1
|
Jahan A, Akter MT, Takemoto K, Oura T, Shitara A, Semba S, Nezu A, Suto S, Nagai T, Tanimura A. Insertion of circularly permuted cyan fluorescent protein into the ligand-binding domain of inositol 1,4,5-trisphosphate receptor for enhanced FRET upon binding of fluorescent ligand. Cell Calcium 2022; 108:102668. [PMID: 36335765 DOI: 10.1016/j.ceca.2022.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Binding of fluorescent ligand (FL) to the cyan fluorescent protein (CFP)-coupled ligand-binding domain of the inositol 1,4,5-trisphosphate (IP3) receptor (CFP-LBP) produces fluorescence (Förster) resonance energy transfer (FRET). A competitive fluorescent ligand assay (CFLA), using the FRET signal from competition between FLs and IP3, can measure IP3 concentration. The FRET signal should be enhanced by attaching a FRET donor to an appropriate position. Herein, we inserted five different circularly permuted CFPs in the loop between the second and third α-helices to generate membrane-targeted fluorescent ligand-binding proteins (LBPs). Two such proteins, LBP-cpC157 and LBP-cpC173, localized at the plasma membrane, displayed FRET upon binding the high-affinity ligand fluorescent adenophostin A (F-ADA), and exhibited a decreased fluorescence emission ratio (480 nm / 535 nm) by 1.6- to 1.8-fold that of CFP-LBP. In addition, binding of a fluorescent low-affinity ligand (F-LL) also reduced the fluorescence ratio in a concentration-dependent manner, with EC50 values for LBP-cpC157 and LBP-cpC173 of 34.7 nM and 27.6 nM, respectively. These values are comparable to that with CFP-LBP (29.2 nM), indicating that insertion of cpC157 and cpC173 did not disrupt LBP structure and function. The effect of 100 nM F-LL on the decrease in fluorescence ratio was reversed upon addition of IP3, indicating binding competition between F-LL and IP3. We also constructed cytoplasmic fluorescent proteins cyLBP-cpC157 and cyLBP-cpC173, and bound them to DYK beads for imaging analyses. Application of F-ADA decreased the fluorescence ratio of the beads from the periphery to the center over 3 - 5 min. Application of F-LL also decreased the fluorescence ratio of cyLBP-cpC157 and cyLBP-cpC173 by 20-25%, and subsequent addition of IP3 recovered the fluorescence ratio in a concentration-dependent manner. The EC50 value and Hill coefficient obtained by curve fitting against the IP3-dependent recovery of fluorescence ratio can be used to estimate the IP3 concentration.
Collapse
Affiliation(s)
- Azmeree Jahan
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mst Tahmina Akter
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kiwamu Takemoto
- Department of Biochemistry, Mie University, Graduate School of Medicine, Mie, Japan
| | - Tai Oura
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, Aichi, Japan
| | - Shingo Semba
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Akihiro Nezu
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Satoshi Suto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research) Osaka University, Osaka, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
2
|
Matsu-Ura T, Shirakawa H, Suzuki KGN, Miyamoto A, Sugiura K, Michikawa T, Kusumi A, Mikoshiba K. Dual-FRET imaging of IP 3 and Ca 2+ revealed Ca 2+-induced IP 3 production maintains long lasting Ca 2+ oscillations in fertilized mouse eggs. Sci Rep 2019; 9:4829. [PMID: 30886280 PMCID: PMC6423007 DOI: 10.1038/s41598-019-40931-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 01/31/2023] Open
Abstract
In most species, fertilization induces Ca2+ transients in the egg. In mammals, the Ca2+ rises are triggered by phospholipase Cζ (PLCζ) released from the sperm; IP3 generated by PLCζ induces Ca2+ release from the intracellular Ca2+ store through IP3 receptor, termed IP3-induced Ca2+ release. Here, we developed new fluorescent IP3 sensors (IRIS-2s) with the wider dynamic range and higher sensitivity (Kd = 0.047-1.7 μM) than that we developed previously. IRIS-2s employed green fluorescent protein and Halo-protein conjugated with the tetramethylrhodamine ligand as fluorescence resonance energy transfer (FRET) donor and acceptor, respectively. For simultaneous imaging of Ca2+ and IP3, using IRIS-2s as the IP3 sensor, we developed a new single fluorophore Ca2+ sensor protein, DYC3.60. With IRIS-2s and DYC3.60, we found that, right after fertilization, IP3 concentration ([IP3]) starts to increase before the onset of the first Ca2+ wave. [IP3] stayed at the elevated level with small peaks followed after Ca2+ spikes through Ca2+ oscillations. We detected delays in the peak of [IP3] compared to the peak of each Ca2+ spike, suggesting that Ca2+-induced regenerative IP3 production through PLC produces small [IP3] rises to maintain [IP3] over the basal level, which results in long lasting Ca2+ oscillations in fertilized eggs.
