS 2020; 11:nano11010010. [PMID: 33374563 PMCID: PMC7822409 DOI: 10.3390/nano11010010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.
Collapse
|
9
|
Revision of the calibration experiment in asymmetrical flow field-flow fractionation. J Chromatogr A 2020; 1635:461631. [PMID: 33260023 DOI: 10.1016/j.chroma.2020.461631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/23/2022]
Abstract
Asymmetrical flow field-flow fractionation is a versatile chromatographic fractionation method. In combination with at least one detection technique it is used for size-based separation of colloids, biomolecules and polymers. Although often used as pure separation method, a well-elaborated theory is available that allows precise quantification of the translational diffusion coefficient D. Still, current literature suggests different ways to transform this theory into applicable experimental procedures and no "gold standard" for correct data processing exists. While some sources report a direct way to extract diffusion information from the fractogram, others suggest the necessity of an external calibration measurement to obtain the channel width w. In this work, we compare the different approaches and calibration algorithms based on original and literature data using our own open-source AF4 evaluation software. Based on the results, we conclude that available AF4 setups do not fulfill the requirements for absolute measurements of D. We show that the best way to conduct is to consider the area of the channel and D of the calibrant while neglecting the small peak which occurs in the void peak region.
Collapse
|
10
|
Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019; 59:962-979. [PMID: 34045771 PMCID: PMC8152826 DOI: 10.1002/ijch.201900080] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
Collapse
Affiliation(s)
- Y Randika Perera
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
11
|
Enescu D, Cerqueira MA, Fucinos P, Pastrana LM. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 2019; 134:110814. [PMID: 31520669 DOI: 10.1016/j.fct.2019.110814] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.
Collapse
Affiliation(s)
- Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Pablo Fucinos
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
12
|
He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release 2019; 311-312:288-300. [PMID: 31494184 DOI: 10.1016/j.jconrel.2019.09.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/19/2023]
Abstract
Ferritin is an iron storage protein that plays a key role in iron homeostasis and anti-oxidation of cells. Due to its unique architecture of 24 self-assembling subunits and hollow cavity capable of encapsulating drugs, and an outer surface that can be modified genetically and chemically for additional functionality, ferritin has recently emerged as a promising drug delivery vehicle. Recent research demonstrated that unmodified human heavy chain ferritin binds to its receptor, transferrin receptor 1 (TfR1), in different types of tumor tissues, including lung and breast cancer, thus highlighting the potential use of ferritin for tumor-targeting applications. In this review, we consider the many favorable characteristics of ferritin drug carriers (FDCs) for tumor drug delivery. In particular, compared with antibody-drug conjugates (ADCs), ferritin exhibits superiority in a range of attributes, including drug loading ability, thermostability, and ease of production. Thus, the emergence of FDCs may be the next step in targeted cancer therapy.
Collapse
Affiliation(s)
- Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences, Zhengzhou University,Zhengzhou 450052, China.
| |
Collapse
|
13
|
Kim A, Ng WB, Bernt W, Cho NJ. Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci Rep 2019; 9:2639. [PMID: 30804441 PMCID: PMC6389903 DOI: 10.1038/s41598-019-38915-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
As the physicochemical properties of drug delivery systems are governed not only by the material properties which they are compose of but by their size that they conform, it is crucial to determine the size and distribution of such systems with nanometer-scale precision. The standard technique used to measure the size distribution of nanometer-sized particles in suspension is dynamic light scattering (DLS). Recently, nanoparticle tracking analysis (NTA) has been introduced to measure the diffusion coefficient of particles in a sample to determine their size distribution in relation to DLS results. Because DLS and NTA use identical physical characteristics to determine particle size but differ in the weighting of the distribution, NTA can be a good verification tool for DLS and vice versa. In this study, we evaluated two NTA data analysis methods based on maximum-likelihood estimation, namely finite track length adjustment (FTLA) and an iterative method, on monodisperse polystyrene beads and polydisperse vesicles by comparing the results with DLS. The NTA results from both methods agreed well with the mean size and relative variance values from DLS for monodisperse polystyrene standards. However, for the lipid vesicles prepared in various polydispersity conditions, the iterative method resulted in a better match with DLS than the FTLA method. Further, it was found that it is better to compare the native number-weighted NTA distribution with DLS, rather than its converted distribution weighted by intensity, as the variance of the converted NTA distribution deviates significantly from the DLS results.
