1
|
Liu J, Yang L, Xue C, Huang G, Chen S, Zheng J, Yang R. Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33894-33904. [PMID: 34275283 DOI: 10.1021/acsami.1c08979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monitoring hypoxia-related changes in subcellular organelles would provide deeper insights into hypoxia-related metabolic pathways, further helping us to recognize various diseases on subcellular level. However, there is still a lack of real-time, in situ, and controllable means for biosensing in subcellular organelles under hypoxic conditions. Herein, we report a reductase and light programmatical gated nanodevice via integrating light-responsive DNA probes into a hypoxia-responsive metal-organic framework for spatiotemporally controlled imaging of biomolecules in subcellular organelles under hypoxic conditions. A small-molecule-decorated strategy was applied to endow the nanodevice with the ability to target subcellular organelles. Dynamic changes of mitochondrial adenosine triphosphate under hypoxic conditions were chosen as a model physiological process. The assay was validated in living cells and tumor tissue slices obtained from mice models. Due to the highly integrated, easily accessible, and available for living cells and tissues, we envision that the concept and methodology can be further extended to monitor biomolecules in other subcellular organelles under hypoxic conditions with a spatiotemporal controllable approach.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Caoye Xue
- Hunan Institute of Sports Science, 410003 Changsha, China
| | - Ge Huang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Ronghua Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410006 Hunan, China
| |
Collapse
|
2
|
Wang K, Qian M, Qi H, Gao Q, Zhang C. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. NANOSCALE 2020; 12:15663-15669. [PMID: 32672322 DOI: 10.1039/d0nr02149k] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is emerging as a promising vector in encapsulation and delivery of imaging agents or drugs. Adenosine triphosphate (ATP) is the primary energy source in cells and plays a key role in many cellular processes. Although numerous probes have been developed for ATP detection, only a few of them were used to real-time monitor ATP fluctuation in mitochondria during photodynamic therapy (PDT). Here, an ATP-responsive and fluorescent ZIF-8 is synthesized for real-time monitoring mitochondrial ATP fluctuation in living cells during photodynamic therapy. Rhodamine B (RhB) as a fluorescent indicator is encapsulated into ZIF-8 to form multifunctional RhB@ZIF-8 via a one step process. RhB@ZIF-8 can rapidly respond to ATP with ZIF-8 decomposition and fluorescence off-on switch via a competitive coordination interaction and exhibits good sensitivity and selectivity to ATP with a detection limit of 35 μM. Furthermore, RhB@ZIF-8 is successfully utilized for real-time monitoring and imaging mitochondrial ATP fluctuation in living cells during photodynamic therapy with good biocompatibility and high cell permeability. It is found that the ATP levels in mitochondria increased within 1 min of light irradiation and then decreased with further increase of the light irradiation time during PDT using an Ir(iii) complex. This work demonstrates that RhB@ZIF-8 can serve as a promising fluorescent probe to monitor mitochondrial ATP fluctuation with fast response, good sensitivity and endogenous molecule-responsive properties inside living cells.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | | | | | | | | |
Collapse
|
3
|
Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials 2014; 35:6898-906. [PMID: 24857292 DOI: 10.1016/j.biomaterials.2014.04.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022]
Abstract
De-differentiation and loss of function in hepatocytes during two-dimensional (2D) tissue culture significantly hinders the progress of liver research. An ideal three-dimensional (3D) in vitro liver parenchymal cell culture platform should restore cell-cell and cell-matrix interactions, as well as normal hepatocyte polarity. Here, we report an orthogonal thiol-ene hydrogel system for culturing liver cell lines (e.g. Huh7 and HepG2). The hydrogels were prepared by a radical-mediated orthogonal thiol-norbornene photo-click chemistry using poly(ethylene glycol)-tetra-norbornene (PEG4NB) macromer and di-thiol containing linker (e.g., dithiothreitol (DTT) or bis-cysteine matrix metalloproteinase (MMP)-sensitive peptide). This system also allows facile incorporation of bioactive peptides (e.g., fibronectin-derived RGDS) to improve cell-matrix interactions. Encapsulated Huh7 and HepG2 cells showed elevated urea secretion and CYP3A4 enzymatic activities, as well as up-regulated mRNA levels of multiple hepatocyte genes (e.g., CYP3A4, BESP, and NTCP). Importantly, this is the first 3D hydrogel system that up-regulates the expression of NCTP in encapsulated Huh7 and HepG2 cell lines without any genetic modification or the addition of growth factors and chemical additives. Furthermore, the encapsulated cells displayed hepatocyte-like polarity distinctively different from the polarity displayed in 2D culture. These characteristics not only allow the study of hepatology in 3D using inexpensive cell lines, but also permit large-scale small-molecule screening. The up-regulation of NTCP expression and restoration of hepatocyte-like polarity in our hydrogels also shed light on future study of hepatitis B virus infection in vitro.