Collapse
Affiliation(s)
- Toru Matsu-Ura
- Laboratory for Developmental Neurobiology, Center for Brain Sciences, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideki Shirakawa
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, 182-8585, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, Center for Brain Sciences, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kotomi Sugiura
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takayuki Michikawa
- Laboratory for Biotechnological Optics Research, Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Kusumi
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Center for Brain Sciences, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shnjukuku, Tokyo, 160-8582, Japan. .,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
4
|
Tanimura A, Nezu A, Morita T, Murata K. [Advances in methods for analyzing IP 3 signaling and understanding of coupled Ca 2+ and IP 3 oscillations]. Nihon Yakurigaku Zasshi 2018; 152:21-27. [PMID: 29998948 DOI: 10.1254/fpj.152.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) is an important intracellular messenger produced by phospholipase C via the activation of G-protein-coupled receptor- or receptor-tyrosine-kinase-mediated pathways, and is involved in numerous responses to hormones, neurotransmitters, and growth factors through the releases of Ca2+ from intracellular stores via IP3 receptors. IP3-mediated Ca2+ signals often exhibit complex spatial and temporal organizations, such as Ca2+ oscillations. Recently, new methods have become available to measure IP3 concentration ([IP3]) using AlphaScreen technology, fluorescence polarization, and competitive ligand binding assay (CFLA). These methods are useful for the high throughput screening in drug discovery. Calcium ions generate versatile intracellular signals such as Ca2+ oscillations and waves. Fluorescent sensors molecules to monitor changes in [IP3] in single living cells are crucial to study the mechanism for the spatially and temporally regulated Ca2+ signals. In particular, FRET-based IP3 sensors are useful for the quantitative monitoring intracellular [IP3], and allowed to uncovered the oscillatory IP3 dynamics in association with Ca2+ oscillations. A mathematical model of coupled Ca2+ and IP3 oscillations predicts that Ca2+ oscillations are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations. These model predictions have also been confirmed experimentally. At present, however, usefulness of FRET-based IP3 sensors are limited by their relatively small change in fluorescence. Development of novel IP3 sensors with improve dynamic range would be important for understanding the regulatory mechanism of Ca2+ signaling and for in vivo IP3 imaging.
Collapse
Affiliation(s)
- Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Akihiro Nezu
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Takao Morita
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata
| | - Kaori Murata
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
5
|
Phospholipids and inositol phosphates linked to the epigenome. Histochem Cell Biol 2018; 150:245-253. [DOI: 10.1007/s00418-018-1690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
6
|
Boss C, Bouche N, De Marchi U. Encapsulated Optically Responsive Cell Systems: Toward Smart Implants in Biomedicine. Adv Healthc Mater 2018; 7:e1701148. [PMID: 29283209 DOI: 10.1002/adhm.201701148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Indexed: 01/09/2023]
Abstract
Managing increasingly prevalent chronic diseases will require close continuous monitoring of patients. Cell-based biosensors may be used for implantable diagnostic systems to monitor health status. Cells are indeed natural sensors in the body. Functional cellular systems can be maintained in the body for long-term implantation using cell encapsulation technology. By taking advantage of recent progress in miniaturized optoelectronic systems, the genetic engineering of optically responsive cells may be combined with cell encapsulation to generate smart implantable cell-based sensing systems. In biomedical research, cell-based biosensors may be used to study cell signaling, therapeutic effects, and dosing of bioactive molecules in preclinical models. Today, a wide variety of genetically encoded fluorescent sensors have been developed for real-time imaging of living cells. Here, recent developments in genetically encoded sensors, cell encapsulation, and ultrasmall optical systems are highlighted. The integration of these components in a new generation of biosensors is creating innovative smart in vivo cell-based systems, bringing novel perspectives for biomedical research and ultimately allowing unique health monitoring applications.