Collapse
Affiliation(s)
- Ahram Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Wei Beng Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore
| | - William Bernt
- Particle Characterization Laboratories, Inc. 845 Olive Ave, Suite A, Novato, CA, 94945, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore.
| |
Collapse
|
14
|
Duthen S, Rochat C, Kleiber D, Violleau F, Daydé J, Raynaud C, Levasseur-Garcia C. Physicochemical characterization and study of molar mass of industrial gelatins by AsFlFFF-UV/MALS and chemometric approach. PLoS One 2018; 13:e0203595. [PMID: 30300343 PMCID: PMC6177121 DOI: 10.1371/journal.pone.0203595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
Industrial gelatins have different physicochemical properties that mainly depend of the raw materials origin and the extraction conditions. These properties are closely related to the molar mass distribution of these gelatins. Several methods exist to characterize molar mass distribution of polymer, including the Asymmetrical Flow Field Flow Fractionation method. The goal of this study is to analyze the relationship between physicochemical properties and the gelatins molar mass distribution obtained by Asymmetrical Flow Field Flow Fractionation. In this study, 49 gelatins samples extracted from pig skin are characterized in terms of gel strength and viscosity and their molar mass distribution are analyzed by Asymmetrical Flow Field Flow Fractionation coupled to an Ultraviolet and Multi Angle Light Scattering detector. This analytical method is an interesting tool for studying, simultaneously, the primary chains and the high-molar-mass fraction corresponding to the polymer chains. Correlation analysis between molar mass distribution data from the different fractions highlights the importance of high molar mass polymer chains to explain the gel strength and viscosity of gelatins. These results are confirmed by an additional chemometric approach based on the UV absorbance of gelatin fractograms to predict gel strength (r2Cal = 0.85) and viscosity (r2Cal = 0.79).
Collapse
Affiliation(s)
- Simon Duthen
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
| | - Chloé Rochat
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Didier Kleiber
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Frederic Violleau
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
| | - Jean Daydé
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
| | - Christine Raynaud
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
- Centre d’Application et de Traitement des Agroressources (CATAR), INPT, Toulouse, France
| | - Cecile Levasseur-Garcia
- Laboratoire de Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP- PURPAN, Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
15
|
Roda B, Marassi V, Zattoni A, Borghi F, Anand R, Agostoni V, Gref R, Reschiglian P, Monti S. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal-organic framework nanoparticles. Anal Bioanal Chem 2018; 410:5245-5253. [PMID: 29947896 DOI: 10.1007/s00216-018-1176-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Asymmetric flow field-flow fractionation (AF4) coupled with UV-Vis spectroscopy, multi-angle light scattering (MALS) and refractive index (RI) detection has been applied for the characterization of MIL-100(Fe) nanoMOFs (metal-organic frameworks) loaded with nucleoside reverse transcriptase inhibitor (NRTI) drugs for the first time. Empty nanoMOFs and nanoMOFs loaded with azidothymidine derivatives with three different degrees of phosphorylation were examined: azidothymidine (AZT, native drug), azidothymidine monophosphate (AZT-MP), and azidothymidine triphosphate (AZT-TP). The particle size distribution and the stability of the nanoparticles when interacting with drugs have been determined in a time frame of 24 h. Main achievements include detection of aggregate formation in an early stage and monitoring nanoMOF morphological changes as indicators of their interaction with guest molecules. AF4-MALS proved to be a useful methodology to analyze nanoparticles engineered for drug delivery applications and gave fundamental data on their size distribution and stability. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Barbara Roda
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy. .,byFlow srl, Via Caduti della Via Fani, 11/B, 40127, Bologna, Italy.