Collapse
|
4
|
|
5
|
|
6
|
Abstract
The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
7
|
Koh WG. Cell microarrays based on hydrogel microstructures for the application to cell-based biosensor. Methods Mol Biol 2011; 671:133-145. [PMID: 20967627 DOI: 10.1007/978-1-59745-551-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell-based biosensors constitute a promising field that has numerous applications ranging from pharmaceutical screening to detection of pathogen and toxicant. The trends toward miniaturization of cell-based biosensor continue to spur development of cell microarray integrated into microfluidic devices. For cell-based biosensors to be useful for larger applications, several technical goals must be realized. First, the cell-patterning method used to generate multi-phenotypic array can accommodate multiple cell lines without major losses of cell viability, maintain total isolation of each cell phenotype, provide for the adequate mass transfer of dissolved gases and nutrients, and easy enough to allow for mass production. Second, cells on microarray must be cultured in three-dimensional environment as they do in real tissue to obtain accurate response of cells against target analyte. Third, physiological status of micropatterned cells must be monitored non-invasively. As one solution to satisfy these requirements, we prepare cell microarrays using microfabricated poly(ethylene glycol)(PEG) hydrogel. Arrays of hydrogel microstructures encapsulating one or more different cell phenotypes can be fabricated using photolithography or photoreaction injection molding, and can be incorporated within microfluidic network. Finally, we demonstrate the potential application of cell-containing hydrogel microarrays for toxin detection by monitoring toxin-induced change of cell viability and intercellular enzymatic reaction.
Collapse
Affiliation(s)
- Won-Gun Koh
- Department of Chemical and Biological Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Ben-Yoav H, Melamed S, Freeman A, Shacham-Diamand Y, Belkin S. Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol 2010; 31:337-53. [PMID: 21190513 DOI: 10.3109/07388551.2010.532767] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in the convergence of the biological, chemical, physical, and engineering sciences have opened new avenues of research into the interfacing of diverse biological moieties with inanimate platforms. A main aspect of this field, the integration of live cells with micro-machined platforms for high throughput and bio-sensing applications, is the subject of the present review. These unique hybrid systems are configured in a manner that ensures positioning of the cells in designated patterns, and enables cellular viability maintenance, and monitoring of cellular functionality. Here we review both animate and inanimate surface properties and how they affect cellular attachment, describe relevant modifications of both types of surfaces, list technologies for platform engineering and for cell deposition in the desired configurations, and discuss the influence of various deposition and immobilization methods on the viability and performance of the immobilized cells.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
9
|
Wei H, Li H, Gao D, Lin JM. Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells. Analyst 2010; 135:2043-50. [PMID: 20526497 DOI: 10.1039/c0an00162g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes an integrated system combining microfluidic devices with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) for monitoring cellular chemical release. To demonstrate the feasibility of this new system, the reported carnosine-protection process against Abeta42-induced glutamate released from PC12 cells, was monitored. Poly-L-lysine coated microchannels were used to culture cells. A multi-channel miniature extraction chip (MEC) was integrated into the design to remove salts and protein interference effects. ESI-Q-TOF-MS was employed to realize semi-quantitative and highly sensitive qualitative analysis. The protective effect of carnosine against Abeta42-induced neurotoxicity was evaluated under different conditions in microchannels in parallel. The secretion product analysis, carried out by ESI-Q-TOF-MS, was accomplished in 5 min using only 2.5 microL of solvent. Furthermore, we show that integrated microfluidic devices have significant potential for the analysis of cellular secretions, as well as for medical screening tests and for the diagnosis of specific diseases.
Collapse
Affiliation(s)
- Huibin Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
10
|
|