Collapse
Affiliation(s)
- Christophe Boss
- Device EngineeringNestlé Institute of Health Sciences EPFL Innovation Park Lausanne CH‐1015 Switzerland
| | - Nicolas Bouche
- Device EngineeringNestlé Institute of Health Sciences EPFL Innovation Park Lausanne CH‐1015 Switzerland
| | - Umberto De Marchi
- Mitochondrial FunctionNestlé Institute of Health Sciences EPFL Innovation Park Lausanne CH‐1015 Switzerland
| |
Collapse
|
7
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
8
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
9
|
Miyamoto A, Mikoshiba K. Probes for manipulating and monitoring IP 3. Cell Calcium 2016; 64:57-64. [PMID: 27887748 DOI: 10.1016/j.ceca.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) is an important second messenger produced via G-protein-coupled receptor- or receptor tyrosine kinase-mediated pathways. IP3 levels induce Ca2+ release from the endoplasmic reticulum (ER) via IP3 receptor (IP3R) located in the ER membrane. The resultant spatiotemporal pattern of Ca2+ signals regulates diverse cellular functions, including fertilization, gene expression, synaptic plasticity, and cell death. Therefore, monitoring and manipulating IP3 levels is important to elucidate not only the functions of IP3-mediated pathways but also the encoding mechanism of IP3R as a converter of intracellular signals from IP3 to Ca2+.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Miyamoto A, Sugiura K, Mikoshiba K. Development of a convenient and supersensitive high-throughput screening system for genetically encoded fluorescent probes of small molecules using a confocal microscope. Cell Calcium 2016; 61:1-9. [PMID: 27720443 DOI: 10.1016/j.ceca.2016.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Monitoring the dynamic patterns of intracellular signaling molecules, such as inositol 1,4,5-trisphosphate (IP3) and Ca2+, that control many diverse cellular processes, provides us significant information to understand the regulatory mechanism of cellular functions. For searching more sensitive and higher dynamic range probes for signaling molecules, convenient and supersensitive high throughput screening systems are required. Here we show the optimal "in Escherichia coli (E. coli) colony" screening method based on the twin-arginine translocase (Tat) pathway and introduce a novel application of a confocal microscope as a supersensitive detection system to measure changes in the fluorescence intensity of fluorescent probes in E. coli grown on an agar plate. To verify the performance of the novel detection system, we compared the changes detected in the fluorescent intensity of genetically encoded Ca2+ indicator after Ca2+ exposure to two kinds of conventional fluorescence detection systems (luminescent image analyzer and fluorescence stereomicroscope). The rate of fluorescence change between Ca2+ binding and unbinding detected by novel supersensitive detection system was almost double than those measured by conventional detection systems. We also confirmed that the Tat pathway-based screening method is applicable to the development of genetically encoded probes for IP3. Our convenient and supersensitive screening system improves the speed of developing florescent probes for small molecules.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kotomi Sugiura
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsukiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
11
|
Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys Rev 2016; 8:121-138. [PMID: 28510054 PMCID: PMC4884202 DOI: 10.1007/s12551-016-0195-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/09/2016] [Indexed: 01/26/2023] Open
Abstract
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Collapse
|
12
|
Gulyás G, Tóth JT, Tóth DJ, Kurucz I, Hunyady L, Balla T, Várnai P. Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors. PLoS One 2015; 10:e0125601. [PMID: 25932648 PMCID: PMC4416922 DOI: 10.1371/journal.pone.0125601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 01/22/2023] Open
Abstract
Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of InsP3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications.
Collapse
Affiliation(s)
- Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - József T. Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Dániel J. Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - István Kurucz
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
- * E-mail:
| |
Collapse
|
13
|
Tanimura A. Development and application of fluorescent protein-based indicators for live cell imaging. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Fujioka Y, Nanbo A, Nishide SY, Ohba Y. Fluorescent protein-based biosensors to visualize signal transduction beneath the plasma membrane. ANAL SCI 2015; 31:267-74. [PMID: 25864669 DOI: 10.2116/analsci.31.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In response to extracellular stimuli, cells display a variety of behaviors, including proliferation, differentiation, morphological changes and migration. The analysis of the spatiotemporal regulation of signal transduction in living cells is needed for a better understanding of such behaviors, and such investigations have been greatly accelerated by the development of fluorescent protein-based biosensors. Currently, by using these biosensors a range of molecular actions, including lipid metabolism, protein activation, and ion dynamics, can be visualized in living cells. We recently reported that intracellular calcium, with its relevant downstream signaling pathways consisting of the small GTPase Ras and the lipid kinase phoshoinositide-3-kinase (PI3K), can be exploited in an efficient incorporation of influenza A viruses into host cells via endocytosis using a set of biosensors based on fluorescent proteins and the principle of Förster resonance energy transfer. Here, we focus this review on fluorescent protein-based biosensors that have been utilized in our recent research reports.
Collapse
Affiliation(s)
- Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
15
|
Ueda Y, Kwok S, Hayashi Y. Application of FRET probes in the analysis of neuronal plasticity. Front Neural Circuits 2013; 7:163. [PMID: 24133415 PMCID: PMC3794420 DOI: 10.3389/fncir.2013.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.