| | - Valentina Marassi
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,byFlow srl, Via Caduti della Via Fani, 11/B, 40127, Bologna, Italy
| | - Francesco Borghi
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Resmi Anand
- CNR-Istituto per la Sintesi Organica e la Fotoreattività, Via Piero Gobetti, 40129, Bologna, Italy
| | - Valentina Agostoni
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Paris-Sud University, Paris Saclay, 91400, Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Paris-Sud University, Paris Saclay, 91400, Orsay, France
| | - Pierluigi Reschiglian
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,byFlow srl, Via Caduti della Via Fani, 11/B, 40127, Bologna, Italy
| | - Sandra Monti
- CNR-Istituto per la Sintesi Organica e la Fotoreattività, Via Piero Gobetti, 40129, Bologna, Italy
| |
Collapse
|
16
|
Kumar H, Gothwal A, Khan I, Nakhate KT, Alexander A, Ajazuddin, Singh V, Gupta U. Galactose-Anchored Gelatin Nanoparticles for Primaquine Delivery and Improved Pharmacokinetics: A Biodegradable and Safe Approach for Effective Antiplasmodial Activity against P. falciparum 3D7 and in Vivo Hepatocyte Targeting. Mol Pharm 2017; 14:3356-3369. [DOI: 10.1021/acs.molpharmaceut.7b00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hitesh Kumar
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Avinash Gothwal
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Iliyas Khan
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Kartik T. Nakhate
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Vineeta Singh
- National Institute of Malaria Research, Sector 8, Dwarka, New Delhi-110077, India
| | - Umesh Gupta
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| |
Collapse
|
17
|
Störmer A, Bott J, Kemmer D, Franz R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4) Channels for Nanoparticle Separations. SEPARATIONS 2017. [DOI: 10.3390/separations4010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Miceli E, Kar M, Calderón M. Interactions of organic nanoparticles with proteins in physiological conditions. J Mater Chem B 2017; 5:4393-4405. [DOI: 10.1039/c7tb00146k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The efficacy of nanoparticles in biomedical applications is strongly influenced by their ability to bind proteins onto their surface. The analysis of organic nanoparticles interacting with proteins in physiological conditions may help in the successful design of next generation nanoparticles with improved biodistributions and therapeutic performances.
Collapse
Affiliation(s)
- Enrico Miceli
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| | - Mrityunjoy Kar
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| |
Collapse
|
20
|
Krueger AB, Carnell P, Carpenter JF. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles. J Pharm Sci 2016; 105:1434-43. [PMID: 27019960 DOI: 10.1016/j.xphs.2016.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples.
Collapse
Affiliation(s)
- Aaron B Krueger
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045
| | | | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045.
| |
Collapse
|
21
|
Hu Y, Abidi N. Distinct Chiral Nematic Self-Assembling Behavior Caused by Different Size-Unified Cellulose Nanocrystals via a Multistage Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9863-9872. [PMID: 27584872 DOI: 10.1021/acs.langmuir.6b02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellulose nanocrystals (CNCs) are perfect rodlike nanofibers that can self-assemble and form a chiral nematic phase. We found that different self-assembling morphologies could be formed by different size-unified CNCs. This study reported a facile and new approach of fractionating raw (unseparated) CNCs in a wide particle size distribution (9-1700 nm) into a series of narrower size ranges to obtain size-unified CNCs via a well-designed multistage separation process composed of layered filter membranes with different pore size cutoffs followed by a fast pressurized filtration. The smaller size-unified CNCs readily self-assembled into polish chiral nematic phases with larger pitch value as compared to larger size-unified CNCs. Such a distinction among different chiral nematic phases and pitch values as functions of size was addressed by a mathematical evaluation, which suggested that the reduced volume fraction of the anisotropic phase as a function of both increased ionic strength and reduced crystallinity of rigid-rod-like CNCs is a critical factor. In addition, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction results revealed that different size-unified CNCs exhibited particular thermal stabilities and crystallinities even though their chemical and crystalline structures remained unchanged. The discrepancies in physicochemical characteristics and self-assembling chiral nematic behavior among different size-unified CNCs may benefit the specific functionalization of cellulose materials using size-unified fibers instead of raw CNCs containing mixed small and large fibers.