Collapse
|
16
|
A fluorescence-based method for evaluating inositol 1,4,5-trisphosphate receptor ligands: Determination of subtype selectivity and partial agonist effects. J Biotechnol 2013; 167:248-54. [DOI: 10.1016/j.jbiotec.2013.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/19/2013] [Accepted: 06/23/2013] [Indexed: 11/22/2022]
|
17
|
Ida Y, Kidera A. The conserved Arg241-Glu439 salt bridge determines flexibility of the inositol 1,4,5-trisphosphate receptor binding core in the ligand-free state. Proteins 2013; 81:1699-708. [PMID: 23606071 DOI: 10.1002/prot.24304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Inositol 1,4,5-trisphosphate receptor (InsP3 R) is an intracellular Ca(2+) -release channel activated by binding of inositol 1,4,5-trisphosphate (InsP3 ) to the InsP3 binding core (IBC). Structural change in the IBC upon InsP3 binding is the key process in channel pore opening. In this study, we performed molecular dynamics (MD) simulations of the InsP3 -free form of the IBC, starting with removal of InsP3 from the InsP3 -bound crystal structure, and obtained the structural ensemble of the InsP3 -free form of the IBC. The simulation revealed that the two domains of the IBC largely fluctuate around the average structure with the hinge angle opened 17° more than in the InsP3 -bound form, and the twist angle rotated by 45°, forming interdomain contacts that are different from those in the bound form. The InsP3 binding loop was disordered. The InsP3 -free form thus obtained was reproduced four times in simulations started from a fully extended configuration of the two domains. Simulations beginning with the fully extended form indicated that formation of a salt bridge between Arg241 and Glu439 is crucial for stabilizing the closed form of the two domains. Mutation of Arg241 to Gln prevented formation of the compact structure by the two domains, but the fully flexible domain arrangement was maintained. Thus, the Arg241-Glu439 salt bridge determines the flexibility of the InsP3 -free form of the IBC.
Collapse
Affiliation(s)
- Yoichi Ida
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 230-0045, Japan
| | | |
Collapse
|
18
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous second messenger, derived from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) by enzymes of the phospholipase C (PLC) family. Binding of IP(3) to its cognate receptor in the endoplasmic reticulum membrane leads to release of Ca(2+) into the cytoplasm, which is involved in the regulation of an array of cellular functions. Traditional techniques for the detection of IP(3) have required the extraction of a large number of cells, with limitations in the time resolution of changes in IP(3) and an inability to obtain detailed information on the dynamics of this second messenger in single cells. Recent progress in this field has led to the development of a number of genetically encoded fluorescent biosensors, which upon recombinant expression are able selectively to detect real-time changes in IP(3) in single live cells. In this chapter, I detail protocols for the expression, visualization (by confocol or fluorescence microscopy), and interpretation of data obtained with such biosensors expressed in mammalian cells.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care, and Pain Management, Leicester Royal Infirmary, University of Leicester, Leicester, UK.
| |
Collapse
|
19
|
Knyazhitsky M, Moas E, Shaginov E, Luria A, Braiman A. Vav1 oncogenic mutation inhibits T cell receptor-induced calcium mobilization through inhibition of phospholipase Cγ1 activation. J Biol Chem 2012; 287:19725-35. [PMID: 22474331 DOI: 10.1074/jbc.m111.309799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization.
Collapse
Affiliation(s)
- Mira Knyazhitsky
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
20
|
Putyrski M, Schultz C. Switching heterotrimeric G protein subunits with a chemical dimerizer. ACTA ACUST UNITED AC 2012; 18:1126-33. [PMID: 21944751 DOI: 10.1016/j.chembiol.2011.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 12/15/2022]
Abstract
The selective manipulation of single intracellular-signaling events remains one of the key tasks when studying signaling networks. Here, we demonstrate for the first time the stimulation of FKBP fusions of various subunits of heterotrimeric G proteins by the simple addition of the chemical dimerizer rapamycin. Activation of constitutively active Gα(q), but not its GDP-bound form, leads to sustained oscillations of intracellular calcium and myo-inositol 1,4,5-trisphosphate (InsP(3)) levels in HEK cells, independent of the activation of endogenous Gα(q), in full agreement with the InsP(3)-Ca(2+) cross-coupling model of calcium oscillations. Rapamycin-induced translocation of wild-type Gα(s) to the plasma membrane results in elevated cAMP levels. Activation of rapamycin-inducible Gα(s) or Gβ(1)γ(2) evokes extensive modulation of ATP-induced calcium transients. The results demonstrate that inducible heterotrimeric G protein subunits will provide ways for dissecting G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Mateusz Putyrski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
21
|
Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. PROGRESS IN BRAIN RESEARCH 2012; 196:235-63. [PMID: 22341329 DOI: 10.1016/b978-0-444-59426-6.00012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent protein technology has evolved to include genetically encoded biosensors that can monitor levels of ions, metabolites, and enzyme activities as well as protein conformation and even membrane voltage. They are well suited to live-cell microscopy and quantitative analysis, and they can be used in multiple imaging modes, including one- or two-photon fluorescence intensity or lifetime microscopy. Although not nearly complete, there now exists a substantial set of genetically encoded reporters that can be used to monitor many aspects of neuronal and glial biology, and these biosensors can be used to visualize synaptic transmission and activity-dependent signaling in vitro and in vivo. In this review, we present an overview of design strategies for engineering biosensors, including sensor designs using circularly permuted fluorescent proteins and using fluorescence resonance energy transfer between fluorescent proteins. We also provide examples of indicators that sense small ions (e.g., pH, chloride, zinc), metabolites (e.g., glutamate, glucose, ATP, cAMP, lipid metabolites), signaling pathways (e.g., G protein-coupled receptors, Rho GTPases), enzyme activities (e.g., protein kinase A, caspases), and reactive species. We focus on examples where these genetically encoded indicators have been applied to brain-related studies and used with live-cell fluorescence microscopy.
Collapse
|
22
|
Baylis HA, Vázquez-Manrique RP. Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim Biophys Acta Gen Subj 2011; 1820:1253-68. [PMID: 22146231 DOI: 10.1016/j.bbagen.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND The nematode, Caenorhabditis elegans is an established model system that is particularly well suited to genetic analysis. C. elegans is easily manipulated and we have an in depth knowledge of many aspects of its biology. Thus, it is an attractive system in which to pursue integrated studies of signalling pathways. C. elegans has a complement of calcium signalling molecules similar to that of other animals. SCOPE OF REVIEW We focus on IP3 signalling. We describe how forward and reverse genetic approaches, including RNAi, have resulted in a tool kit which enables the analysis of IP3/Ca2+ signalling pathways. The importance of cell and tissue specific manipulation of signalling pathways and the use of epistasis analysis are highlighted. We discuss how these tools have increased our understanding of IP3 signalling in specific developmental, physiological and behavioural roles. Approaches to imaging calcium signals in C. elegans are considered. MAJOR CONCLUSIONS A wide selection of tools is available for the analysis of IP3/Ca2+ signalling in C. elegans. This has resulted in detailed descriptions of the function of IP3/Ca2+ signalling in the animal's biology. Nevertheless many questions about how IP3 signalling regulates specific processes remain. GENERAL SIGNIFICANCE Many of the approaches described may be applied to other calcium signalling systems. C. elegans offers the opportunity to dissect pathways, perform integrated studies and to test the importance of the properties of calcium signalling molecules to whole animal function, thus illuminating the function of calcium signalling in animals. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
23
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
24
|
Goto JI, Mikoshiba K. Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior. THE CEREBELLUM 2011; 10:820-33. [DOI: 10.1007/s12311-011-0270-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Oya M, Suzuki H, Watanabe Y, Sato M, Tsuboi T. Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes Cells 2011; 16:608-16. [PMID: 21470345 DOI: 10.1111/j.1365-2443.2011.01509.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids such as L-glutamate and L-arginine are potent stimuli for insulin secretion from pancreatic β-cells. However, the precise molecular mechanisms of amino acid-induced insulin secretion have only partly understood. In this study, we show here that mouse pancreatic β-cell line MIN6 cells expressed amino acid taste receptor (heterodimer of type 1 taste G protein-coupled receptor member 1 and member 3; Tas1R1 and Tas1R3, respectively). We found that administration of L-glutamate or L-arginine to MIN6 cells caused the increase in free intracellular concentrations of both inositol-1,4,5-triphosphate (IP(3)) and Ca(2+) , and umami substance inocinate enhanced the effects of l-glutamate. Effects of amino acids on intracellular IP(3) and Ca(2+) concentration were diminished by application of lactisole, a Tas1R3 receptor antagonist. Furthermore, we investigated the effect of amino acids on the insulin release from MIN6 cells by both ELISA and total internal reflection fluorescence microscopy. Application of L-glutamate or L-arginine significantly increased the release of insulin, whereas inhibited by the application of lactisole. Based on these findings, we propose that heterodimer of Tas1R1 and Tas1R3 is the fundamental receptor for the sensing amino acids and regulates the amino acid-induced insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Manami Oya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Japan
| | | | | | | | | |
Collapse
|
26
|
Awais M, Ozawa T. Illuminating intracellular signaling and molecules for single cell analysis. MOLECULAR BIOSYSTEMS 2011; 7:1376-87. [PMID: 21318203 DOI: 10.1039/c0mb00328j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent and bioluminescent proteins are now widely used for detection of small molecules and various intracellular events ranging from protein conformational change to cell death in living cells. To analyze the dynamics of molecular processes in real time at the level of single cells, engineered protein-based probes with higher sensitivity and selectivity are required. The probes can be entirely genetically encoded and can comprise fusions of different proteins or domains. This review specifically examines basic concepts of designing genetically encoded fluorescent and bioluminescent probes developed in the past decade, highlighting some potential applications for basic research and for drug discovery.