Collapse
Affiliation(s)
- Yang Hu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas 79409, United States
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
22
|
Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1007/978-1-4939-4029-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods. Adv Drug Deliv Rev 2015; 91:70-91. [PMID: 25858664 DOI: 10.1016/j.addr.2015.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel B Allan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
24
|
Haladjova E, Rangelov S, Geisler M, Boye S, Lederer A, Mountrichas G, Pispas S. Asymmetric Flow Field-Flow Fractionation Investigation of Magnetopolyplexes. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Acad. G. Bonchev Str., bl. 103-A Sofia 1113 Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Acad. G. Bonchev Str., bl. 103-A Sofia 1113 Bulgaria
| | - Martin Geisler
- Leibniz-Institut für Polymerforschung Dresden; Hohe Str. 6 01109 Dresden Germany
- Technische Universität Dresden; 01062 Dresden Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden; Hohe Str. 6 01109 Dresden Germany
- Technische Universität Dresden; 01062 Dresden Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden; Hohe Str. 6 01109 Dresden Germany
- Technische Universität Dresden; 01062 Dresden Germany
| | - Grigoris Mountrichas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave 116 35 Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave 116 35 Athens Greece
| |
Collapse
|
25
|
Abstract
Despite all scientists efforts exerted over the past years, the ocular delivery of drugs remains a great challenge due to several barriers and hurdles faced by this kind of administration. The exploitation of gelatin that has a long history of safe use in pharmaceuticals and which is considered as a GRAS (Generally Regarded As Safe) material by the FDA was not fully achieved in this field. This review summarizes the recent studies and findings where gelatin-based micro- and nanoparticles were used for successful ocular delivery aiming at drawing the attention of researchers and scientists to this valuable biomaterial that has not been fully explored.
Collapse
Affiliation(s)
- Rania M Hathout
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Mohamed K Omran
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
26
|
Size Distributions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-099948-7.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
|
27
|
Brandt J, Oehlenschlaeger KK, Schmidt FG, Barner-Kowollik C, Lederer A. State-of-the-art analytical methods for assessing dynamic bonding soft matter materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5758-5785. [PMID: 24782412 DOI: 10.1002/adma.201400521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Dynamic bonding materials are of high interest in a variety of fields in material science. The reversible nature of certain reaction classes is frequently employed for introducing key material properties such as the capability to self-heal. In addition to the synthetic effort required for designing such materials, their analysis is a highly complex--yet important--endeavor. Herein, we critically review the current state of the art analytical methods and their application in the context of reversible bonding on demand soft matter material characterization for an in-depth performance assessment. The main analytical focus lies on the characterization at the molecular level.
Collapse
Affiliation(s)
- Josef Brandt
- Leibniz-Institut für Polymerforschung, Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany and Technische Universität Dresden, 01062, Dresden, Germany
| | | | | | | | | |
Collapse
|
28
|
Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal Chem 2014; 86:5201-10. [PMID: 24802650 DOI: 10.1021/ac501664t] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.
Collapse
Affiliation(s)
- Michael Wagner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstrasse 10, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
29
|
Kang DY, Eum CH, Lee S. Characterization of Fly Ash by Field-Flow Fractionation Combined with SPLITT Fractionation and Compositional Analysis by ICP-OES. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal 2014; 87:53-61. [DOI: 10.1016/j.jpba.2013.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/26/2023]
|
31
|
Separation and characterization of food macromolecules using field-flow fractionation: A review. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.04.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Wei A, Mehtala JG, Patri AK. Challenges and opportunities in the advancement of nanomedicines. J Control Release 2012; 164:236-46. [PMID: 23064314 PMCID: PMC3504169 DOI: 10.1016/j.jconrel.2012.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/16/2022]
Abstract
Nanomedicine-based approaches to cancer treatment face several challenges that differ from those encountered by conventional medicines during clinical development. A systematic exploration of these issues has led us to identify the following needs and opportunities for further development: (1) robust and general methods for the accurate characterization of nanoparticle size, shape, and composition; (2) scalable approaches for producing nanomedicines with optimized bioavailability and excretion profiles; (3) particle engineering for maintaining low levels of nonspecific cytotoxicity and sufficient stability during storage; (4) optimization of surface chemistries for maximum targeted delivery and minimum nonspecific adsorption; (5) practical methods for quantifying ligand density and distributions on multivalent nanocarriers; and (6) the design of multifunctional nanomedicines for novel combination therapies with supportable levels of bioaccumulation.
Collapse
Affiliation(s)
- Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907 USA
| | - Jonathan G. Mehtala
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907 USA
| | - Anil K. Patri
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702 USA
| |
Collapse
|
33
|
Hawe A, Romeijn S, Filipe V, Jiskoot W. Asymmetrical Flow Field-Flow Fractionation Method for the Analysis of Submicron Protein Aggregates. J Pharm Sci 2012; 101:4129-39. [DOI: 10.1002/jps.23298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/24/2012] [Accepted: 08/02/2012] [Indexed: 01/16/2023]
|
34
|
Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin Coated Hybrid Lipid Nanoparticles for Oral Delivery of Amphotericin B. Mol Pharm 2012; 9:2542-53. [DOI: 10.1021/mp300320d] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanyog Jain
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Pankaj U. Valvi
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Nitin K. Swarnakar
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Kaushik Thanki
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| |
Collapse
|
35
|
Kuntsche J, Decker C, Fahr A. Analysis of liposomes using asymmetrical flow field-flow fractionation: Separation conditions and drug/lipid recovery. J Sep Sci 2012; 35:1993-2001. [DOI: 10.1002/jssc.201200143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Christiane Decker
- Department of Pharmaceutical Technology; Friedrich Schiller University Jena; Jena; Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology; Friedrich Schiller University Jena; Jena; Germany
| |
Collapse
|
36
|
Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161:38-49. [DOI: 10.1016/j.jconrel.2012.04.036] [Citation(s) in RCA: 550] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
|
37
|
Li L, Leopold K. Ligand-Assisted Extraction for Separation and Preconcentration of Gold Nanoparticles from Waters. Anal Chem 2012; 84:4340-9. [DOI: 10.1021/ac2034437] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lingxiangyu Li
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical
Chemistry, University of Ulm, 89069 Ulm,
Germany
| |
Collapse
|
38
|
Belete A, Maeder K. Novel aqueous nano-scaled formulations of oleic acid stabilized hydrophobic superparamagnetic iron oxide nanocrystals. Drug Dev Ind Pharm 2012; 39:186-96. [DOI: 10.3109/03639045.2012.665927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
An JC, Weaver A, Kim B, Barkatt A, Poster D, Vreeland WN, Silverman J, Al-Sheikhly M. Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.09.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Liang C, Gao D, Hubert M, Yin X, Gao C. A boundary-line method for pattern recognition on real particles. POWDER TECHNOL 2011. [DOI: 10.1016/j.powtec.2011.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Johann C, Elsenberg S, Roesch U, Rambaldi DC, Zattoni A, Reschiglian P. A novel approach to improve operation and performance in flow field-flow fractionation. J Chromatogr A 2011; 1218:4126-31. [DOI: 10.1016/j.chroma.2010.12.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