Collapse
Affiliation(s)
- Muhammad Awais
- Liverpool NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GA, UK.
| | | |
Collapse
|
27
|
Tanimura A. The Development of FRET-Based IP3 Biosensors and Their Use for Monitoring IP3 Dynamics during Ca2+ Oscillations and Ca2+ Waves in Non-Excitable Cells. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T. An in vivo fluorescent sensor reveals intracellular ins(1,3,4,5)P4 dynamics in single cells. Angew Chem Int Ed Engl 2010; 49:2150-3. [PMID: 19899175 DOI: 10.1002/anie.200903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Reiko Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T. An In Vivo Fluorescent Sensor Reveals Intracellular Ins(1,3,4,5)P4Dynamics in Single Cells. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200903951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Tsukiji S, Wang H, Miyagawa M, Tamura T, Takaoka Y, Hamachi I. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors. J Am Chem Soc 2009; 131:9046-54. [PMID: 19499918 DOI: 10.1021/ja902486c] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Semisynthetic fluorescent biosensors consisting of a protein framework and a synthetic fluorophore are powerful analytical tools for specific detection of biologically relevant molecules. We report herein a novel method that allows for the construction of turn-on fluorescent semisynthetic biosensors in a one-step manner. The strategy is based on the ligand-directed tosyl (LDT) chemistry, a new type of affinity-guided protein labeling scheme which can site-specifically introduce synthetic probes to the surface of proteins with concomitant release of the affinity ligands. Novel quenched ligand-directed tosylate (Q-LDT) reagents were designed by connecting an organic dye to a conjugate of a protein ligand and a fluorescence quencher through a tosyl linker. The Q-LDT-mediated labeling directly converts a natural protein to a fluorescently labeled protein that remains noncovalently complexed with the cleaved ligand-tethered quencher. The fluorescence of this labeled protein is initially quenched and only in the presence of specific analytes is the fluorescence enhanced (turned on) due to the expulsion of the ligand-quencher fragment. Using a single labeling step, this approach was successfully applied to carbonic anhydrase II (CAII) and a Src homology 2 (SH2) domain to generate turn-on fluorescent biosensors toward CAII inhibitors and phosphotyrosine peptides, respectively. Detailed investigations revealed that the obtained biosensors exhibit their natural ligand selectivity. The high target-specificity of the LDT chemistry also allowed us to prepare the SH2 domain-based biosensor not only in a purified form but also in a bacterial cell lysate. These results demonstrate the utility of the Q-LDT-based approach to expand the applications of semisynthetic biosensors.
Collapse
Affiliation(s)
- Shinya Tsukiji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Tanimura A, Morita T, Nezu A, Shitara A, Hashimoto N, Tojyo Y. Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J Biol Chem 2009; 284:8910-7. [PMID: 19158094 PMCID: PMC2659248 DOI: 10.1074/jbc.m805865200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/17/2008] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is an intracellular messenger that elicits a wide range of spatial and temporal Ca(2+) signals, and this signaling versatility is exploited to regulate diverse cellular responses. In this study, we have developed a series of IP(3) biosensors that exhibit strong pH stability and varying affinities for IP(3), as well as a method for the quantitative measurement of cytosolic concentrations of IP(3) ([IP(3)](i)) in single living cells. We applied this method to elucidate IP(3) dynamics during agonist-induced Ca(2+) oscillations, and we demonstrated cell type-dependent differences in IP(3) dynamics, a nonfluctuating rise in [IP(3)](i) and repetitive IP(3) spikes during Ca(2+) oscillations in COS-7 cells and HSY-EA1 cells, respectively. The size of the IP(3) spikes in HSY-EA1 cells varied from 10 to 100 nm, and the [IP(3)](i) spike peak was preceded by a Ca(2+) spike peak. These results suggest that repetitive IP(3) spikes in HSY-EA1 cells are passive reflections of Ca(2+) oscillations, and are unlikely to be essential for driving Ca(2+) oscillations. In addition, the interspike periods of Ca(2+) oscillations that occurred during the slow rise in [IP(3)](i) were not shortened by the rise in [IP(3)](i), indicating that IP(3)-dependent and -independent mechanisms may regulate the frequency of Ca(2+) oscillations. The novel method described herein as well as the quantitative information obtained by using this method should provide a valuable and sound basis for future studies on the spatial and temporal regulations of IP(3) and Ca(2+).
Collapse
Affiliation(s)
- Akihiko Tanimura
- Departments of Pharmacology and Integrated Human Sciences, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Aoki K, Kiyokawa E, Nakamura T, Matsuda M. Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Förster resonance energy transfer. Philos Trans R Soc Lond B Biol Sci 2008; 363:2143-51. [PMID: 18343776 DOI: 10.1098/rstb.2008.2267] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence probes based on the principle of Förster resonance energy transfer (FRET) have shed new light on our understanding of signal transduction cascades. Among them, unimolecular FRET probes containing fluorescence proteins are rapidly increasing in number because these genetically encoded probes can be easily loaded into living cells and allow simple acquisition of FRET images. We have developed probes for small GTPases, tyrosine kinases, serine-threonine kinases and phosphoinositides. Images obtained with these probes have revealed that membrane protrusions such as nascent lamellipodia or neurites provide an active signalling platform in the growth factor-stimulated cells.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
34
|
Umezawa Y. Optical probes for molecular processes in live cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:397-421. [PMID: 20636084 DOI: 10.1146/annurev.anchem.1.031207.112757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this review, I summarize the development over the past several years of fluorescent and/or bioluminescent indicators to pinpoint cellular processes in living cells. These processes involve second messengers, protein phosphorylations, protein-protein interactions, protein-ligand interactions, nuclear receptor-coregulator interactions, nucleocytoplasmic trafficking of functional proteins, and protein localization.