|
42
|
Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 2011; 1218:4249-56. [DOI: 10.1016/j.chroma.2011.01.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 11/18/2022]
|
43
|
Ma PL, Buschmann MD, Winnik FM. Complete Physicochemical Characterization of DNA/Chitosan Complexes by Multiple Detection Using Asymmetrical Flow Field-Flow Fractionation. Anal Chem 2010; 82:9636-43. [DOI: 10.1021/ac100711j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pei Lian Ma
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montréal, P. O. 6079 Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3A7, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, P. O. 6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Michael D. Buschmann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montréal, P. O. 6079 Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3A7, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, P. O. 6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Françoise M. Winnik
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montréal, P. O. 6079 Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3A7, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, P. O. 6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
44
|
Fuchs S, Kutscher M, Hertel T, Winter G, Pietzsch M, Coester C. Transglutaminase: New insights into gelatin nanoparticle cross-linking. J Microencapsul 2010; 27:747-54. [DOI: 10.3109/02652048.2010.518773] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Moon MH. Flow field-flow fractionation and multiangle light scattering for ultrahigh molecular weight sodium hyaluronate characterization. J Sep Sci 2010; 33:3519-29. [DOI: 10.1002/jssc.201000414] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/11/2022]
|
46
|
Fuchs S, Winter G, Coester C. Ultrasonic resonator technology as a new quality control method evaluating gelatin nanoparticles. J Microencapsul 2010; 27:242-52. [PMID: 20406094 DOI: 10.3109/02652040903079534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomedicine is a quickly evolving field where more and more possible applications become evident and start entering clinical trials or even the market. However, the analytic methods are not always able to keep pace with the new formulations' demands. One example of a promising medical implementation is oligodeoxynucleotide (ODN) delivery by gelatin nanoparticles (GNPs). Currently, quality control is dependent on either some time consuming or destructive spectrometric, chromatographic or electrophoretic methods. A possible enlargement of the portfolio by Ultrasonic Resonator Technology (URT) is investigated here by subjecting plain GNPs in various sizes and concentrations as well as ODN-loaded GNPs to URT analysis. If calibrated by photon correlation spectroscopy (PCS) and other spectroscopy methods for each single nanoparticle system parameter, URT is an efficient and non-destructive technique and serves as a broad characterization method. URT is emphasized to play a possible future part in the size, concentration and ODN loading monitoring, e.g. of gelatin nanoparticles in the course of formulation development.
Collapse
Affiliation(s)
- Sebastian Fuchs
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig Maximilians University, Munich, Germany
| | | | | |
Collapse
|
47
|
Lattuada M, Olivo C, Gauer C, Storti G, Morbidelli M. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7062-7071. [PMID: 20143795 DOI: 10.1021/la904390h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.
Collapse
Affiliation(s)
- Marco Lattuada
- Department of Chemistry and Applied Biosciences, Institute for Chemical- and Bioengineering, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010; 76:1-9. [PMID: 20420904 DOI: 10.1016/j.ejpb.2010.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
The long-term objective of this study is to develop a nanoparticulate formulation based on gelatin or its admixtures with other polyelectrolytes, under very gentle nanoprecipitation conditions, for the delivery of fragile macromolecules such as proteins and peptide drugs. However, the objective of the present study was to achieve drug loading into the matrices of gelatin-based nanoparticles through incubation of the drug-gelatin solution prior to formation and cross-linking of the nanoparticles in situ. Two molecular weight types (4 kDa and 20 kDa) of fluorescein isothiocyanate dextran (FITC-D) were used as surrogate macromolecules to study the loading and in vitro release behavior of gelatin nanoparticles. Unloaded and FITC-D-loaded gelatin nanoparticles were prepared by the one-step desolvation technique using ethanol-water