Collapse
|
35
|
Spangler C, Schaeferling M, Wolfbeis OS. Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Mikrochim Acta 2007. [DOI: 10.1007/s00604-007-0897-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute and Calcium Oscillation Project, ICORP-SORST, Hirosawa, Wako-shi, Saitama, Japan
| |
Collapse
|
37
|
Ha JS, Song JJ, Lee YM, Kim SJ, Sohn JH, Shin CS, Lee SG. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 2007; 73:7408-14. [PMID: 17890334 PMCID: PMC2168232 DOI: 10.1128/aem.01080-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein sensor with a highly responsive fluorescence resonance energy transfer (FRET) signal for sensing sugars in living Saccharomyces cerevisiae cells was developed by combinatorial engineering of the domain linker and the binding protein moiety. Although FRET sensors based on microbial binding proteins have previously been created for visualizing various sugars in vivo, such sensors are limited due to a weak signal intensity and a narrow dynamic range. In the present study, the length and composition of the linker moiety of a FRET-based sensor consisting of CFP-linker(1)-maltose-binding protein-linker(2)-YFP were redesigned, which resulted in a 10-fold-higher signal intensity. Molecular modeling of the composite linker moieties, including the connecting peptide and terminal regions of the flanking proteins, suggested that an ordered helical structure was preferable for tighter coupling of the conformational change of the binding proteins to the FRET response. When the binding site residue Trp62 of the maltose-binding protein was diversified by saturation mutagenesis, the Leu mutant exhibited an increased binding constant (82 microM) accompanied by further improvement in the signal intensity. Finally, the maltose sensor with optimized linkers was redesigned to create a sugar sensor with a new specificity and a wide dynamic range. When the optimized maltose sensors were employed as in vivo sensors, highly responsive FRET images were generated from real-time analysis of maltose uptake of Saccharomyces cerevisiae (baker's yeast).
Collapse
Affiliation(s)
- Jae-Seok Ha
- Systems Microbiology Research Center, KRIBB, 52, Oun-dong, Yusong-gu, Daejeon 305-333, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Lately, scientists have explored approaches to developing fluorescent and/or bioluminescent indicators to pinpoint cellular processes in single living cells. These analytical methods have become a key technology for visualizing and detecting what was otherwise unseen in live cells. The target signaling included second messengers, protein phosphorylations, protein-protein interactions, and protein localizations.
Collapse
Affiliation(s)
- Yoshio Umezawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
39
|
Umezawa Y. Methods of Analysis for Imaging and Detecting Ions and Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. ACTA ACUST UNITED AC 2006; 173:755-65. [PMID: 16754959 PMCID: PMC2063891 DOI: 10.1083/jcb.200512141] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine receptors. IP3 started to increase at a relatively constant rate before the pacemaker Ca2+ rise, and the subsequent abrupt Ca2+ rise was not accompanied by any acceleration in the rate of increase in IP3. Cytosolic [IP3] did not return to its basal level during the intervals between Ca2+ spikes, and IP3 gradually accumulated in the cytosol with a little or no fluctuations during cytosolic Ca2+ oscillations. These results indicate that the Ca2+-induced regenerative IP3 production is not a driving force of the upstroke of Ca2+ spikes and that the apparent IP3 sensitivity for Ca2+ spike generation progressively decreases during Ca2+ oscillations.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Membrane/metabolism
- Cytosol/metabolism
- HeLa Cells
- Humans
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Protein Binding
- Receptor, Metabotropic Glutamate 5
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Histamine/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Time Factors
Collapse
Affiliation(s)
- Toru Matsu-ura
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- The Institute of Medical Science, The University of Tokyo, RIKEN, Brain Science Institute, Calcium Oscillation Project, SORST, JST, Tokyo, Japan.
| |
Collapse
|
42
|
Shirakawa H, Ito M, Sato M, Umezawa Y, Miyazaki S. Measurement of intracellular IP3 during Ca2+ oscillations in mouse eggs with GFP-based FRET probe. Biochem Biophys Res Commun 2006; 345:781-8. [PMID: 16701560 DOI: 10.1016/j.bbrc.2006.04.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
Intracellular Ca2+ oscillations in fertilized mammalian eggs, the key signal that stimulates egg activation and early embryonic development, are regulated by inositol 1,4,5-trisphosphate (IP3) signaling pathway. We investigated temporal changes in intracellular IP3 concentration ([IP3]i) in mouse eggs, using a fluorescent probe based on fluorescence resonance energy transfer between two green fluorescent protein variants, during Ca2+ oscillations induced by fertilization or expression of phospholipase Czeta (PLCzeta), an egg-activating sperm factor candidate. Fluorescence measurements suggested the elevation of [IP3]i in fertilized eggs, and the enhancement of PLCzeta-mediated IP3 production by cytoplasmic Ca2+ was observed during Ca2+ oscillations or in response to CaCl2 microinjection. The results supported the view that PLCzeta is the sperm factor to stimulate IP3 pathway, and suggested that high Ca2+ sensitivity of PLCzeta activity and positive feedback from released Ca2+ are important for triggering and maintaining Ca2+ oscillations.
Collapse
Affiliation(s)
- Hideki Shirakawa
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo 182-8585, Japan.
| | | | | | | | | |
Collapse
|
43
|
Yagisawa H, Okada M, Naito Y, Sasaki K, Yamaga M, Fujii M. Coordinated intracellular translocation of phosphoinositide-specific phospholipase C-δ with the cell cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:522-34. [PMID: 16580873 DOI: 10.1016/j.bbalip.2006.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 11/18/2022]
Abstract
The delta family phosphoinositide (PI)-specific phospholipase C (PLC) are most fundamental forms of eukaryotic PI-PLCs. Despite the presence of lipid targeting domains such as the PH domain and C2 domain, the isoforms are also found in the cytoplasm and nucleus as well as at the plasma membrane. The isoforms have sequences or regions that can serve as a nuclear localization signal (NLS) and a nuclear export signal (NES). Their intracellular localization differs from one isoform to another, presumably due to the difference in the transport equilibrium balanced by the strength of the two signals of each isoform. Even for a particular isoform, its intracellular localization seems to vary during the cell cycle. As an example, PLCdelta(1), which is generally found at the plasma membrane and in the cytoplasm of quiescent cells, localizes to discrete nuclear structures in the G(1)/S boundary of the cell cycle. This may be at least partly due to an increase in intracellular Ca(2+), since Ca(2+) facilitates the formation of a nuclear transport complex comprised of PLCdelta(1) and importin beta1, a carrier molecule for the nuclear import. PLCdelta(1) as well as PLCdelta(4) may play a pivotal role in controlling the initiation of DNA synthesis in S phase. Spatio-temporal changes in the levels of PtdIns(4,5)P(2) seem to be another major determinant for the localization and regulation of the delta isoforms. High nuclear PtdIns(4,5)P(2) levels are associated with the G(1)/S phases. After entering M phase, PtdIns(4,5)P(2) synthesis at sites of cell division occurs and PLCs seem to localize to the cleavage furrow during cytokinesis. Coordinated translocation of PLCs with the cell cycle or with stress responses may result in changes in intra-nuclear environments and local membrane architectures that modulate proliferation and differentiation. In this review, recent findings regarding the molecular machineries and mechanisms of the nucleocytoplasmic shuttling as well as roles in the cell cycle progression of the delta isoforms of PLC will be discussed.
Collapse
Affiliation(s)
- Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Phosphoinositides (PIs) and proteins involved in the PI signaling pathway are distributed in the nucleus as well as at the plasma membrane and in the cytoplasm, although their nuclear localization mechanisms have not been clarified in detail. Generally, proteins that shuttle between the cytoplasm and nucleus contain nuclear localization signal (NLS) and nuclear export signal (NES) sequences for nuclear import and export, respectively. They bind to specific carrier proteins of the importin/exportin family and are transported to and from the nucleus. Thus there is a steady state shuttling of the cargo molecules to and from the nucleus, and the shift in equilibrium determines their nuclear or cytoplasmic localization. Our previous studies have shown that phospholipase C (PLC)-delta1, regarded as having cytoplasmic- or plasma membrane-bound localization, accumulates in the nucleus when its NES sequence is disrupted. In addition, a cluster of positively charged residues on the surface of the catalytic barrel is important for nuclear import. In quiescent cells, the shuttling equilibrium seems to be shifted to the nuclear export of PLCdelta1. In this review, recent findings regarding the molecular machineries and mechanisms of the nucleocytoplasmic shuttling of PLCdelta1 will be discussed. It is important to know when and how they are regulated. A shift in the equilibrium in a certain stage of the cell cycle or by external stimuli is possible and resulting changes in the intra-nuclear environments (or architectures) may alter proliferation and differentiation patterns. Evidences support the idea that an increase in the levels of intracellular Ca2+ shifts the equilibrium to the nuclear import of PLCdelta1. A myriad of external stimuli have also been reported to change the nuclear PI metabolism following accelerated accumulation in the nucleus of other phospholipases such as phospholipase A2 and phospholipase D in addition to PLC isoforms such as PLCbeta1 and PLCgamma1. The consequence of the nuclear accumulation of PLC is also discussed.
Collapse
Affiliation(s)
- Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| |
Collapse
|