mixture as the non-solvent. The preparation method was optimized with respect to the amount of cross-linking agent and cross-linking time. The nanoparticles formed were further characterized for mean size, size distribution and zeta potential using a Zetasizer nano while the morphology of the particles was evaluated by scanning electron microscopy (SEM). For cell uptake studies, FITC-D-labeled nanoparticles were incubated with Caco-2 cell monolayers and then evaluated using fluorescence microscopy. Results obtained showed the formation of very smooth and spherical particles with a unimodal distribution. Zeta potential measurements revealed that both the unloaded and FITC-D-loaded nanoparticles had a surface charge of -23.0 mV at pH 7.0. The loading capacity of the nanoparticles was found to be approximately 93.0 microg FITC-D (20 kDa) and 86 microg FITC-D (4 kDa) per milligram gelatin nanoparticles. Up to 16.5% of the 20 kDa FITC-D was loaded on the surface of the nanoparticles while 76.8% was entrapped into the matrices of the particles. For the 4 kDa FITC-D, 10.8% was bound to the surface of the particles while 75.6% was entrapped into the core of the nanoparticles. The release profile of FITC-D from the nanoparticles over a 168-h period showed a low release in phosphate-buffered saline (PBS), pH 7.4 while more than 80% was released after 3h for both types of FITC-D in PBS containing trypsin. Release of the 4 kDa FITC-D from the nanoparticles was generally more rapid than that of the 20 kDa indicating that its entrapment into gelatin nanoparticles was based on weaker interactions when compared to that of the higher molecular weight FITC-D. Bio-imaging using fluorescence microscopy demonstrated uptake and internalization of the nanoparticles, notably into the nucleus and the cytoplasm, by Caco-2 cells.
Collapse
Affiliation(s)
- Kenneth Ofokansi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | |
Collapse
|
49
|
Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 2010; 27:796-810. [PMID: 20204471 PMCID: PMC2852530 DOI: 10.1007/s11095-010-0073-2] [Citation(s) in RCA: 1142] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/14/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the nanoparticle tracking analysis (NTA) technique, compare it with dynamic light scattering (DLS) and test its performance in characterizing drug delivery nanoparticles and protein aggregates. METHODS Standard polystyrene beads of sizes ranging from 60 to 1,000 nm and physical mixtures thereof were analyzed with NTA and DLS. The influence of different ratios of particle populations was tested. Drug delivery nanoparticles and protein aggregates were analyzed by NTA and DLS. Live monitoring of heat-induced protein aggregation was performed with NTA. RESULTS NTA was shown to accurately analyze the size distribution of monodisperse and polydisperse samples. Sample visualization and individual particle tracking are features that enable a thorough size distribution analysis. The presence of small amounts of large (1,000 nm) particles generally does not compromise the accuracy of NTA measurements, and a broad range of population ratios can easily be detected and accurately sized. NTA proved to be suitable to characterize drug delivery nanoparticles and protein aggregates, complementing DLS. Live monitoring of heat-induced protein aggregation provides information about aggregation kinetics and size of submicron aggregates. CONCLUSION NTA is a powerful characterization technique that complements DLS and is particularly valuable for analyzing polydisperse nanosized particles and protein aggregates.
Collapse
Affiliation(s)
- Vasco Filipe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
50
|
Ma PL, Buschmann MD, Winnik FM. One-Step Analysis of DNA/Chitosan Complexes by Field-Flow Fractionation Reveals Particle Size and Free Chitosan Content. Biomacromolecules 2010; 11:549-54. [DOI: 10.1021/bm901345q] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pei Lian Ma
- Department of Chemical and Biomedical Engineering, Ecole Polytechnique de Montréal, PO 6079 Succ. Centre-Ville, Montreal, Quebec, H3C 3A7, Canada, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, PO 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | - Michael D. Buschmann
- Department of Chemical and Biomedical Engineering, Ecole Polytechnique de Montréal, PO 6079 Succ. Centre-Ville, Montreal, Quebec, H3C 3A7, Canada, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, PO 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | - Françoise M. Winnik
- Department of Chemical and Biomedical Engineering, Ecole Polytechnique de Montréal, PO 6079 Succ. Centre-Ville, Montreal, Quebec, H3C 3A7, Canada, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, PO 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| |
Collapse
|